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Density function:

(i.i.d.)
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Encoding Continuous Data

Outline Differential Entropy
MDL for Gaussian Models Regression
MDL for Multinomial Models Subset Selection Problem

Wavelet Denoising

Differential Entropy

What is the optimal rate for encoding (compressing) continuous
data?

The answer involves again an entropy. However, not the familiar
kind of entropy but instead...

Differential entropy

Let X € R be a continuous random variable with probability
density f : R — RT.

The differential entropy of X is defined as
h(X) = Ex~f {Iog2 FIX ] /f ) log, 7 )d
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Differential Entropy

If § > 0 is small, the probability that X € [(t — 3)J, (t + 3)d] is
well approximated by f(td)J.

Hence, the minimum coding rate of the discretized random
variable X? is given by

HX)~ > f(x)dlog, f(lx)é

x=td:tEZL
+o0

1
f(x)I ——dx — | é.
5—>—>0 - (X) 0go f(X)5 X 08>

For finite precision, under regularity conditions, the rate is
approximately H(X?) =~ h(X) — log, 6.
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Differential Entropy

The differential entropy h(X) measures the uncertainty about a
continuous random varible X.

However, its interpretation is less direct than that of H(X).
@ Code-length depends on precision: H(X%) ~ h(X) — log, §.
@ Item (1) may not be accurate if density f(x) is not smooth
enough: Pr[x —46/2 < X < x+0/2] % f(x)0.
@ H(X) > 0 but h(X) € R (can be negative!)

Mutual information has more familiar properties:
I(X;Y)=h(X)—h(X|Y)>0

where equality holds only if X LY.
Think: X = terrain, Y = map.
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I(map ; terrain)
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Differential Entropy

The minimum coding rate h(X)— log, 0 is achieved if and
only if the code-word lengths are chosen according to

1 1 1
K(X) = |0g2 f(X)(S |0g2 f( )+|Og2 5

The term log,(1/9) depends only on the precision we chose and is
same for all models. Therefore, we can ignore it for the purpose of

comparing models.
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Recall the Gaussian density function:
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The code-length is then

n 5 1 ? 5
5 log,(2m0°) + 2in2)? ;(X; — ).



Ok, we have our Gaussian code-length formula:
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Let's use the two-part code and plug in the maximum likelihood
parameters:
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Ok, we have our Gaussian code-length formula:
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Let's use the two-part code and plug in the maximum likelihood
parameters:
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Ok, we have our Gaussian code-length formula:

n 1 :
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Let's use the two-part code and plug in the maximum likelihood
parameters:
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Ok, we have our Gaussian code-length formula
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Let's use the two-part code and plug in the maximum likelihood
parameters:
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Ok, we have our Gaussian code-length formula:

n )
— log, 6° + constant

parameters:

Let's use the two-part code and plug in the maximum likelihood

n n
,&:lg Xj 6221
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We get the total (two-part) code-length formula:

n o k2
5 log, 6° + > log, n + constant.

Since we have two parameters, i and o2, we let k = 2.

Notice that depending on what exactly you are doing, you may or
may not care about the constant.



A similar treatment can be given to regression models.

The model includes one or more regressor variables xi,...,x, € R,
and a set of coefficients f1,..., 3.

The dependent variable, Y, is assumed to be Gaussian:

@ the mean p is given as a function of the regressors:

/1/ = fﬁl,,,,”ﬁp(X]_, e )Xr)y

@ variance is some parameter 2.



Suppose that the regression function is linear in the parameters.

For a sample of size n, the matrix notation is convenient:

Y1 X1 o+ Xip p1 €1
y=[:| x=|: . | B=|: :

Yn Xp1 ° Xnp /Bp €n
Then the model can be written as

Y = X8+,

where ¢; ~ N(0,02).
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Linear Regression

FYIl: The maximum likelihood estimators are then

N _ 52 RSS
B=X"X)"'x"Ty, fHY Xﬁuz——,

where RSS is the “residual sum of squares”.

Since the errors are assumed Gaussian, our code-length formula
applies:
kp+1

|og2 5°RSS + —— 5

log, n + constant.

The number of parameters is now p 4 1 (p of the s and ¢2), so
we get...
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Nonlinear Regression

The same formula applies also to nonlinear regression models:

p+1

g log, RSS + log, n 4 constant.

Q: Where does the functional form come from?

o f(x) = p1+ Basin(+/F3x)?
_exp(fix + faxo)
° fx) = 1+ exp(B1x1 + Bax2) !

In other words, where does the model class come from?

A: No answer... There is no complete and principled answer —
look at the data, be creative.
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Subset Selection Problem

Often we have a large set of potential regressors, some of which
may be irrelevant.

The MDL principle can be used to select a subset of them by
comparing the total code-lengths:

|S|+1

n
msin 5 log, RSSs + log, n|

where RSSs is the RSS obtained by using subset S of the
regressors. (Usually linear model.)
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Wavelet Denoising

One particularly useful way to obtain the regressor (design) matrix
is to use wavelets.

