Acknowledgment of sources: Problems [2], [6] and part of problem [7] are taken from the book Introduction to Probability, 2nd ed., by Bertsekas and Tsitsiklis, 2008. Problem [5] is taken from the book Statistical Methods in Bioinformatics: An Introduction, by Ewens and Grant, 2001.

1. Let A and B be independent events. Show that A and B^{c} are independent.

Solution: We write A as the union of two disjoint sets: $A=\left(A \cap B^{c}\right) \cup(A \cap B)$. Then, by the additivity axiom of probability,

$$
P\left(A \cap B^{c}\right)=P(A)-P(A \cap B)
$$

Since A and B are independent, $P(A \cap B)=P(A) p(B)$. Therefore,

$$
P\left(A \cap B^{c}\right)=P(A)-P(A) P(B)=P(A)(1-P(B))=P(A) P\left(B^{c}\right)
$$

which implies that A and B^{c} are independent.
2. Let A and B be events with $P(A)>0$ and $P(B)>0$. We say that an event B suggests an event A if $P(A \mid B)>P(A)$, and does not suggest event A if $P(A \mid B)<P(A)$. Show that B suggests A if and only if A suggests B.
Solution: We have $P(A \cap B)=P(A \mid B) P(B)$, so B suggests A if and only if $P(A \cap B)>$ $P(A) P(B)$, which is equivalent to A suggesting B, by symmetry. (Alternatively, one may use Bayes' theorem to establish the statement.)

Let X, Y, Z be discrete random variables with joint PMF p.
3. Show that $p(x \mid y, z)=p(x, y \mid z) / p(y \mid z)$ for all x, y, z with $p(y, z)>0$.

Solution: By the definition of conditional probability,

$$
\begin{aligned}
p(x \mid y, z) & =\frac{p(x, y, z)}{p(y, z)}, \quad \forall x, y, z \text { with } p(y, z)>0, \\
p(x, y \mid z) & =\frac{p(x, y, z)}{p(z)}, \quad \forall x, y, z \text { with } p(z)>0, \\
p(y \mid z) & =\frac{p(y, z)}{p(z)}, \quad \forall y, z \text { with } p(z)>0 .
\end{aligned}
$$

Since $p(y, z)>0$ implies $p(z)>0$, we have for all x, y, z with $p(y, z)>0$,

$$
p(x \mid y, z)=\frac{p(x, y, z)}{p(y, z)}=\frac{p(x, y, z) / p(z)}{p(y, z) / p(z)}=\frac{p(x, y \mid z)}{p(y \mid z)} .
$$

4*. Show that the following are all equivalent definitions of the conditional independence $X \perp Y \mid Z$:

$$
\begin{array}{ll}
p(x, y, z)=p(x \mid z) p(y \mid z) p(z), & \forall x, y, z . \\
p(x, y, z)=p(x, z) p(y, z) / p(z), & \forall x, y, z \text { with } p(z)>0 . \\
p(x, y, z) \text { has the form } a(x, z) b(y, z), & \forall x, y, z . \\
p(x \mid y, z)=p(x \mid z), & \forall x, y, z \text { with } p(y, z)>0 . \\
p(x \mid y, z) \text { has the form } a(x, z), & \forall x, y, z \text { with } p(y, z)>0 .
\end{array}
$$

In the above, a and b are some real-valued functions.
Solution: We prove that (1)-(5) are equivalent to each other by showing "(1) $\Leftrightarrow(2)$," "(1) $\Leftrightarrow(4), " "(3) \Rightarrow(4) \Rightarrow(5) \Rightarrow(3), "$ in this order. Whenever multiplication involves a quantity that appears to be undefined, we define $0 \cdot($ undefined value $)=0$ and $c \cdot($ undefined value $)=$ (undefined value) for $c \neq 0$. Two quantities c_{1} and c_{2} are considered to be unequal if both of them are undefined.
$(1) \Leftrightarrow(2)$: Since Eq. (1) always holds when $p(z)=0$, we only need to show the equivalence of Eq. (1) and Eq. (2) for all x, y, z with $p(z)>0$. Using the fact $p(x, z)=p(x \mid z) p(z)$ and $p(y, z)=p(y \mid z) p(z)$, we have for all x, y, z with $p(z)>0$,

$$
p(x \mid z) p(y \mid z) p(z)=p(x \mid z) p(y, z)=p(x, z) p(y, z) / p(z)
$$

which establishes the claimed equivalence.
(1) \Leftrightarrow (4): When $p(y, z)=0, p(y \mid z) p(z)=0$ and $p(x, y, z)=0$. This shows that Eq. (1) always holds when $p(y, z)=0$, so we only need to prove the equivalence of Eq. (1) and Eq. (4) for all x, y, z with $p(y, z)>0$. For all such x, y, z, using the fact $p(x \mid y, z)=p(x, y, z) / p(y, z)$, we have

$$
p(x \mid y, z)=p(x \mid z) \quad \Leftrightarrow \quad p(x, y, z)=p(x \mid z) p(y, z)=p(x \mid z) p(y \mid z) p(z)
$$

which establishes the claimed equivalence.
$(3) \Rightarrow(4)$: When (3) holds, we have

$$
p(y, z)=b(y, z) \sum_{x^{\prime}} a\left(x^{\prime}, z\right), \quad p(x, z)=a(x, z) \sum_{y^{\prime}} b\left(y^{\prime}, z\right), \quad p(z)=\sum_{x^{\prime}} a\left(x^{\prime}, z\right) \cdot \sum_{y^{\prime}} b\left(y^{\prime}, z\right) .
$$

