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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

Cluster Trees

The clustering approach for complex networks:

• By belief propagation studied in the previous lectures, we can only
obtain the marginal distributions of each variable for singly connected
networks.

• For more complex networks as well as for computing the marginal
distributions of multiple variables, a natural approach is to cluster the
variables and to arrange them in a graph with a simpler structure.

Let U be a set of variables.

• A cluster tree T over U is an undirected tree of clusters of variables
from U. The nodes are subsets of U, and the union of all nodes is U.

• Each edge between two adjacent nodes C1 and C2 in a cluster tree T is
labeled with C1 ∩ C2, called the separator.

• Denote the set of nodes of T by C and the set of edges of T by S.

• There may be multiple edges labeled with the same separator. We
index each edge by the associated separator, nevertheless; and we allow
S to contain such repetitions, for notational simplicity.
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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

Cluster Trees

Examples of cluster trees for two DAGs. Clusters of variables are shown
inside the nodes, while separators are shown in the squares along each edge.
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D 

We assoicate

• each node and separator of the cluster tree T with a function φC (xC )
and φS(xS) of the variables in their variable sets, respectively.
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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

A Technique with Invariance Property

A seemingly trivial technique that we will rely on:

• If a can be expressed as b/c, then a can also be expressed as

a = b′/c ′, where b′ = b · c ′/c,

assuming c ′ 6= 0. (This will be carefully extended later to the case
where c, c ′ can be zero.)

We think of (b, c) and (b′, c ′) as different representations for a. (We may
not know a, but we have access to these representations.)

The technique provides a way to keep a unchanged when we want to apply
certain modifications to some part of its representation.

It will be applied to functions associated with clusters of variables. A simple
example is given next.
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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

An Example of Varying Representations
Suppose a joint distribution P(X , Y , Z) is strictly positive with

p(x , y , z) = f (x , y)
1

h(y)
g(y , z). (1)

It is desirable to obtain the marginal distribution p(x , y) and p(y , z). Then, define

h∗(y) =
X

z

g(y , z), f ∗(x , y) = f (x , y) · h∗(y)/h(y),

and we can express p(x , y , z) as

p(x , y , z) = f (x , y)
1

h(y)
g(y , z) = f ∗(x , y)

1

h∗(y)
g(y , z).

Indeed f ∗(x , y) = p(x , y). Similarly, define

h†(y) =
X

x

f ∗(x , y), g†(y , z) = g(y , z) · h†(y)/h∗(y),

and we can further express p(x , y , z) as

p(x , y , z) = f ∗(x , y)
1

h∗(y)
g(y , z) = f ∗(x , y)

1

h†(y)
g†(y , z).

Indeed g†(y , z) = p(y , z), h†(y) = p(y). Thus, starting with the representation for
p in Eq. (1), we finished with a representation for p as

p(x , y , z) = p(x , y)
1

p(y)
p(y , z).
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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

Local Modifications with Local Consistency
and Global Invariance Properties

The method in the previous slide looks promising for obtaining marginal
distributions of clusters of variables by local modifications:

• Suppose two adjacent nodes C1 and C2 of T with separator S exchange
information by sending a “message” from C1 to C2:

φ∗S (xS ) =
X

xC1\S

φC1
(xC1

), φ∗C2
(xC2

) = φC2
(xC2

) · φ∗S (xS )/φS (xS ),

and next, a “message” from C2 to C1:

φ†S (xS ) =
X

xC2\S

φ∗C2
(xC2

), φ†C1
(xC1

) = φC1
(xC1

) · φ†S (xS )/φ∗S (xS ).

Then, assuming there is no trouble with divisions, we haveX
xC1\S

φ†C1
(xC1

) =
X

xC1\S

φC1
(xC1

) · φ†S (xS )/φ∗S (xS )

= φ†S (xS ) =
X

xC2\S

φ∗C2
(xC2

),

and the edge S is said to be sum-consistent.

