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Density function:
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Di↵erential Entropy

What is the optimal rate for encoding (compressing) continuous
data?

The answer involves again an entropy. However, not the familiar
kind of entropy but instead...

Di↵erential entropy

Let X 2 R be a continuous random variable with probability
density f : R ! R+.

The di↵erential entropy of X is defined as

h(X ) = E
X⇠f


log2

1

f (X )

�
=

Z
f (x) log2

1

f (x)
dx .
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If � > 0 is small, the probability that X 2 [(t � 1
2)�, (t +

1
2)�] is

well approximated by f (t�)�.

Hence, the minimum coding rate of the discretized random
variable X � is given by

H(X �) ⇡
X

x=t� : t2Z
f (x)� log2

1

f (x)�

�!
�!0

Z +1

�1
f (x) log2

1

f (x)�
dx � log2 �.

For finite precision, under regularity conditions, the rate is
approximately H(X �) ⇡ h(X )� log2 �.
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Di↵erential Entropy

The di↵erential entropy h(X ) measures the uncertainty about a
continuous random varible X .

However, its interpretation is less direct than that of H(X ).
1 Code-length depends on precision: H(X �) ⇡ h(X )� log2 �.
2 Item (1) may not be accurate if density f (x) is not smooth

enough: Pr[x � �/2  X < x + �/2] 6⇡ f (x)�.
3 H(X ) > 0 but h(X ) 2 R (can be negative!)

Mutual information has more familiar properties:

I (X ; Y ) = h(X )� h(X | Y ) � 0

where equality holds only if X ✏Y .

Think: X = terrain, Y = map.
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Outline
MDL for Gaussian Models

MDL for Multinomial Models

Encoding Continuous Data
Di↵erential Entropy
Regression
Subset Selection Problem
Wavelet Denoising

I (map ; terrain)

Teemu Roos Information-Theoretic Modeling



Outline
MDL for Gaussian Models

MDL for Multinomial Models

Encoding Continuous Data
Di↵erential Entropy
Regression
Subset Selection Problem
Wavelet Denoising

Di↵erential Entropy

The minimum coding rate h(X )� log2 �� log2 � is achieved if and
only if the code-word lengths are chosen according to

`(x) = log2
1

f (x)��
= log2

1

f (x)
+ log2

1

�
+ log2

1

�
.

The term log2(1/�) depends only on the precision we chose and is
same for all models. Therefore, we can ignore it for the purpose of
comparing models.
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Back to Gaussians

Recall the Gaussian density function:

�µ,�2(x1, . . . , xn)
(i .i .d .)
=

�
2⇡�2

��n/2
e
�
P

n

i=1(xi � µ)2

2�2 .

The code-length is then

n

2
log2(2⇡�

2) +
1

(2 ln 2)�2

nX

i=1

(x
i

� µ)2.
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Back to Gaussians

Ok, we have our Gaussian code-length formula:

n

2
log2(2⇡�

2) +
1

(2 ln 2)�2

nX

i=1

(x
i

� µ)2 .

Let’s use the two-part code and plug in the maximum likelihood
parameters:

µ̂ =
1

n

nX

i=1

x
i

, �̂2 =
1

n

nX

i=1

(x
i

� µ̂)2 .
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Back to Gaussians

We get the total (two-part) code-length formula:

n

2
log2 �̂

2 +
k2

2
log2 n + constant.

Since we have two parameters, µ and �2, we let k = 2.

Notice that depending on what exactly you are doing, you may or
may not care about the constant.
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Regression

A similar treatment can be given to regression models.

The model includes one or more regressor variables x1, . . . , xr 2 R,
and a set of coe�cients �1, . . . ,�p.

The dependent variable, Y , is assumed to be Gaussian:

the mean µ is given as a function of the regressors:

µ = f�1,...,�p

(x1, . . . , xr ),

variance is some parameter �2.
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Linear Regression

Suppose that the regression function is linear in the parameters.

For a sample of size n, the matrix notation is convenient:

Y =

0

B@
Y1
...
Y
n

1

CA X =

0

B@
x11 · · · x1p
...

. . .
...

x
n1 · · · x

np

1

CA � =

0

B@
�1
...
�
p

1

CA ✏ =

0

B@
✏1
...
✏
n

1

CA

Then the model can be written as

Y = X� + ✏,

where ✏
i

⇠ N (0,�2).
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Linear Regression

FYI: The maximum likelihood estimators are then

�̂ = (XTX )�1XTY , �̂2 =
1

n
kY � X �̂k22 =

RSS

n
,

where RSS is the “residual sum of squares”.

