
Course Probabilistic Models: Exercise 3, due on Fri Feb 12 1

In what follows [Dav] refers to Davison’s book, and [Jen] refers to Jensen’s 1996 book on Bayesian
networks.

1. Do Exercises 6.2.2, 6.2.4 in [Dav] (p. 254).

Solution: (i) Ex. 6.2.2: In the second-order neighboring system each site has 8 neighbors: 2 adjacent
horizontal sites, 2 adjacent vertical sites, and 4 adjacent diagonal sites. In the figure below, the larger
graph on the left is the subgraph induced by a site (black) and its neighbors (white), and there are
four cliques containing the site, illustrated by the four smaller graphs on the right.

(ii) Ex. 6.2.4: The local characteristics are identical to

P (Y1 = 0 |Y2 = 0) = P (Y1 = 1 |Y2 = 1) = P (Y2 = 1 |Y1 = 0) = P (Y2 = 0 |Y1 = 1) = 0,

which implies that no pairs of values of Y1 and Y2 can occur jointly. So there does not exist a
joint distribution P satisfying these local characteristics, and the positivity condition is of course
violated.

2. Do Exercise 6.2.3 in [Dav] (p. 254). Also answer the following question for the undirected graph
associated with a first-order Markov chain: Suppose that P (X1, . . . Xn) is a homogeneous MRF
with respect to that graph, and that P satisfies the positivity condition. Is (X1, . . . , Xn) also
a homogeneous first-order Markov chain?

Solution: (i) Ex. 6.2.3: For a second-order Markov chain Y = (Y1, . . . , Yn) of length n, the cliques
are

{i− 2 , i− 1 , i}, 3 ≤ i ≤ n.

So, under the positivity condition, p(y) ∝ exp{−ψ(y)}, and in the most general form, ψ(y) can be
expressed as

ψ(y) = a+
n∑

i=1

bi(xi) +
n∑

i=2

ci(xi−1, xi) +
n∑

i=3

di(xi−2, xi) +
n∑

i=3

ei(xi−2, xi−1, xi)

for some constant a and functions bi, ci, di, ei.

(ii) No, (X1, . . . , Xn) corresponding to a homogeneous MRF is an inhomogeneous Markov chain, as
can be verified from the expressions of P (Xn |Xn−1), P (Xn−1 |Xn−2), . . . directly. Let n ≥ 3 and
X = (X1, . . . , Xn). Suppose

p(x) ∝ exp
{
−

n∑
i=1

b(xi)−
n∑

i=2

c(xi−1, xi)
}
.

For notational simplicity, define a function φ(xi−1, xi) = −b(xi)− c(xi−1, xi). Then, for fixed xn−1,

p(xn |xn−1) ∝ exp
{
φ(xn−1, xn)

}
,

while for fixed xn−2, we have

p(xn−1 |xn−2) =
∑
xn

p(xn−1, xn |xn−2) ∝
∑
xn

exp
{
φ(xn−2, xn−1) + φ(xn−1, xn)

}
= exp

{
φ(xn−2, xn−1)

}
·
∑
xn

exp
{
φ(xn−1, xn)

}
.

Comparing the two expressions above, we see that the transition probabilities depend on the time
step. (This relates to the discussion on CRF vs. HMM in one of the lecture.)
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3. Do Exercise 3.1 in [Jen] (p. 64).

Solution: (i) For the model that has Ho as the mediating variable, we have

P (Pr = n, BT = n, UT = n) =
∑

x∈{y,n}

P (BT = n | Ho = x)P (UT = n | Ho = x)P (Ho = x | Pr = n)P (Pr = n)

= 0.3 · 0.2 · 0.01 · 0.13 + 0.9 · 0.9 · 0.99 · 0.13 ≈ 0.1043,

P (Pr = y, BT = n, UT = n) =
∑

x∈{y,n}

P (BT = n | Ho = x)P (UT = n | Ho = x)P (Ho = x | Pr = y)P (Pr = y)

= 0.3 · 0.2 · 0.9 · 0.87 + 0.9 · 0.9 · 0.1 · 0.87 ≈ 0.1175.

So

P (Pr = n | BT = n, UT = n) =
P (Pr = n, BT = n, UT = n)

P (Pr = n, BT = n, UT = n) + P (Pr = y, BT = n, UT = n)

≈ 0.1043
0.1043 + 0.1175

≈ 0.47.

(ii) Under the same model as above, we have

P (BT = n | Pr = n) =
∑

x∈{y,n}

P (BT = n | Ho = x)P (Ho = x | Pr = n) = 0.894,

P (BT = n | Pr = y) =
∑

x∈{y,n}

P (BT = n | Ho = x)P (Ho = x | Pr = y) = 0.36,

and

P (UT = n | Pr = n) =
∑

x∈{y,n}

P (UT = n | Ho = x)P (Ho = x | Pr = n) = 0.893,

P (UT = n | Pr = y) =
∑

x∈{y,n}

P (UT = n | Ho = x)P (Ho = x | Pr = y) = 0.27.

Using these as parameters for the naive Bayes model, we have

P (Pr = n, BT = n, UT = n) = P (BT = n | Pr = n)P (UT = n | Pr = n)P (Pr = n) = 0.894 · 0.893 · 0.13,
P (Pr = y, BT = n, UT = n) = P (BT = n | Pr = y)P (UT = n | Pr = y)P (Pr = y) = 0.36 · 0.27 · 0.87,

so

P (Pr = n | BT = n, UT = n)
P (Pr = n, BT = n, UT = n)

P (Pr = n, BT = n, UT = n) + P (Pr = y, BT = n, UT = n)

=
0.894 · 0.893 · 0.13

0.894 · 0.893 · 0.13 + 0.36 · 0.27 · 0.87
≈ 0.55

under the naive Bayes model.