Huizhen Yu (U.H.) Algorithms on Junction Trees Feb. 23 8 / 40



Junction Trees Motivation: Cluster Trees and Heuristic Arguments

Cluster Trees Can Fail Global Consistency
Applying such local modifications as in the previous slide to the tree T edge by
edge, we wish to eventually obtain global consistency, i.e., for each variable xA, the
margin

P
xC\A

φC (xC ) is the same for all C ⊇ A. But this cannot be guaranteed

with a cluster tree, as shown below.

Example: A cluster tree over binary variables. All variables except for A are in state
y , while A in the bottom-left node is in state y and A in the bottom-right node
can be in either states.

D EB C D D

A B 

B C

A E

E

This motivates us to consider:

• cluster trees in which a variable does not appear at “isolated” locations,

so that global consistency can be obtained eventually by local modifications.
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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

Definition of Junction Tree

Definition: A cluster tree T is called a junction tree if, for each pair of
nodes C1,C2 of T , C1 ∩ C2 is contained in every node on the unique path in
T between C1 and C2.

• The definition is equivalent to that, for all u ∈ U, the set of C in C
containing u induces a connected subtree of T .

Junction trees are also called join trees in the literature.

The heuristic arguments we just discussed will be developed rigorously on
junction trees, in a rather general way.
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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

Example: Asia Network and its Moral Graph

Smoking? Visit to Asia?

Tuberculosis?Lung cancer?Bronchitis?

Either tub. or 
lung cancer?

Dyspnonea? Positive 
X-ray?

Smoking? Visit to Asia?

Tuberculosis?Lung cancer?Bronchitis?

Either tub. or 
lung cancer?

Dyspnonea? Positive 
X-ray?
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Junction Trees Motivation: Cluster Trees and Heuristic Arguments

Asia Example: Triangulated Moral Graph and Junction Tree

As : Visit to Asia? Sm : Smoking?

Br : Bronchitis? Lc : Lung Cancer?

Tu : Tuberculosis? T-L : Either Tuberculosis

or lung cancer?

Dy : Dyspnonea? Xr : Positive X-ray?

Smoking? Visit to Asia?

Tuberculosis?Lung cancer?Bronchitis?

Either tub. or 
lung cancer?

Dyspnonea? Positive 
X-ray?

Sm Br Lc 

Br Dy T-L

T-L Xr

Lc Tu T-L

As Tu

Tu

T-L

Br Lc T-L Lc T-L

Br Lc

Br T-L

For each variable, the
nodes containing it in-
duce a connected sub-
tree.
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Junction Trees Representations with Potentials

Definitions

Let T be a junction tree over U with the vertex set C and edge (separator)
set S.

• A collection of non-negative functions Φ =
`
{φC ,C ∈ C}, {φS , S ∈ S}

´
will be called a charge on T .

• Individual functions in Φ will be called potentials (on the vertices C or
separators S).

• The contraction of Φ is the function of xU defined byQ
C∈C φC (xC )Q
S∈S φS(xS)

, (2)

where the expression on the right-hand side is interpreted to be 0
whenever the denominator is 0.

• If a function f equals the contraction of Φ, i.e.,

f (x) =

Q
C∈C φC (xC )Q
S∈S φS(xS)

, ∀x ,

then Φ will be called a representation for f on T .
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Junction Trees Representations with Potentials

Examples of Potentials and Representations

Suppose G is an undirected graph, C is the set of cliques of G , and P(X )
factorizes according to G . Then for some constant α > 0,

p(x) = α
Y
C∈C

φC (xC ), for some non-negative functions φC .

So Φ = ({φC ,C ∈ C}, {φS , S ∈ S}) with φS ≡ 1 is a representation for p/α
on T , and correspondingly, p/α equals the contraction of Φ.

Suppose G = (V ,E) is a DAG, P(X ) factorizes recursively according to G :

p(x) =
Y
v∈V

p(xv |xpa(v)),

and C is the set of cliques of Gm. Then Φ = ({φC ,C ∈ C}, {φS , S ∈ S}) is a
representation for p on T , where Φ is obtained by:

• first, let φC ≡ 1, φS ≡ 1 for all cliques C and separators S ;

• then, for each v , choose exactly one clique C containing v and pa(v),
and multiply φC (xC ) by p(xv |xpa(v)).

