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Approximating Probabilistic Inference 
in Bayesian Belief Networks 

Paul Dagum and R. Martin Chavez 

Abstract- A belief network comprises a graphical represen- 
tation of dependencies between variables of a domain and a 
set of conditional probabilities associated with each dependency. 
Unless P=NP, an efficient, exact algorithm does not exist to 
compute probabilistic inference in belief networks. Stochastic 
simulation methods, which often improve run times, provide 
an alternative to exact inference algorithms. We present such 
a stochastic simulation algorithm 2)-BNRAS that is a randomized 
approximation scheme. To analyze the run time, we parameterize 
belief networks by the dependence value P E ,  which is a measure 
of the cumulative strengths of the belief network dependencies 
given background evidence E.  This parameterization defines the 
class of f-dependence networks. The run time of 2)-BNRAS is 
polynomial when f is a polynomial function. Thus, the results 
of this paper prove the existence of a class of belief networks 
for which inference approximation is polynomial and, hence, 
provably faster than any exact algorithm. 

I. INTRODUCTION 
ELIEF NETWORKS denote a knowledge representation B that is ideally suited to model uncertainty in complex 

domains. Belief networks are the paradigm of knowledge 
representation in medical decision systems. The intractability 
of probabilistic inference in large belief networks, however, 
impedes their application to large domains. Cooper [6] proves 
probabilistic inference for belief networks is NP-hard. Con- 
sequently, we do not expect general-purpose algorithms for 
probabilistic inference to run in polynomial time. The need 
to solve time-pressured decision problems in medical applica- 
tions motivates researchers to design approximation algorithms 
that trade complexity in run time for accuracy of computation. 
Stochastic simulation algorithms such as forward propagation 
[lo], [11], [18], [19] and Gibbs sampling [l] ,  [3],  [4], [15], 
[16] number among such algorithms. 

For many classes of inputs, stochastic simulation algorithms 
for probabilistic inference require exponential run time [3], 
[4], [16]. For example, logic sampling [11] and likelihood 
weighting [18] require exponential run time on inferences 
conditioned on rare observations. More generally, Dagum 
and Luby [9] prove that the approximation of probabilistic 
inference is NP-hard. Thus, they confirm that all stochastic 
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simulation algorithms exhibit poor behavior on certain classes 
of belief networks. In spite of this negative result, the plethora 
of belief network applications in medical expert systems 
compels us to search for approximation algorithms that run 
faster than exact algorithms, even though we know that the 
approximation algorithms do not run in polynomial time on 
certain classes of belief-network inputs. 

Computer scientists formulate stochastic simulation algo- 
rithms as randomized approximation schemes (RAS's) [ 141. 
A stochastic simulation algorithm for probabilistic inference 
is a RAS if on inputs e , S  5 1 and inference P r [X  = a][], 
the output lies within relative error E of P r [ X  = zl[] with 
probability of at least 1 - S. Given the parameters of the 
approximation, E and 6, a RAS provides a priori bounds on 
the required run time. A RAS for probabilistic inference has 
desirable properties. For example, automated medical support 
systems regularly face time-pressured decision problems. The 
a priori bound of a RAS allows resource constraints to 
determine the accuracy of the approximation. Since a RAS 
incrementally tightens the error bounds, the system may make 
a treatment recommendation immediately or rather defer a 
recommendation and continue to reason. A rational decision 
results from a utility model weighing the expected value 
of further computation against the cost of inference-based 
delay. 

Central to the formulation of a RAS, the zero-one estimator 
theorem bounds the number of belief network instantiations 
N required by a RAS to output an estimate of the input 
inference [14]. For input inference P r [ X  = X I [ ] ,  this number is 
proportional to P r [ X  = X I [ ] - ' .  Thus, evaluation of N given 
by the zero-one estimator theorem requires prior knowledge 
of P r [X  = X I [ ] .  Because this prior knowledge is unknown 
in advance, BNRAS, likelihood weighting, and logic sampling 
algorithms employ easily computable lower bounds on the 
inference to yield upper bounds on N .  Unfortunately, this 
approach often is conservative; it yields an upper bound on 
the number of simulations N that exceeds the optimal value 
provided by the zero-one estimator theorem by an exponential 
factor-for example, a factor of 2" on an n-node belief 
network. Furthermore, it is NP-hard to determine whether N 
is finite. By the zero-one estimator theorem, N is finite if 
and only if P r [X  = XI[] is nonzero: an NP-hard decision 
problem [6]. Inferences close to zero present a further problem 
to stochastic simulation algorithms that employ the zero-one 
estimator theorem. Approximations based naively on zero-one 
estimation theory are intractable even for exact evaluations 
of N .  
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The algorithm BNRAS of Chavez and Cooper [4] repre- 
sents the first design of a stochastic simulation algorithm 
for probabilistic inference formulated explicitly as a RAS. 
The formulation of the algorithm utilizes Markov simulation. 
Nevertheless, i t  does not exploit the geometric properties of 
the Markov chain. Thus, Chavez and Cooper obtain suboptimal 
results on the convergence of the simulation. 