Image by Gabriel Peyré
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Differential Entropy
Regression
Subset Selection Problem

Wavelet Denoising

Wavelet Denoising

IEEE TRANS. SIGNAL PROCESSING, VOL. 7, NO. 7, 2009

MDL Denoising Revisited

Teemu Roos Member, Petri Myllymiki, and Jorma Rissanen Fellow

Abstract— We refine and extend an earlier minimum de-
scription length (MDL) denoising criterion for wavelet-based
denoising. We start by showing that the denoising problem can be
reformulated as a clustering problem, where the goal is to obtain
separate clusters for informative and non-informative wavelet
coefficients, respectively. This suggests two refinements, adding a
code-length for the model index, and extending the model in order
to account for subband-dependent coefficient distributions. A
third refinement is the derivation of soft thresholding inspired by
predictive universal coding with weighted mixtures. We propose
a practical method incorporating all three refinements, which is
shown to achieve good performance and robustness in denoising
both artificial and natural signals.

Index Terms— Minimum description length (MDL) principle,
wavelets, denoising.

Teemu Roos

(both of which include the Gaussian and d¢
densities as special cases).

A third approach to denoising is based
description length (MDL) principle [16]-{2(
ent MDL denoising methods have been su;
[21]-[25]. We focus on what we consider
MDL approach, namely that of Rissanen [24
is two-fold: First, as an immediate result
extending the earlier MDL denoising mett
new practical method with greatly impro
and robustness. Secondly, the denoising p
to illustrate theoretical issues related to the
involving the problem of unbounded paran
and the necessity of encoding the model ¢l
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Linear regression with wavelet basis functions.

Main effort in constructing a universal code:
© combines two-part, mixture, and NML universal codes,
@ bounds on NML normalization region required,

© important lesson: remember to encode model class.
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The multinomial model — the generalization of Bernoulli — is
very simple:

p(xj) =6;, forje{l,...,m}.

Maximum likelihood:

_ #{xi :j}.

.
J n

Two-part, mixture, and NML models readily defined.



The naive way to compute the normalizing constant in the NML
model

ps(x") m n
HC—m’ Cn = Z pé(y )7

y"EX"

takes exponential time (Q(m")).

The second most naive way takes “only” polynomial time,
O(n™=1), but is still intractable unless m < 3 (or maybe m < 4).



Universal Codes

Outline .
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ustering
Fast NML for Multinomials
There is a way — which is not naive at alll — to do it in linear

time, O(n+ m), using the following recursion:
m m—1 n m—2
G =C""+ mcn )

where C is the normalizing constant for an m-ary multinomial
and sample size n.

The trick is to reduce the general case to C! =1 and C?, the
latter of which can be computed in linear time (using the second
most naive approach).

Kontkanen & Myllymaki, “A linear-time algorithm for computing the
multinomial stochastic complexity”, Information Processing Letters 103
(2007), 6, pp. 227-233
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Histogram Density Estimation

Nonparametric Density Estimation: Given a sample from a
univariate density whose parametric form is not known, propose a
density estimate.

Histograms are an example of a non-parametric family of densities.
Note: Nonparametric = hell of a lot (unbounded number) of
parameters!

Choosing the number and the positions of break-points in a
histogram can be done by MDL.

The code-length is equivalent (up to additive constants) to the
code-length in a multinomial model.
= Linear time algorithm can be used.
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Histogram Density Estimation

MDL Histogram Density Estimation

Petri Kontkanen, Petri Myllymaki
Complex Systems Computation Group (CoSCo)
Helsinki Institute for Information Technology (HIIT)
University of Helsinki and Helsinki University of Technology
P.0.Box 68 (Department of Computer Science)
FIN-00014 University of Helsinki, Finland
{Firstname}.{Lastname}@hiit.fi

Abstract

‘We regard histogram density estimation as
a model selection problem. Qur approach
is based on the information-theoretic min-
imum deseription length (MDL) principle,
which can be applied for tasks such as data
clustering,

Teemu Roos

only on finding the optimal bin count. These regu-
lar histograms are, however, often problematic. It has
been argued ( anen, Speed, & Yu, 1992) that reg-
ular histograms are only good for describing roughly
uniform data. If the data distribution is strongly non-
uniform, the bin count must necessarily be high if one
wants to capture the details of the high density portion
of the data. This in turn means that an unnee
large amount of bins is wasted in the low density re-

ary

Information-Theoretic Modeling



K = 1000

AL}




Universal Codes

Fast NML Computation
Histogram Density Estimation
Clustering

Outline
MDL for Gaussian Models
MDL for Multinomial Models

Clustering

Consider the problem of clustering vectors of (independent)
multinomial variables.

This can be seen as a way to encode (compress) the data:
@ first encode the cluster index of each observation vector,

@ then encode the observations using separate (multinomial)
models.

Again, the problem is reduced to the multinomial case, and the
fast NML algorithm can be applied.
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The clustering model can be interpreted as the naive Bayes

structure:

label = cluster index fi,...,f, are features

The structure is very restrictive. Generalization achieved by
Bayesian networks.

MDL criterion for learning Bayesian network structures again based
on fast NML for multinomials.




The final week covers some additional topics:

@ Kolmogorov complexity

@ gambling
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