Correspondingly, p is a contraction of Φ.
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Junction Trees Representations with Potentials

Examples of Potentials and Representations

Continue with the DAG example in the previous slide. Suppose also that the
received evidence e is expressible in the factor form

e(x) =
Y
v∈V

`v (xv ), where `v (xv ) ∈ {0, 1},

(as in Lec. 9 and 10). Then

p(x & e) =
Y
v∈V

p(xv |xpa(v)) `v (xv ).

And Φ = ({φC ,C ∈ C}, {φS , S ∈ S}) is a representation for the function
p(x & e) on T , where Φ is obtained similarly as in the DAG example by:

• first, let φC ≡ 1, φS ≡ 1 for all cliques C and separators S ;

• next, for each v , choose exactly one clique C containing v and pa(v),
and multiply φC (xC ) by p(xv |xpa(v));

• and finally, for each v , choose one (or multiple) C containing v , and
multiply φC (xC ) by `v (xv ).

Correspondingly, the function p(x & e) is a contraction of Φ.
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Junction Trees Flow Passing Algorithm: Sum-Flows

Basic Operations, Definitions and Simplified Notation

• If φ is a potential on V (i.e., a non-negative function of xV ) and ψ a
potential on W , the sum and multiplication of the two

φ+ ψ, φψ

stand for the functions of xV∪W given, respectively, by

(φ+ ψ)(xV∪W ) = φ(xV ) + ψ(xW ), (φψ)(xV∪W ) = φ(xV )ψ(xW ).

• Division is defined likewise, except when dividing by zero:

(φ/ψ)(xV∪W ) =

(
φ(xV )/ψ(xW ), ψ(xW ) 6= 0;

0, ψ(xW ) = 0.

• For a potential φ(xV ) on V and W ⊆ V , we denote the functionX
xV\W

φ(xV ) by
X
V\W

φ.

And we call it the sum-margin of φ on W .
• Similarly, under the above conditions, we denote the function

max
xV\W

φ(xV ) by max
V\W

φ.

And we call it the max-margin of φ on W .
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Junction Trees Flow Passing Algorithm: Sum-Flows

Flow of Information between Adjacent Vertices
A sum-flow (flow, for short) refers to the following operation involving a pair
of adjacent vertices C1,C2 of T and their separator S0.

Passing a sum-flow from the source C1 to the sink C2 changes only the
potentials φC2 and φS0 to:

Junction Trees Notation and Definitions

Examples of Potentials and Representations

If G is DAG and P(X ) factorizes recursively according to G , then, observing
evidence e, where e can be expressed in a factor form as
e(x) =

Q
v∈V !v (xv ), we have

p(x & e) =
Y

v∈V

p(xv |xpa(v)) !v (xv ).

So Φ = ({φC , C ∈ C}, {φS , S ∈ S}) with φC (xC ) = p(xv |xpa(v))!v (xv ) for
exactly one clique C containing v and pa(v), and with φS ≡ 1 is a
representation for p on T . Correspondingly, the function p(x & e) is a
contraction of Φ.
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Junction Trees Notation and Definitions

Basic Operations

S0 C1 C2
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Junction Trees Notation and Definitions

A Flow and its Effect

Each flow affects only one clique and one separator.

Φ =
`
{φC , C ∈ C}, {φS , S ∈ S}

´
, Φ∗ =

`
{φ∗C , C ∈ C}, {φ∗S , S ∈ S}

´

Passing a sum-flow (flow, for short) from C1 (the source) to C2 (the sink)
changes φC2 and φS0 to the following:

φ∗S0
=
X

C1\S0

φC1 ,

φ∗C1
= φC2λS0 , where λS0 = φ∗S0

/φS0 , (called update ratio).

Note: Φ is unaffected by the passage of any sum-flow if and only if it is
sum-consistent, i.e.,

P
C\S φC = φS for any C and neighboring S .
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Junction Trees Notation and Definitions

Invariance of Contraction with respect to Flow Passage
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Junction Trees Notation and Definitions

Invariance of Contraction with respect to Flow Passage
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sum-flow

φC1 φS0 φC2 φC1 φ∗S0
φ∗C2

= φC2λS0

where

φ∗S0
=

X
C1\S0

φC1 , λS0 = φ∗S0
/φS0 , (called update ratio).