We characterize belief networks by their dependence value 
D. Intuitively, the dependence value measures the cumulative 
strength of the dependencies among nodes in a belief network 
encoded in the conditional probabilities of each node. We 
present an approximation algorithm 2)-BNRAS for probabilistic 
inference in the spirit of Chavez and Cooper’s BNRAS [4], 
[6]. However, we focus on the geometric intuition underlying 
the algorithm: a random walk on a hypercube. Each hypercube 
vertex represents a possible instantiation of the network nodes, 
and each hypercube edge connects vertices if they differ in 
the instantiation of a single node. We exploit this geometry 
to prove tight convergence bounds on the random walk. 
Consequently, we derive nonasymptotic results on the rate of 
convergence by proving a lower bound on the conductance of 
the hypercube with results from [20]. We use these bounds to 
reduce the time required by the algorithm to output an instan- 
tiation. A rigorous analysis shows that D-BNRAS significantly 
improves the run time of BNRAS on all classes of inputs. 

The class of f -dependence networks comprises belief net- 
works with a dependence value bounded by the function f ( n ) .  
We prove D-BNRAS runs in time proportional to f4(n) .  When 
f(n) is a polynomial function, D-BNRAS has polynomial run 
time. If for all 71, f(n) 2 1 + cy for any constant a: > 0, then 
probabilistic inference is NP-hard for f -dependence networks. 
Thus, we do not expect to find efficient exact algorithms for 
probabilistic inference even for very restricted f -dependence 
networks. 2)-BNRAS runs in polynomial time when f is a 
polynomial, and it yields a tractable solution to the problem 
of probabilistic inference for this class. 

Formulation of stochastic simulation algorithms for proba- 
bilistic inference as RAS algorithms involves the naive appli- 
cation of the zero-one estimator theorem. We encounter two 
difficulties with this approach: We must compute good lower 
bounds on the inference we intend to approximate, and when 
the inference nears zero, we must use a very large number 
of simulations. In contrast with the difficulties encountered 
by these algorithms, we prove a key result that allows V- 
BNRAS to employ a polynomial number of instantiations to 
approximate any input inference. Thus, the efficiency of D- 
BNRAS is independent of the input inference; however, the 
efficiency relies strongly on the dependence value of the belief 
network. Thus, in almost all cases, D-BNRAS requires fewer 
instantiations to output an estimate than previous stochastic 
simulation algorithms, but the run time to generate instantia- 
tions is significantly longer than likelihood weighting and, in 
many cases, logic sampling. 

11. BACKGROUND 

Here and elsewhere, B denotes a binary-valued belief 
network on n unobserved nodes { X I , .  . . , X,} with back- 

ground evidence <. The set X refers to an arbitrary subset 
of uyobserved nodes in B. For any node X, ,  any set of 
unobserved parents U-Y, , and any set of observed parents <ayz, 

a belief network specifies a conditional probability function 
Pr[X,lus , .  E s t ] .  We simplify the notation of the conditional 
probability function by writing Pr[X, lu-y, . E ] ,  where it is 
understood that E ,  in this context, refers to &,. The full 
joint probability distribution specified by a belief network is 
calculated by taking the product of the conditional probabilities 

P r [ X I ! .  . . 
i=l 

Probabilistic inference in belief networks refers to the com- 
putation of Pr[X = X I < ]  for an instantiation x of X and 
background evidence E .  

A.  Dependence Value 

We parametrize belief networks by their dependence value 
’DE 2 1. The dependence value of a belief network depends on 
the background evidence E .  Intuitively, the dependence value 
gives a measure of the cumulative strength of the dependencies 
among nodes in a belief network that are encoded by the 
conditional probabilities associated with each node, 

For each node X, ,  we define 1, and U ,  as the greatest and 
smallest numbers, respectively, such that, for instantiation z, 
of X , ,  and for all instantiations of X,’s unobserved parents 
u s  ~ 

It follows that 

where 2, = 1 - 2,. Note that 1, > 0 and U ,  < 1 since we 
assume that no complete instantiation of the network has zero 
probability. Let A, = max (?, 2). When X ,  is a prior 
node-that is, X ,  has no parents-or when us, is empty-that 
is, the parents of X ,  have been observed-then A, = 1. 

Definition: For a belief network B,  the dependence value 
is given by 

71 

i = l  

By this definition, V c  2 1. The trivial case when D, = 1 
occurs when there are no conditional dependencies between 
nodes in the belief network. 

Definition: Let f ( n )  denote a positive-valued function on 
the positive integers. The class of f -dependence networks 
consists of the set of belief network and evidence couples 
(B,E) such that if B has n nodes and dependence value De, 
then Dc 5 f(n). 

When f (n)  is a polynomial function, the class of f- 
dependence networks is an example of a class of polynomial 
dependence networks. 
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output estimates that satisfy (2). Similarly, Shachter and Peot evidence I ,  Pr[  I < ]  represents the stationary distribution of 

B. Randomized Approximation Schemes 

Convergence analysis of simulation algorithms in the the- 
oretical computer science community is rooted in zero-one 
estimation theory. The methodology carries over to the anal- 
ysis of simulation algorithms for probabilistic inference [ 181, 

We review briefly the zero-one estimation approach for 
convergence anlaysis of a simulation algorithm. Consider the 
problem of trying to estimate Pr[A] in the probability space 
(0 ,2" ,  Pr), where A denotes a subset of 0. Define the random 
variable C = [ ( U )  to take on the value 1 when w E A and 
to take on the value 0 otherwise. The Monte Carlo method 
simulates the probability P r  and scores the random variable 
< = <(U) to estimate 4 = Pr[d] .  By the Law of Large 
Numbers, in the limit of an infinite number of trials, the 
arithmetic mean p of the output of each simulation converges 
to 4. After a finite number of trials N ,  the current fraction 
h estimates 4. 