Since the errors are assumed Gaussian, our code-length formula
applies:

n

2
log2 �̂

2
RSS+

kp + 1

2
log2 n + constant.

The number of parameters is now p + 1 (p of the �s and �2), so
we get...
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Nonlinear Regression

The same formula applies also to nonlinear regression models:

n

2
log2RSS+

p + 1

2
log2 n + constant.

Q: Where does the functional form come from?

f (x) = �1 + �2 sin(
p
�3x)?

f (x) =
exp(�1x1 + �2x2)

1 + exp(�1x1 + �2x2)
?

. . .

In other words, where does the model class come from?

A: No answer... There is no complete and principled answer —
look at the data, be creative.
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Subset Selection Problem

Often we have a large set of potential regressors, some of which
may be irrelevant.

The MDL principle can be used to select a subset of them by
comparing the total code-lengths:

min
S


n

2
log2RSSS +

|S |+ 1

2
log2 n

�
,

where RSS

S

is the RSS obtained by using subset S of the
regressors. (Usually linear model.)
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Wavelet Denoising

One particularly useful way to obtain the regressor (design) matrix
is to use wavelets.

Image by Gabriel Peyré

Teemu Roos Information-Theoretic Modeling



Outline
MDL for Gaussian Models

MDL for Multinomial Models

Encoding Continuous Data
Di↵erential Entropy
Regression
Subset Selection Problem
Wavelet Denoising

Wavelet Denoising

Teemu Roos Information-Theoretic Modeling



Outline
MDL for Gaussian Models

MDL for Multinomial Models

Encoding Continuous Data
Di↵erential Entropy
Regression
Subset Selection Problem
Wavelet Denoising

Wavelet Denoising

Linear regression with wavelet basis functions.

Main e↵ort in constructing a universal code:

1 combines two-part, mixture, and NML universal codes,

2 bounds on NML normalization region required,

3 important lesson: remember to encode model class.
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Multinomial Models

The multinomial model — the generalization of Bernoulli — is
very simple:

p(x
j

) = ✓
j

, for j 2 {1, . . . ,m}.

Maximum likelihood:

✓̂
j

=
#{x

i

= j}
n

.

Two-part, mixture, and NML models readily defined.
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Fast NML for Multinomials

The näıve way to compute the normalizing constant in the NML
model

p✓̂(x
n)

Cm

n

, Cm

n

=
X

y

n2X n

p✓̂(y
n),

takes exponential time (⌦(mn)).

The second most näıve way takes “only” polynomial time,
O(nm�1), but is still intractable unless m  3 (or maybe m  4).
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Fast NML for Multinomials

There is a way — which is not näıve at all! — to do it in linear
time, O(n +m), using the following recursion:

Cm

n

= Cm�1
n

+
n

m � 2
Cm�2
n

,

where Cm

n

is the normalizing constant for an m-ary multinomial
and sample size n.

The trick is to reduce the general case to C 1
n

= 1 and C 2
n

, the
latter of which can be computed in linear time (using the second
most näıve approach).

Kontkanen & Myllymäki, “A linear-time algorithm for computing the
multinomial stochastic complexity”, Information Processing Letters 103
(2007), 6, pp. 227–233
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Histogram Density Estimation

Nonparametric Density Estimation: Given a sample from a
univariate density whose parametric form is not known, propose a
density estimate.

Histograms are an example of a non-parametric family of densities.
Note: Nonparametric = hell of a lot (unbounded number) of
parameters!

Choosing the number and the positions of break-points in a
histogram can be done by MDL.

The code-length is equivalent (up to additive constants) to the
code-length in a multinomial model.
) Linear time algorithm can be used.
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Clustering

Consider the problem of clustering vectors of (independent)
multinomial variables.

This can be seen as a way to encode (compress) the data:

1 first encode the cluster index of each observation vector,

2 then encode the observations using separate (multinomial)
models.

Again, the problem is reduced to the multinomial case, and the
fast NML algorithm can be applied.
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Clustering

The clustering model can be interpreted as the näıve Bayes

structure:

label = cluster index f1, . . . , fn are features

The structure is very restrictive. Generalization achieved by
Bayesian networks.

MDL criterion for learning Bayesian network structures again based
on fast NML for multinomials.
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Coming next

The final week covers some additional topics:

Kolmogorov complexity

gambling
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