• Each flow affects only one vertex and one separator.
• Φ is unaffected by the passage of any sum-flow if and only if it is

sum-consistent, i.e.,X
C\S

φC = φS for any C and neighboring S .
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Junction Trees Flow Passing Algorithm: Sum-Flows

Invariance of Contraction w.r.t. Sum-Flows

Fact: The contraction of the charge Φ remains the same after a sum-flow.

Implications:

• If Φ is a representation for f , then by passing flows we can find
representations for f suitable for our problem without worrying about
changing f .

• We can modify the charge by passing flows and use the property of a
junction tree to obtain certain global consistency.

We next verify the above fact. It holds for cluster trees in general, and we
won’t need the junction tree property.

Let f be the contraction of Φ and f ∗ the contraction of Φ∗ resulted after a
sum-flow from C1 to C2 via the edge S0:

f (x) =

Q
C∈C φC (xC )Q
S∈S φS(xS)

, f ∗(x) =

Q
C∈C φ

∗
C (xC )Q

S∈S φ
∗
S(xS)

.

Recall that Φ∗ differs from Φ only in the potentials on C2 and S0.
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Invariance of Contraction w.r.t. Sum-Flows

By the definition of a sum-flow, we have

φ∗S0
=

X
C1\S0

φC1
, λS0

= φ∗S0
/φS0

, φ∗C2
= φC2

λS0
,

f (x) =

Q
C∈C φC (xC )Q
S∈S φS (xS )

, f ∗(x) =

Q
C∈C\{C2} φC (xC )Q
S∈S\{S0} φS (xS )

·φ∗C2
(xC2

) ·
1

φ∗S0
(xS0

)
.

For each x , consider the three possible cases:

Case (i): λS0
(xS0

) > 0. Clearly, f ∗(x) = f (x).

Case (ii): φS0
(xS0

) = 0. Then f (x) = 0 by definition, while

λS0
(xS0

) = 0 ⇒ φ∗C2
(xC2

) = 0 ⇒ f ∗(x) = 0.

Case (iii): φS0
(xS0

) > 0 but φ∗S0
(xS0

) = 0. Then f ∗(x) = 0 by definition, while

φ∗S0
(xS0

) = 0 ⇒
X

yC1
:yS0

=xS0

φC1
(yC1

) = 0 ⇒ φC1
(xC1

) = 0,

where the last step follows from φC1
being non-negative, so f (x) = 0.

This show f ∗(x) = f (x), ∀x .
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Junction Trees Flow Passing Algorithm: Sum-Flows

Active Flows and Flow Scheduling

Terminologies:

• A subtree T ′of T : a connected set of vertices of T with edges between
them.

• A neighbor of a subtree T ′: a vertex C that is not a vertex of T ′, but
is connected to a vertex of T ′ by an edge of T .

• A schedule of flows: an ordered list of directed edges of T , specifying
which flows are to be passed and in what order.

• Relative to a schedule, a flow is called active if, before it is sent, the
source has already received active flows from all its neighbors, with the
possible exception of the sink; and it is the first flow (along the directed
edge) in the list with this property.

• A schedule is full if it contains an active flow in each direction along
every edge of T . It is active if it contains only active flows, and fully
active if it is both full and active.

From any full schedule, a fully active schedule can be obtained by omitting
inactive flows. For any tree T , there exists a fully active schedule, as can be
seen easily.
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Junction Trees Flow Passing Algorithm: Sum-Flows

A Fully Active Schedule of Flows for the Asia Example

Numbers indicate the order for sending the flows. Flows with the same color
can be passed in parallel.

Sm Br Lc 

Br Dy T-L

T-L Xr

Lc Tu T-L

As Tu

Tu

T-L

Br Lc T-L Lc T-L

Br Lc

Br T-L

19

3

4

5

6

10

2

7

8
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Junction Trees Flow Passing Algorithm: Sum-Flows

Flow Passing Algorithm
Algorithm:

• Start with an initial representation Φ0 for a function f on T .

• Modify the representation Φt progressively by passing a sequence of
flows according to some schedule.