For simulation algorithms, we desire an upper bound on N 
that guarantees that ,LL provides a good estimate of 4. More 
specifically, for any E. 6 5 1, we would like to know the least 
number of trials N needed to guarantee that 

~41, PI. 

A RAS for probabilistic inference is a randomized algorithm 
that accepts as input a belief network B, instantiation X = z, 
and two positive parameters E and S. The output of the 
algorithm is an estimate p of 4 that satisfies (2). 

The zero-one estimator theorem gives the smallest number 
of trials required for a RAS to satisfy (2) 

4 2  
N = -log-. s (3) 

For details on this derivation, see [14]. When N ,  E, and S 
satisfy (3) then p satisfies (2) .  

The upper bound on N provided by the zero-one estimator 
theorem is contingent on +-the same quantity we estimate 
with a simulation algorithm to estimate. To circumvent this 
circular definition, polynomial time computable lower bounds 
for 4 allow us to derive an upper bound estimate of N .  A 
key challenge is the computation of a lower bound within 
a constant multiplicative factor of q5 to avoid wasteful com- 
putations. Unfortunately, in many cases, the best computable 
lower bound is 0(2-") .  

C. Stochastic Simulation Algorithms for Probabilistic Inference 

Stochastic simulation algorithms for probabilistic inference 
include logic sampling [I I], straight simulation [Is], [16], 
the randomized approximation scheme BNRAS [4], [5] and 
likelihood weighting [ 181 algorithms. Chavez and Cooper 
[4], [3] reformulate straight simulation and logic sampling 
as RAS algorithms. The number of simulations necessary for 
convergence is determined by the zero-one estimator theorem. 
Furthermore, Chavez and Cooper present the first explicitly 
designed RAS: BNRAS [3]. Thus, Chavez and Cooper show that 
(3) bounds the number of trials required by these algorithms to 

[IS] reformulate likelihood weighting as a RAS and analyze 
convergence using the zero-one estimator theorem. We now 
discuss two limitations of stochastic-simulation algorithms 
relying on (3) to bound the number of trials. 

by 4. 
We established that we require 4 to determine N .  Since 4 is 
the probabilistic inference the stochastic simulation algorithm 
computes, it is not known in advance. We resolve the problem 
with a computable lower bound on 4 that provides an upper 
bound on N .  In the absence of a good lower bound on 4, 
many wasteful trials are generated to estimate 4. For example, 
Shachter and Peot [ 181 use the smallest inference probability 
in the network to bound 4. More generally, it is NP-hard to 
determine whether 4 > 0 [6], and thus, by (3), it is NP-hard 
to determine whether N is finite. 

When inferences approach zero, stochastic simulation algo- 
rithms that employ (3) to bound the number of trials experience 
a further complication. From this equation, the number of 
trials becomes intractable because N approaches infinity as 
4 approaches zero. When 4 is an inference conditioned on 
evidence-for example, 4 = P r [ X  = slI]-then logic sam- 
pling and likelihood weighting algorithms are subject to this 
complication. These algorithms do not estimate 4 directly. 
Rather, they estimate Pr[X = z,I] and Pr[<]. Bayes' rule 
dictates that the ratio of these two estimates is an estimate of 
4. The number of trials required to estimate Pr[X = z, I] ,  or to 
estimate Pr[I], is given by (3), with q!~ denoting P r [X  = z, I] 
or Pr[<]. When the evidence < is rare or when it contains many 
observed nodes, the joint probability Pr[X = .,I] is small, 
and logic sampling or likelihood weighting algorithms require 
many trials to output an estimate of Pr[X = zlI]. 

In contrast, the run time of V-BNRAS is independent of 4. 
Furthermore, unlike logic sampling and likelihood weighting, 
'D-BNRAS performs better when the evidence set is large. The 
effect of multiple observations reduces the dependence value 
Vc of the network and, therefore, speeds the generation of 
trials. V<-BNRAS, however, requires a long run time to generate 
a simulation, whereas logic sampling and likelihood weighting 
generate simulations efficiently. 

We denote the inference probability Pr[X = 

111. THE ALGORITHM 2)-BNRAS 

Given a belief network and evidence set, we construct a 
Markov process. If we simulate this process for sufficient time, 
then we sample the joint probability distribution conditioned 
on the evidence. We prove results on the convergence of the 
Markov process and, hence, on the simulation time required 
to sample this distribution. We use the the trial generator to 
construct 'D-BNRAS. We then prove results on the number of 
samples 'D-BNRAS requires to achieve a specified precision in 
the estimate. We combine this result with the time to generate 
a sample, and thus, we obtain the run time of V-BNRAS. 