For all x, y, z with $p(y, z)>0$, we have $p(z)>0$ and

$$
\begin{aligned}
p(x \mid y, z) & =\frac{p(x, y, z)}{p(y, z)}=\frac{a(x, z)}{\sum_{x^{\prime}} a\left(x^{\prime}, z\right)}, \\
p(x \mid z) & =\frac{p(x, z)}{p(z)}=\frac{a(x, z) \sum_{y^{\prime}} b\left(y^{\prime}, z\right)}{\sum_{x^{\prime}} a\left(x^{\prime}, z\right) \cdot \sum_{y^{\prime}} b\left(y^{\prime}, z\right)}=\frac{a(x, z)}{\sum_{x^{\prime}} a\left(x^{\prime}, z\right)},
\end{aligned}
$$

which implies (4).
$(4) \Rightarrow(5) \Rightarrow(3)$: It is evident that (4) implies (5). Consider now the case where (5) holds. If the function $a(x, z)$ is not defined at some points (x, z), we can always define the values of the function at those points to be zero, say, thereby extending the function a to the entire space of (x, z). Using the identity $p(x, y, z)=p(x \mid y, z) p(y, z)$, we have $p(x, y, z)=a(x, z) p(y, z)$, which implies (3).

Calculations of conditional probabilities:
5. Two fair coins are tossed and at least one coin came up heads. What is the probability that both coins came up heads?

Solution: Let A denote the event that at least one coin come up heads and B the event that both coins come up heads. Then $A=\{H H, H T, T H\}, B=\{H H\}$, and $A \cap B=B$. Since the coins are fair, all outcomes are equally likely, so $P(A)=3 / 4, P(B)=1 / 4$, and the desired probability, $P(B \mid A)$, is

$$
P(B \mid A)=P(A \cap B) / P(A)=\frac{1}{4} / \frac{3}{4}=\frac{1}{3} .
$$

6. A test for a certain rare disease is assumed to be correct 95% of the time: if a person has (does not have) the disease, the test results are positive (negative) with probability 0.95 . A random person drawn from a certain population has probability 0.001 of having the disease. Given that the person just tested positive, what is the probability that the person has the disease?

Solution: Let A denote the event that the person has the disease and B the event that the test results are positive. From the statement of the problem, we have

$$
P(B \mid A)=P\left(B^{c} \mid A^{c}\right)=0.95, \quad P(A)=0.001
$$

To calculate the desired probability, $P(A \mid B)$, we use Bayes' theorem and the fact

$$
P(B)=P(B \cap A)+P\left(B \cap A^{c}\right)=P(B \mid A) p(A)+P\left(B \mid A^{c}\right) p\left(A^{c}\right)
$$

to obtain

$$
\begin{aligned}
p(A \mid B) & =\frac{P(B \mid A) p(A)}{P(B)}=\frac{P(B \mid A) p(A)}{P(B \mid A) p(A)+P\left(B \mid A^{c}\right) p\left(A^{c}\right)} \\
& =\frac{0.95 \cdot 0.001}{0.95 \cdot 0.001+(1-0.95) \cdot(1-0.001)} \approx 0.0187
\end{aligned}
$$

About Markov chains:

7. A mouse moves along a tiled corridor with $2 m$ tiles, where $m>1$. From each tile $i \neq 1,2 m$, it moves o either tile $i-1$ or $i+1$ with equal probability. From tile 1 or $2 m$, it moves to tile 2 or $2 m-1$, respectively, with probability 1 . Each time the mouse moves to a tile $i \leq m$ or $i>m$, an electronic device outputs a signal L or R, respectively. Can the generated sequence of signals L and R be described as a Markov chain with states L and R ? Suppose now the device outputs L or R only when the mouse moves to tile 1 or $2 m$, respectively. Can the generated sequence of L and R be described as a Markov chain with states L and R ?

Solution: Let $\left\{X_{n}\right\}$ denote the generated sequence of L or R. In the case of the first question, $\left\{X_{n}\right\}$ cannot be described as a Markov chain with states L and R, because $P\left(X_{n+1}=L \mid X_{n}=\right.$ $\left.R, X_{n-1}=L\right)=1 / 2$, while $P\left(X_{n+1}=L \mid X_{n}=R, X_{n-1}=R, X_{n-1}=L\right)=0$.
In the case of the second question, $\left\{X_{n}\right\}$ can be described as a Markov chain with states L and R. We argue as follows. The sequence of positions of the mouse can be described as a Markov chain on the state space $\{1,2, \ldots, 2 m\}$. At any time t, given that the mouse just moved to tile 1 , the probability of any event that concerns only its future positions does not depend on its positions before time t. Therefore, for any $x_{1}, \ldots, x_{n-1} \in\{L, R\}$ and $x_{n+1} \in\{L, R\}$,

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=L, X_{n-1}=x_{n-1}, \ldots, X_{1}=x_{1}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}=L\right),
$$

and similarly,

$$
P\left(X_{n+1}=x_{n+1} \mid X_{n}=R, X_{n-1}=x_{n-1}, \ldots, X_{1}=x_{1}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}=R\right)
$$

This shows that $\left\{X_{n}\right\}$ satisfies the Markov property.