To analyze this algorithm:

• We say a subtree is live, if it has received active flows from all of its
neighbors.

More notation: For a subtree T ′ with vertices C′ and separators S ′,
• the base U ′ of T ′ is the collection of variables associated with T ′, i.e.,

U ′ =
`
∪C∈C′ C

´
∪

`
∪S∈S′ S

´
;

• for a charge Φ =
`
{φC ,C ∈ C}, {φS , S ∈ S}

´
, its restriction to T ′ is

the sub-collection of potentials

ΦT ′ =
`
{φC ,C ∈ C′}, {φS , S ∈ S ′}

´
,

and its potential on T ′ is the contraction of ΦT ′ ,Q
C∈C′ φCQ
S∈S′ φS

, (which is a function of xU′).
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Junction Trees Flow Passing Algorithm: Sum-Flows

Reaching Equilibrium: Sum-Marginal Representation

Theorem 1: Whenever a subtree T ′ is live, the potential on T ′ equals the
sum-margin fU′ of f on the base U ′ of T ′:

fU′ =
X
U\U′

f .

Proof: We will use induction. The contraction f is invariant w.r.t. the passage of
flows, so the statement holds trivially if T ′ = T .

Consider any time when T ′ is live.

Junction Trees Motivation: Cluster Trees

Definition of Junction Tree
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• Let C∗ be the last neighbor of T ′ to have
passed a flow (active or not) into T ′.

• Let T ∗ be the subtree obtained by adding C∗

and the associated edge S∗ to T ′.

Clearly, T ∗ is live: otherwise, its subtree T ′ could not
have received active flows from all its neighbors.

Since this construction process can be repeated until
we obtain the entire tree T for which the statement
holds, we may by induction assume that the statement
holds for T ∗. What we need to show now is that it
must also hold for T ′.
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Junction Trees Flow Passing Algorithm: Sum-Flows

Proof of Theorem 1 Cont’d
We have, just before the last flow from C∗ into T ′,

fU∗ =
φC∗αU′

φS∗
, (potential on T ∗), where αU′ =

Q
C∈C′ φCQ
S∈S′ φS

, (potential on T ′).

After the flow, αU′ is replaced by

α∗U′ = αU′λS∗ , where λS∗ =

P
C∗\S∗ φC∗

φS∗
.

By the property of a junction tree,

• S∗ = C∗ ∩ U′, so C∗ \ S∗ = U∗ \ U′.

Therefore, for each xU′ ,

fU′ (xU′ ) =
X

U∗\U′
fU∗ (xU′ , xU∗\U′ ) =

X
C∗\S∗

fU∗ (xU′ , xC∗\S∗ )

= αU′ (xU′ ) ·
P

C∗\S∗ φC∗ (xC∗\S∗ , xS∗ )

φS∗ (xS∗ )
.

If φS∗ (xS∗ ) > 0, then fU′ (xU′ ) = α∗
U′ (xU′ ) clearly. If φS∗ (xS∗ ) = 0, then

fU′ (xU′ ) = 0 by definition, while α∗
U′ (xU′ ) = 0 because λS∗ (xS∗ ) = 0. This shows

fU′ (xU′ ) = α∗
U′ (xU′ ), ∀xU′ . Since any possible, subsequent flows within T ′ do not

change the potential on T ′ (which is a contraction of ΦT ′ ), the proof is complete.
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Junction Trees Flow Passing Algorithm: Sum-Flows

Reaching Equilibrium: Sum-Marginal Representation

Implications of Theorem 1:

• Whenever each node C is live, its potential is fC .

• Any time after active flows have passed in both directions across an
edge, the potential for the associated separator S is fS .

• Any time after active flows have passed in both directions across an
edge between C and D with associated separator S , the tree is
sum-consistent along S .

• After passage of a full schedule of flows, the resulting charge is the
marginal charge Φf =

`
{fC ,C ∈ C}, {fS , S ∈ S}

´
of f , i.e.,

f (x) =

Q
C∈C fC (xC )Q
S∈S fS(xS)

.
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Junction Trees Flow Passing Algorithm: Sum-Flows

Asia Example

Sm Br Lc 

Br Dy T-L

T-L Xr

Lc Tu T-L

As Tu

Tu

T-L

Br Lc T-L Lc T-L

Br Lc

Br T-L

19

3

4

5

6

10

2

7

8

• Suppose no evidence is entered initially. After flows 1− 4, the potential on
the subtree with nodes (Br, Lc, T-L), (Lc, Tu, T-L) is p(Br, Lc, Tu, T-L). (The
potential on the entire tree is always p.)