A. The Trial Generator 

We construct a trial generator for belief networks-that is, 
an ergodic Markov process MC on the space of instantiations 
of B. The ioint probability distribution conditioned on the 
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the time-reversible ergodic Markov chain MC. Thus, in its 
stationary distribution, MC samples P r [  I < ] .  The process MC 
reaches the stationary distribution only in the limit of an 
infinite number of simulations; for finite simulation, MC 
approximates the stationary distribution. In Section 111-E, we 
will incorporate the error from MC into the error E of (2). 

Without loss of generality, we restrict the presentation to 
belief networks with binary valued nodes and with nonzero 
conditional probabilities. For 0 5 2' 5 2", let i denote both 
the instantiation of the nodes in B to the binary representation 
of i and, in addition, a binary representation of a node in an 
n-dimensional hypercube (n-cube). Let e l ,  . . . , e, denote the 
basis of the n-cube, where el is the vector with coordinate 1 
set to 1 and all other coordinates set to 0. L e t  @ denote the 
symmetric-difference operator. B defines the Markov chain 
MC as follows: 

1) With probability i, from any state i ,  randomly choose 
an 1 such that 1 5 1 5 n,  and make a transition to state 
j = i @ el with probability 

2) With probability i, do nothing-that is, make a null 

Thus, the transition probabilities of the Markov chain from 
transition to the same state. 

i to the neighbor j = i @ el are given as follows: 

Note that the self-loop probability Pii is defined to normalize 
the probability of making a transition. 

By the definition of an n-cube and from the equivalence 
between instantiations of B and nodes in the n-cube, it follows 
that the Markov chain MC is a random walk on the n- 
cube. The self-loop probability renders the chain aperiodic; the 
existence of a path from any state to every other state makes 
the chain irreducible; therefore, the chain is ergodic. Symmetry 
considerations dictate that the chain is time reversible. 

The ergodicity of the chain guarantees a unique stationary 
distribution. We show the stationary distribution is identical to 
the belief network's joint-probability distribution Pr. 

Lemma 1: The stationary distribution of the Markov chain 
MC is the joint probability distribution P r  of B. 

Proof: From the theory of ergodic Markov chains, it 
suffices to show, for any state i ,  P r  satisfies the eigenvalue 
equation 

However 

which proves the lemma. 0 

B. The Approximation Algorithm V-BNRAS 
A recurring theme in stochastic simulation algorithms for 

probabilistic inference is the slow convergence of algorithms 
when the computed inferences are small. The problem traces 
back to the result of the zero-one estimator theorem in (3). 
We described, in Section 11-C, how stochastic simulation 
algorithms traditionally perform poorly on inferences near zero 
and, furthermore, how users of these algorithms experience the 
problem of obtaining reasonable lower bounds on the inference 
probabilities. A poor lower bound translates, through (3), to a 
large value for N and, therefore, an excessive number of trials 
to approximate an inference. Dagum and Horvitz offer the 
most general solution to the latter problem [8]. They develop 
optimal Bayesian stopping rules for stochastic simulation 
algorithms. However, we need to address the intractability 
problem encountered by previous simulation algorithms when 
inferences are near zero. 

V-BNRAS solves the preceding problems very efficiently 
with the self reducibility of probabilistic inference. 2)-BNRAS 
decomposes the problem of estimating an inference probability 
into one of estimating inferences for a set of subproblems. The 
decomposition guarantees that the subproblem inference prob- 
abilities are at least one half. Thus, by (2), each subproblem 
inference can be approximated with N trials, where 

16 2 
N = -log - 

€2 6 (4) 

In the subsequent analysis, we simplify the presentation 
if we assume the trial generator outputs instantiations of B 
with probability distribution P r [  It]. In reality, however, the 
distribution of the trial generator MC only approximates this 
distribution for finite simulation runs. In Section 111-E, we 
show how the approximation can be made sufficiently close 
to P r [  I < ]  to render our results valid. 

We introduce the algorithm D-BNRAS by considering the 
problem of estimating the inference 4 = Pr [X = X I < ] .  For 
k = 1,. . . , n, let 4 k  denote the probabilities 

and let 
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Without loss of generality, we assume the set of nodes X 
contains nodes X I . .  . . , X, instantiated to X I , .  . . , 5,. Thus, 
we express the inference q5 as 

4, 
f#)= -. 

4 0  
2)-BNRAS outputs estimates of the inferences 4p and 40. The 
ratio of estimates in (5 )  provides an estimate of 4. 

Using Bayes’ theorem 

4 , P r [ ~ p + l l ~ l r . . . . ~ p , E ]  = &+l. (6) 

Equation (6) reduces the problem of estimating 4, to 
the problems of 1) estimating $,+I and 2) of estimating 
Pr[r ,+llxI. .  . . , x p ,  E ] .  Estimating &,+I is not visibly simpler 
than estimating 4p. However, solving problem (2) is a simpler 
problem when the instantiation rp+1 is chosen appropriately. 
Observe 

Pr[zp+l 1x1. . . . , sP, 4 + Pr[zp+l ( ~ 1 ,  . . . , x p ,  E ]  = 1 (7) 

where, in general, :r, denotes the instantiation 1 - z,. We 
briefly discuss how to choose the instantiation xp+l such that 
the first probability in (7) exceeds one half. The estimation 
of Pr[xp+llzl , .  . . . cp,E] is the first of the easily solvable 
subproblems that V-BNRAS generates. 

to 1) the 
estimation of 4,,+2 and to 2) the easily solvable subproblem 
Pr[rp+21z1,. . . , . rP+l .  E] when zp+p is chosen so that this 
probability has a value of at least one half. We continue to 
generate easily solvable subproblems until we reach &. At 
this point, we have reduced the estimation of & to a set of 
n-p  easily solvable subproblems and the estimation of &. 
However, &L is the probability of a complete instantiation of 
the nodes in B,  and we compute it exactly with 1. 