4. Do Exercise 3.15 in [Jen] (p. 66-67).

Solution: I describe first a model that seems reasonable to me, and then another model from a
participant of the exercise group, which seems more intuitive than mine. You can have a different
answer provided that you can justify it. Besides practicing model building, a particular point to pay
attention to in this exercise is to take care of the dependences/constraints between the variables.

My model is shown in the figure below. The hypothesis variable is British-breakfast (Br-brkf), which
takes two values, yes (y) and no (n). The information variables are the variables at the bottom level
of the DAG: D-cup, D-pot, D-jar, etc., and they correspond to the detected type of the cup, pot,
jar, etc., respectively. The rest are mediating variables: Cup represents the true type of the cup, Pot
that of the pot, etc., and the variable Y is introduced to constrain the possible pairs of cutlery that
can be present on the table. The values that the variables can take and the conditional probabilities
for the model components are specified in the tables below with explanations.
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PotCup

Br-brkf

D-potD-cup

Plate

D-plate

Jar

D-jar

Y

Cutl1 Cutl2

D-cutl1 D-cutl2

Y = y  always

Br-brkf, Pot, Cup:

Br-brkf y n
0.5 0.5

Br-brkf
Pot

tea coffee

y 0.99 0.01
n 0 1

Pot
Cup

tea coffee

tea 1 0
coffee 0 1

I let Cup be the child of Pot to encode the constraint that a tea (coffee) pot should match a
tea (coffee) cup. (Perhaps P (Pot = coffee | Br-brkf = y) could be made smaller to match the
description of the exercise better; but I am not worried about this.)

Jar, Plate:

Br-brkf
Jar

orange red

y 0.99 0.01
n 0 1

Br-brkf
Plate

big small

y 0.7 0.3
n 0.5 0.5

In the above, I assumed that big plates are usually used in British breakfast, while both types of
plates are equally likely for continental breakfast.

Plate, Cutlery-1 (Cutl1), Cutlery-2 (Cutl2):

From the description of the exercise, we know that the two pieces of cutlery present on the table can
only be knife-fork or knife-spoon. I assume that which combination appears depends on the type of
the plate used, in particular,

Prob(knife and fork are present | Plate = big) = 0.8, (1)
Prob(knife and spoon are present | Plate = small) = 0.8. (2)

In the model, Cutl1 and Cutl2 are independent given Plate. I want to put an undirected edge
between Cutl1 and Cutl2, encoding the constraint on the knife-fork and knife-spoon combinations,
as well as setting the conditional probabilities to match the desired probabilities given in Eqs. (1)-
(2). (Another way is to put a directed edge; see the other model at the end.) For this purpose, I
introduce the mediating variable Y which will be set at Y = y always. The constraint is encoded in
the conditional probabilities for Y = y, as shown in the right table below.

Now I need to specify the conditional probabilities for Cutl1 and Cutl2 given Plate. Suppose that
these are the same for Cutl1 and Cutl2, and for x = knift, spoon, fork, P (Cutl1 = x | Plate = big)
is α1, α2, α3, respectively, while P (Cutl1 = x | Plate = small) is α′1, α

′
2, α

′
3, respectively. Then

P (knife and fork are present | Plate = big, Y = y)
P (knife and spoon are present | Plate = big, Y = y)

=
2α1α3

2α1α2
= α3/α2.

So, in order to match Eq. (1), I only need to have α3/α2 = 0.8/0.2 = 4. Similarly, for the case
Plate = small, in order to match Eq. (2), α′2/α

′
3 = 0.8/0.2 = 4. The absolute values of α1, α

′
1 do
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not matter, but it must be α1 = α′1, otherwise from Y = y there would be a bias in the type of the
plate used. This explains the numbers in the left table below.

Plate
Cutl1/Cutl2

knife spoon fork

big 0.5 0.1 0.4
small 0.5 0.4 0.1

P (Y = y |Cult1, Cult2):

Cutl1
Cutl2

knife spoon fork

knife 0 1 1
spoon 1 0 0
fork 1 0 0

For the detected types of the objects:

Pot
D-pot

tea coffee

tea 0.6 0.4
coffee 0.4 0.6

Cup
D-cup

tea coffee

tea 0.7 0.3
coffee 0.2 0.8

Jar
D-jar

orange red

orange 0.95 0.05
red 0.05 0.95

Plate
D-plate

big small

big 0.9 0.1
small 0.1 0.9

Cutl1
D-cutl1

knife spoon fork

knife 0.85 0.05 0.1
spoon 0 0.75 0.25
fork 0.1 0.2 0.7

These probabilities are as given by the description of the exercise.

Another model:

Br-brkf

Plate

D-plate

Jar

D-jar

PotCup

D-potD-cup

Cutlery

Cutl1 Cutl2

D-cutl1 D-cutl2

Drink Food

Br-brkf

D-plateD-jarD-potD-cup Cutlery

Cutl1 Cutl2

D-cutl1 D-cutl2

Drink Food

We can start with the model on the left, and then marginalize out the mediating variables Cup,
Pot, etc., to obtain the simplified model on the right with the conditional probabilities calculated
accordingly. (Cutl1 and Cutl2 may also be marginalized out if one wishes so.)

5. Think about a problem – of any kind, not necessarily research-related – that can be modeled
using either MRF or Bayesian networks. Give an description of the problem and specify the
model: random variables, the graph structure, and how you would assign probabilities, as well
as any decisions you made in choosing a particular model. Describe also what inference tasks
you would like to perform using the model.