• suppose the evidence e : {Sm = y , Xr = y , As = n} is entered initially. Then
after flows 1− 4, the potential on the subtree with nodes
(Br, Lc, T-L), (Lc, Tu, T-L) is p(Br, Lc, Tu, T-L, & e). (The potential on the
entire tree is always p(·& e).)
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Junction Trees Flow Passing Algorithm: Max-Flows

Passing Max-Flows
Replacing sum-flows with max-flows, we obtain a set of parallel results.

Passing a max-flow from the source C1 to the sink C2 changes only the
potentials φC2 and φS0 to:

Junction Trees Notation and Definitions

Examples of Potentials and Representations

If G is DAG and P(X ) factorizes recursively according to G , then, observing
evidence e, where e can be expressed in a factor form as
e(x) =

Q
v∈V !v (xv ), we have

p(x & e) =
Y

v∈V

p(xv |xpa(v)) !v (xv ).

So Φ = ({φC , C ∈ C}, {φS , S ∈ S}) with φC (xC ) = p(xv |xpa(v))!v (xv ) for
exactly one clique C containing v and pa(v), and with φS ≡ 1 is a
representation for p on T . Correspondingly, the function p(x & e) is a
contraction of Φ.
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Basic Operations

S0 C1 C2
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Junction Trees Notation and Definitions

A Flow and its Effect

Each flow affects only one clique and one separator.

Φ =
`
{φC , C ∈ C}, {φS , S ∈ S}

´
, Φ∗ =

`
{φ∗C , C ∈ C}, {φ∗S , S ∈ S}

´

Passing a sum-flow (flow, for short) from C1 (the source) to C2 (the sink)
changes φC2 and φS0 to the following:

φ∗S0
=
X

C1\S0

φC1 ,

φ∗C1
= φC2λS0 , where λS0 = φ∗S0

/φS0 , (called update ratio).

Note: Φ is unaffected by the passage of any sum-flow if and only if it is
sum-consistent, i.e.,

P
C\S φC = φS for any C and neighboring S .
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Invariance of Contraction with respect to Flow Passage
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Invariance of Contraction with respect to Flow Passage
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max-flow

φC1 φS0 φC2 φC1 φ∗S0
φ∗C2

= φC2λS0

where

φ∗S0
= max

C1\S0

φC1 , λS0 = φ∗S0
/φS0 , (update ratio).

• Each max-flow affects only one vertex and one separator.

• Φ is unaffected by the passage of any max-flow if and only if it is
max-consistent, i.e.,

max
C\S

φC = φS for any C and neighboring S .

Huizhen Yu (U.H.) Algorithms on Junction Trees Feb. 23 30 / 40



Junction Trees Flow Passing Algorithm: Max-Flows

Algorithm and Analysis

The algorithm is the same as before with the flows being max-flows:

• Start with an initial representation Φ0 for a function f on T .

• Modify the representation Φt progressively by passing a sequence of
max-flows according to some schedule.

The analysis of the algorithm is also almost the same – we only need to
verify the following arguments:

• Invariance of contraction with respect to max-flows.

• Whenever a subtree is live, its potential is the max-margin of f .

The verification will be given after we state the theorem and its implications
in the next slide.
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Reaching Equilibrium: Max-Marginal Representation

Theorem 2: Whenever a subtree T ′ is live, the potential on T ′ equals the
max-margin f max

U′ of f on the base U ′ of T ′:

f max
U′ = max

U\U′
f .

Implications:

• Whenever each node C is live, its potential is f max
C .

• Any time after active flows have passed in both directions across an
edge, the potential for the associated separator S is f max

S .

• Any time after active flows have passed in both directions across an
edge between C and D with associated separator S , the tree is
max-consistent along S .