In summary, we yield an estimate of bp after V-BNRAS 
completes n-p  cycles. In cycle 2, the algorithm runs N trials, 
and it separately scores /L and Ti;, which are the estimates 
of P r [ z p + , ( n , .  . . , x p + , - l .  I]  and Pr[TP+,IJ1.. . . . x,+,--l. Cl, 
respectively. Therefore, one of p or Ti; exceeds one half. If we 
run the algorithm for a number of trials N 

Similarly, we reduce the estimation of 

then one of p or /I satisfies (2) with error t ( n  -p)-’. Without 
loss of generality, we assume the estimate p satisfies (2) with 
error t (n  - p)-’. We instantiate node X,+1 to zP+%, and we 
store p. 

At the end of the n - p  cycles, we compute the probability 
& using (10). We divide & by the product of the ,U’S stored 
at the end of each cycle to estimate &. The estimates of each 
subproblem satisfy (1) with error ~ ( n  - p)-’.  Thus, standard 
error propagation dictates that the estimate of & satisfies this 
equation with error t. 

C. Convergence Bounds for MC 
The relative pointwise distance (RPD) measures the dis- 

tance between the stationary distribution of MC and the 
distribution after simulation of MC for T transitions. Thus, 

the RPD gives a measure, parametrized by the number of 
transitions T ,  of the error in the trial-generation phase occuring 
because we sample the stationary distribution after a finite 
number of transitions of a Markov process. For a given error 
tolerance, we chose T so that the RPD is less than the 
given error. However, we cannot compute the RPD directly. 
Instead, we use Theorem 2 to relate the RPD to a computable 
graph-theoretic property of a Markov process known as the 
conductance. 

We begin with some observations about MC. The Markov 
process MC is time reversible since, for any pair of states 
i .  j ,  Pr[il[]P,, = Pr[jl<]PJ,. For a time-reversible Markov 
chain, the underlying graph H of the chain is the weighted 
undirected graph with vertex set [m], and for any z , j  E [m], 
edge ( i , j )  has weight w,, = Pr[il<]P,, = Pr[jlE]P,,. (If 
Pt3 = 0, then edge ( i , j )  is not in the graph.) Jerrum and 
Sinclair define the conductance of the graph H as 

with minimization performed over all subsets S of [m] [12]. 
Let Pj;’ denote the T-step transition probability from state 

i to j-that is, the probability we reach state j after T 
transitions if we start in state i .  Define the RPD 

By relating the conductance to the second eigenvalue of the 
chain’s transition matrix, which governs the transient behavior 
of the chain, Jerrum and Sinclair prove the following upper 
bound on the RPD after t transitions [12]. 

Theorem 2: Let H = ( V ( H ) , E ( H ) )  represent the un- 
derlying graph of the time-reversible Markov chain MC 
with conductance @ ( H ) ,  stationary distribution P r [  IE], and 
minimum self-loop probability i. Let II = mintElm] Pr[il<]. 
Then, the RPD is bounded by 

(1 - @ ( H ) 2 / 2 ) T  
II A(T)  5 

0 
Theorem 2 provides an upper bound on the number of 

transitions required for the RPD of MC to be within a given 
tolerance C: 

D. Conductance of MC 
In this section, we prove a lower bound on the conductance 

of the underlying graph of MC. A lower bound on the 
conductance, in conjunction with Theorem 2, gives us an upper 
bound on the RPD of MC after T transitions. Thus, we choose 
T so that the probability distribution of the instances generated 
by MC lies within a given error tolerance ( of the correct, or 
stationary, distribution. 

The dependence value of a belief network parameterizes the 
lower bound on the conductance. For polynomial dependence 
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networks, the conductance is sufficiently large to guarantee 
rapid convergence. 

Theorem 3: For belief network B with dependence value 
Vc, the underlying graph H of the Markov chain MC has 
conductance satisfying 

where po denotes the minimum transition probability of MC. 
Proof: We use the methods developed by Jerrum and 

Sinclair [12]. The graph H is an n-cube with weighted edges 
on vertex set [n] consisting of 2" binary vectors of length n. 
Each vertex in [n] is identified with an instantiation of B in 
the usual way. Let Pr [  [E] denote the stationary distribution 
of MC. For any S c [n], where [n] denotes the vertex set 
of H ,  let 3 = [n] \ S, and let C ( S )  represent the edge 
cutset of S-that is, ( i , j )  E C ( S )  if and only if vertices i 
and j are neighbors in the hypercube such that i E S and 
j E S. Define uniquepaths in H between any two states - as 
follows. Let i = (xi1 . . . xin) E S and j = (xjl  . . . x jn)  E S .  
The path from i to j is the following. Examine the first 
coordinate xi1 in the binary vector i .  If it has the same 
value as the first coordinate xjl in j ,  proceed to the next 
coordinate; otherwise, move from i to the neighboring state 
(zjlxi2 . . . xin). By sequentially progressing through all the 
coordinates, this procedure defines a unique path from i to j .  

The path from initial state i to final state j is given a weight 
of Pr[il<] Pr[jl<]. For any S such that Pr[ilE] I $, the 
sum total of the weights of the paths crossing from S to is 

Z€S,jES 

i E S  j€S i € S  

since Cj,sPr[j lE] = 1 - xiGsPr[ i l<] .  For any transition 
t = ( I C ,  k ' ) ,  let P ( t )  be the set of ordered pairs (1, m) such 
that the path from 1 to m contains t .  Lemma 4 shows 

P~[ICIEIS~! L P ~ [ ~ I E I  P ~ [ ~ I E I  
vc ( l ,m)EP( t )  

where PO denotes the smallest transition probability mini,j Pij.  
It now follows that 

~ r [ i l < ] ~ . .  > ~ r [ l l < ] ~ r [ m l < l  
iES,j€S t € C ( S )  ( l , m ) € P ( t )  

23 - v: 

Finally 

0 
We now prove the lemma used in the above analysis. 

Lemma 4: Let t = ( I C ,  I C ' )  be a transition from state IC to 
state IC' in MC. Let P ( t )  be the set of ordered pairs (1,m) 
such that the unique path from 1 to m contains t. Let PO denote 
the smallest transition probability mini,j Pij. Then 

0 
Proof: Each (1,m) E P ( t )  defines a unique state 

f(1,m) = k @ (1 @ m). We show for all (1,m) E P ( t )  

It follows that 

The second inequality holds because the map f : [n] x [n] + 
[n] is injective and, therefore 

The lemma now follows since, by definition, P k k '  2 P O .  
We rewrite (12) as 

For any instantiation x = (21,. . . , x n )  of the nodes of a 
belief network, the joint probability of x can be factored into 
a product of conditional probabilities 

n 

Pr[z, E] = lux, 1 r1 
i=l 

with a similar expression for Pr[IC, [] Pr[f(l,  m), E]. By defi- 
nition of IC and f(1, m), either li and mi have the same value, 
in which case ICi and f(1,m); also have the same value li 
and mi, or li and mi differ in value, in which case ki and 
f ( 1 ,  m)i also differ. Thus, recalling the definition of X i  given 
in Section 11-A, we prove for all i 

Equation (13) follows from the definition 2)~. 0 
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E. Analysis of the Run Time 

Equation (3) gives the number of trials N required by 
stochastic simulation algorithms to output an estimate ,LL that 
satisfies (2). The bound on N is valid only if we sample 
the stationary distribution of the Markov process, and thus, 
we generate instantiations X with probability distribution 
Pr[XI<]. We sample the stationary distribution only in the 
limit of an infinite simulation of MC. For finite simulation 
time T ,  the RPD between the sampling distribution and the 
stationary distribution < is given by (11). We use methods that 
appear in [2], [13] to verify that if < satisfies 

(3) lies within a multiplicative constant of the number of trials 
required to satisfy (2). In Section 111-B, we show that V- 
BNRAS reduces the estimation of &, = Pr [z l ,  . . . , zp ,  <] to the 
estimation of n-p inferences, each with probability exceeding 
one half. Thus, by (14), the trials used to compute the n-p 
inferences are generated with < = i ~ .  

We obtain the number of simulations T of MC such that 
the RPD between the distribution of the trials and the distri- 
bution Pr[ I<] is sufficiently small to satisfy the assumption 
(made in Section 111-B) concerning the distribution of output 
instantiations. 

We use the conductance bound given by Theorem 3 with 
(11) and let < = ; E  to obtain 

v4 E T = 1 6 4  log -. 
Po 

The complete run time is (n  - p ) N  . T ,  where N ,  which 
is given by (8), is the number of trials required to compute 
estimates of the n-p inferences produced by V-BNRAS. Thus 

v4 E 2  
162(n - p ) 3 L  log - log - .  

t 2 p ;  6II 6 

For a fixed constant c and for any 2 5 E < 1, we construct 
a class of belief networks denoted by B' such that any belief 
network B E B' with Markov chain MC(B) and underlying 
graph H has conductance 

By Theorem 5, we cannot prove a lower bound on the 
conductance of Markov chains MC of belief networks that 
is better than 3. Thus, for belief networks that are not 
in the class of polynomial dependence networks, the RAS 
does not have polynomial run time. Intuitively, the algorithm 
fails because the Markov chain used to construct the <-trial 
generator converges to the stationary distribution too slowly 
to yield a polynomial time trial generator. 

We begin with a lemma. 
Lemma 6: For a fixed constant c and for any 5 E < 1, 

we can construct a class of Markov chains denoted by MC' 
with underlying graph H and conductance 

where 

v = 

Proof: MC' is the Markov chain with underlying graph 
H constructed from an n-cube with transition probabilities 
P,,I defined below. 