• After passage of a full schedule of flows, the resulting charge is the
max-marginal charge Φmax

f =
`
{f max

C ,C ∈ C}, {f max
S , S ∈ S}

´
of f , i.e.,

f (x) =

Q
C∈C f max

C (xC )Q
S∈S f max

S (xS)
.
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Junction Trees Flow Passing Algorithm: Max-Flows

Invariance of Contraction w.r.t. Max-Flows

Let f be the contraction of Φ and f ∗ the contraction of Φ∗ after a max-flow from
C1 to C2 via the edge S0. We have

φ∗S0
= max

C1\S0

φC1
, λS0

= φ∗S0
/φS0

, φ∗C2
= φC2

λS0
,

f (x) =

Q
C∈C φC (xC )Q
S∈S φS (xS )

, f ∗(x) =

Q
C∈C\{C2} φC (xC )Q
S∈S\{S0} φS (xS )

·φ∗C2
(xC2

) ·
1

φ∗S0
(xS0

)
.

For each x , consider the three possible cases:

Case (i): λS0
(xS0

) > 0. Clearly, f ∗(x) = f (x).

Case (ii): φS0
(xS0

) = 0. Then f (x) = 0 by definition, while

λS0
(xS0

) = 0 ⇒ φ∗C2
(xC2

) = 0 ⇒ f ∗(x) = 0.

Case (iii): φS0
(xS0

) > 0 but φ∗S0
(xS0

) = 0. Then f ∗(x) = 0 by definition, while

φ∗S0
(xS0

) = 0 ⇒ max
yC1

:yS0
=xS0

φC1
(yC1

) = 0 ⇒ φC1
(xC1

) = 0,

where the last step follows from φC1
being non-negative, so f (x) = 0.

This show f ∗(x) = f (x), ∀x .
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Junction Trees Flow Passing Algorithm: Max-Flows

Verification of a Proof Step for Theorem 2
The proof arguments on slide 25 for Theorem 1 apply here without changes. We
now verify the next step in the proof (the counterpart for sum-flows is on slide 26).

By induction, we have, just before the last flow from C∗ into T ′,

f max
U∗ =

φC∗αU′

φS∗
, (potential on T ∗), where αU′ =

Q
C∈C′ φCQ
S∈S′ φS

, (potential on T ′).

After the flow, αU′ is replaced by

α∗U′ = αU′λS∗ , where λS∗ =
maxC∗\S∗ φC∗

φS∗
.

By the property of a junction tree,

• S∗ = C∗ ∩ U′, so C∗ \ S∗ = U∗ \ U′.

Therefore, for each xU′ ,

f max
U′ (xU′ ) = max

U∗\U′
f max
U∗ (xU′ , xU∗\U′ ) = max

C∗\S∗
f max
U∗ (xU′ , xC∗\S∗ )

= αU′ (xU′ ) ·
maxC∗\S∗ φC∗ (xC∗\S∗ , xS∗ )

φS∗ (xS∗ )
.

If φS∗ (xS∗ ) > 0, then f max
U′ (xU′ ) = α∗

U′ (xU′ ) clearly. If φS∗ (xS∗ ) = 0, then

f max
U′ (xU′ ) = 0 by definition, while α∗

U′ (xU′ ) = 0 because λS∗ (xS∗ ) = 0. This

shows f max
U′ (xU′ ) = α∗

U′ (xU′ ), ∀xU′ .

Since any possible, subsequent flows within T ′ do not change the potential on T ′

(which is the contraction of ΦT ′ ), the proof is complete.
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Junction Trees Flow Passing Algorithm: Max-Flows

Max-Flows for the Asia Example

Sm Br Lc 

Br Dy T-L

T-L Xr

Lc Tu T-L

As Tu

Tu

T-L

Br Lc T-L Lc T-L

Br Lc

Br T-L

19

3

4

5

6

10

2

7

8

• Suppose no evidence is entered initially. After flows 1− 4, the potential on
the subtree with nodes (Br, Lc, T-L), (Lc, Tu, T-L) is pmax(Br, Lc, Tu, T-L).
(The potential on the entire tree is always p.)