Let Q k  represent the vertices of H whose binary represen- 
tation consists of exactly k 1's. Each vertex in Q k  has n-k 
edges connecting it to Q k + l  and k edges connecting it to 
Q k - 1 .  Assume that n is odd. Define So to be the set 

- n - I  
2 

So = U Qi 
i=O 

IV. COMPLEXITY RESULTS and 
We prove an upper bound on the conductance of the 

Markov process constructed previously. The upper bound 
yields a lower bound on the Markov process simulation time 
to sample the distribution Pr[ I<]. This lower bound represents 
the minimum achievable simulation time of MC. The bound 
is achieved if we had available a stronger result on the 
convergence of Markov chains than is provided by Theorem 2. 

We prove that the complexity of probabilistic inference for 
f-dependence networks is NP-hard for any function f such 
that for all 7~ and for any constant a > 0, f (n )  2 1 + a. 

A.  An Upper Bound on the Conductance 

@ l ( H ) .  We prove an upper bound 
Previously, we proved a lower bound on the conductance 

on the conductance. We construct a class of belief networks 
with this conductance. 

a 

so = U Q i .  
n+l 

2 

For any k < y, arrange the transition probabilities from 
Q k  to Q k - 1  and Q k + l  such that there is a small bias toward 
Q k - 1 .  Similarly, bias the transition probabilities for k > 
to favor & k + l .  Specifically, for U E Q k ,  k < 9 and for 
2 < E 5 1, let 

0 otherwise. 

For 'U E Q k ,  k > 
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Let Pk be the total probability of a state in Qk in the 
stationary distribution. Clearly, Pk = ciGQl ri. Recalling 
that there are k + 1 edges from & k + l  to &k and n - k + 1 
edges from Qk-1 to Qk, we derive the recurrence equation 

pk = 2qk+lPk+1 + 2rk-1pk-1 (17) 

where 
(1 - E)(n - k + 1) 

4n 
T k - 1  = 

and 
(1 + -E)(k + 1 )  

qk+l = 4n 

In addition, the symmetry of the construction guarantees that 
,I - 1 - n 

Now, consider the conductance 

Because 

it follows that 

@(HI L POP* 

since 
Equation (17) lacks an exact solution. An upper bound on 

P e  suffices. The recurrence equation indicates that a random 
wafk started in state &k drifts to state IC-1, provided Qk < T k .  

Let m denote the value between 0 and + for which qk = T k .  

We verify 

= PO, the minimum transition probability in H .  

1--E n - 1  c m , -  n < - - -  
2 2  

where the second inequality follows because, by definition, 
E 2 ;. In conclusion, for 0 IC 5 9, a random walk 
that begins in Qk will drift to Qm. From the symmetry of the 
cube, it is clear that the probabilities Pk increase from k = 0 
to k = m and then decrease from IC = m to lc = q. 

Although it is not possible to solve (17) in closed form, the 
standard recurrence equation 

P; = qP;+, + rPLEl (18) 

with r and q constant, has the solution 

~ 
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for some normalization A. 
Let ko denote the midpoint between m and :--that is, 

ko = ;(I-$). Set q = (*)(+) and r = (?)(,-' ," + 1  ). 
Solving 

Because P;, < 1, we get 

However, by the definition of 

For k > ko, the ratio of coefficients in (17) R is smaller than 
the ratio in (18). Thus, PL > Pk for ko 5 IC 5 F. Finally, 

2 Pn-1 < - 
2 D* 

and 

U 
5 E < 1, we construct 

a class of belief networks denoted by B' with the following 
properties. For any belief network B E B', the conditional 
probabilities are contained in the range [11  1 - 11, and the 
Markov chain MC(B) is contained in MC'. The proof follows 
from Lemma 9. 

To construct the appropriate belief network, we proceed as 
follows. The chain rule 

Proof: Define 1 = F. For any 

Pr[X1, .  . . , X,] = Pr[X1IX2,. . . X n ]  . Pr[X21X3,. . . , X,]  
. . . Pr[X,-1 IX,] . Pr[Xn] 

defines a belief network on the binary-valued nodes 
{ X l , .  . . X , }  such that each node Xi has parents 

ux, = { X i + l , .  . . , & l )  

and conditional probabilities 

Pr[Xi luxt] = Pr[XiIX,+l . . . , X , ] .  

In order for the Markov chain defined by the belief network 
to have a the stationary distribution of MC', we define for 
any 1 5 k 5 n 

Pr[xk = 11x1,. . . , X k - - l l X ~ + l , .  . . , & I  
if ( 5 1  ...x,) E SO; 1 

;i = { -  '2' i f ( z l . . . x , )  E S o  
and 

Pr[xk = 01x1,.  . . , Xk-1, X k + l , .  . . , Xn] 
if ( X ~ . - - X , )  E So; 
if ( 2 1  ...x,) E S o .  P; = A( z ) k  

4 
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Now, we need to verify that the conditional probabilities 

with the above definitions are contained in the interval [ l ,  1-11. 
Let 

c Pr [z l . .  . . , z ~ - ~ I z ~ + ~ ,  . . . . xn] = p 

c , X k - l r  X k + l r  . . 

1 1 - 1  
2 

= - p  + '(1 - P I .  

Therefore, the conditional probabilities are contained in the 
0 interval [l ,  1 - 11. 

B. Complexity of Probabilistic Inference 

Cooper [6] proves that the complexity of probabilistic 
inference for belief networks is NP-hard. However, it is well 
known that probabilistic inference for belief networks with 
restricted topologies, such as singly connected networks, are 
amenable to polynomial time algorithms [17]-that is, the 
complexity of the inference lies in P .  The following question 
arises: Does there exists a class of f-dependence networks 
such that the complexity of exucf inference is in P .  Theorem 
7 proves that no such class exists. 

Theorem 7: For any Q: > 0, the complexity of probabilis- 
tic inference for the class of belief networks characterized by 
dependence value 27, that satisfy 1 5 DE 5 1 + Q is NP-hard. 

Thus, we do not expect to find efficient exact algorithms for 
probabilistic inference under any set of restrictions placed on 
the range of the conditional probabilities-barring the trivial 
case when Q = 0 and D, = 1 occuring in the absence of 
conditional dependencies. 

Proof We reduce the problem of counting satisfying as- 
signments in 3-SAT to the problem of computing probabilistic 
inference. The former problem is known to be /fP-complete 
[21]. We use a construction first described in [6] and used 
there to prove that the complexity of probabilistic inference 
for general belief networks is #P-hard. 

Let F be an instance of 3-SAT with variables V = 
{ V I . .  . . , vn} and clauses C = {e1,. . . ,em}. The formula F 
defines the belief network that has binary-valued nodes VU C 

and arcs directed from vi to c j  if and only if variable vi appears 
in clause cj .  Each node vi is given a prior probability of one 
half of being instantiated to 0 or 1. For any clause cj, let 
j l , j 2 , j 3  index the three variables in V contained in cj. The 
conditional probabilities associated with node c3,  which have 
parent nodes {vj l ,  vj2, vj3} in the belief network, are defined 
by 

for some 0 < E < 1. By this definition, the conditional 
probability Pr[cj  = lIujl,vj2,vj3] has value & if the 
instantiation of the variables vj1, vj2, uj3 in the formula F 
satisfies the clause c j  and has value & otherwise. In addition, 
note that the dependence value of the belief network is given 
b y D =  6. 

Let the vector 1 denote the instantiation c1 = 1 , .  . . , c, = 1 
in the belief network, and let ti index the ith instantiation 
ci = 1. For any 0 5 i < 2", let the length n binary vector vz 
denote the instantiation of the nodes V I ,  . . . , v, to the binary 
representation of i, and let vj index the instantiation of vj .  

We complete the proof by showing that if we compute the 
inference Pr[l] ,  we may then count the number of satisfying 
assignments to F .  By construction 

From the properties of belief networks, we show that 

where, as before, j l l j 2 , j 3  index the three variables in V 
contained in c3. Together with the definition of the conditional 
probabilities, we obtain 

E" 
Pr[llw3] = ___ 

(1 + E)" 

where s denotes the number of clauses in F that are not 
satisfied by the instantiation v3. For 0 5 s 5 n, let N,  denote 
the number of instantiations for which F has exactly s clauses 
that are not satisfied. Putting the preceding results together, 
we now express Pr[ l ]  by 

n 

It follows that by computing Pr[ l ]  for n+ 1 different values of 
E such that the n + 1 equations given by (19) are independent, 
and inverting the n + 1 equations, we solve for NO,  . . . , N,. 
However, NO is the number of satisfying assignments to F .  
Hence, we complete the proof once we show that n + 1 values 
for e can be chosen such that DO 5 D 5 DO + Q, given 
the independence of the equations. Restricting the values of 

to lie within the interval [(DO + a)'-& , DOk] satisfies the 
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former condition. Independence of the equations is guaranteed 
if the determinant of the matrix of coefficients is different from 
0. However, we verify that the determinant is a multivariate 
polynomial in the n + 1 different 6 of degree w. Thus, 
it has a finite number of roots. Since any interval in the field 
of rational numbers contains an infinite number of rational 
numbers, we always find n + 1 values for E in the interval 
[(Do + a)-& ,D,’] for which the determinant does not 
vanish. 0 

V. CONCLUSION 

The run time of V-BNRAS increases as the fourth power 
of the dependence value D,t, and for belief networks with 
large dependence value, the run time is intractable. To address 
this problem, Dagum and Horvitz condition on nodes with 
large A [7]. Thus, they reformulate an inference approximation 
in a belief network with a large dependence value into a set 
of inference approximations with reduced dependence value. 
They express the original inference as a weighted sum of 
subproblem inferences. They approximate these weights with 
logic sampling. 

D-BNRAS is ideally suited for applications where the size 
of the evidence set is very large-that is, applications where 
stochastic simulation algorithms sensitive to the size of the 
evidence set, such as logic sampling and likelihood weighting, 
perform poorly. Increases in the observed evidence t decreases 
D, and, consequently, improves the performance of 2)-BNRAS. 
The performance, however, is tractable only if the dependence 
value is polynomial. Thus, from Section 11-A, 2)-BNRAS is 
tractable on the class of belief networks with at least n - 
O(logn) nodes X ,  having A, = 1 + O(%). For this 
class, when n approaches infinite, the A, approach 1, and 
the conditional probabilities Pr[z, lux,, [] and Pr[Z, lux,, I] 
approach p and 1-p for some 0 5 p 5 1. 
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