• suppose the evidence e : {Sm = y , Xr = y , As = n} is entered initially. Then
after flows 1− 4, the potential on the subtree with nodes
(Br, Lc, T-L), (Lc, Tu, T-L) is pmax(Br, Lc, Tu, T-L, & e). (The potential on the
entire tree is always p(·& e).)
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Junction Trees Flow Passing Algorithm: Max-Flows

A Mix of Sum/Max-Flows for the Asia Example

Sm Br Lc 

Br Dy T-L

T-L Xr

Lc Tu T-L

As Tu

Tu

T-L

Br Lc T-L Lc T-L

Br Lc

Br T-L

pass first sum-flows then max-flows

• suppose the evidence e : {Dy = y , Xr = y , As = n} is entered initially. Then
after the sum-flows, the potential on the subtree with nodes
(Br, Lc, T-L), (Lc, Tu, T-L) is p(Br, Lc, Tu, T-L, & e). So after the max-flows,
the potentials on the two cliques are

max
Tu

p(Br, Lc, Tu, T-L, & e), max
Br

p(Br, Lc, Tu, T-L, & e),

respectively. From this, we can find the most probable configuration of the
disease variables given the evidence, after Sm being marginalized out. (Note
that the potential on the entire tree is always p(·& e).)
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Junction Trees Flow Passing Algorithm: Max-Flows

Applications of the Algorithms

The algorithms are applicable to both undirected and directed graphs.

For a DAG, we can use them to find, for example,

• P(e), P(xC |e) for any C ∈ C;

• the most probable configuration x given e, or the most probable
configuration of a certain subset of variables given e (as in the previous
Asia example);

• P(XA = xA) for a subset A 6∈ C:

We treat xA as the evidence e, and then run the sum-flow algorithm to
find P(e).

Also,

• to sample from the posterior distribution p(x |e):
First, we run the sum-flow algorithm to find p(xC |e) for any C ;
next, according to this posterior distribution, we draw a sample x̂C ;
then, we include x̂C in the evidence e, and repeat the process for the
variables whose values are yet to be assigned.

Besides the sum and max-flows, there are also other flows with interesting
applications – see references [1], [2] given at the end.
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Junction Trees Graph-Theoretic Properties and Building Junction Trees

Junction Trees of Cliques
Suppose C is the set of cliques of an undirected graph G . There are several
results related to junction trees of cliques, for example:

Theorem: There exists a junction tree of cliques for G if and only if G is
decomposable.

Theorem: The followings are equivalent: (i) G is decomposable; (ii) G is
chordal (or triangulated); and (iii) G admits a perfect numbering.

• A chord of a cycle in G is a pair of non-adjacent vertices (α, β) of the
cycle such that there is an edge between α and β in G .

• G is chordal if every one of its cycle of length ≥ 4 possesses a chord.

• A numbering of the vertices of G is called perfect if the neighbors of
any vertex that have lower numbers induce a complete subgraph.

Building a junction tree involves:
(i) Triangulate and then find cliques of G (Gm if G is a DAG);
(ii) Find an ordering of the cliques that possesses the running-intersection
property, which can be used to link the cliques into a junction tree.

For details and further study, see Chap. 4.3, 4.4 of Cowell et al. 2007.
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Junction Trees Graph-Theoretic Properties and Building Junction Trees

Further Readings

The material of this lecture is based on

1. A. Philip Dawid. Applications of a general propagation algorithm for
probabilistic expert systems, Statistics and Computing, No. 2, 25-36,
1992.

2. Robert G. Cowell et al. Probabilistic Networks and Expert Systems,
Springer, 2007. Chap. 6.

For further study on building junction trees, see Chap. 4.3, 4.4 of [2].

For an introduction on the junction tree algorithm:

3. Finn V. Jensen. An Introduction to Bayesian Networks. UCL Press,
1996. Chap. 4.

Huizhen Yu (U.H.) Algorithms on Junction Trees Feb. 23 40 / 40


	Junction Trees
	Motivation: Cluster Trees and Heuristic Arguments
	Representations with Potentials
	Flow Passing Algorithm: Sum-Flows
	Flow Passing Algorithm: Max-Flows
	Graph-Theoretic Properties and Building Junction Trees


