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Outline

Maximum Likelihood Parameter Estimation for DAG

Chow-Liu Tree Algorithm

Notices:

• I corrected a number of errors/typos in the slides of Lec. 11. This
affected in particular slides 15, 16, 32, 34, 36. There may be other
corrections after today’s lecture. Please check the online version of the
slides; I will put an update sign beside the link.

• Please do not hesitate to contact me if you have any questions before
the exam.
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Maximum Likelihood Parameter Estimation for DAG

Our Model and Data

Let X = {Xv , v ∈ V } be a collection of discrete random variables.

• G : a DAG on V .

• Our model for X : the set of all distributions P(X ) that factorize
recursively according to G .

• The true, unknown distribution of X : Q∗, not necessarily in our model.

Maximum likelihood (ML) estimation:

• Data: {x1, x2, . . . , xn}, n observations independently generated
according to Q∗, (i.e., a random sample of size n).

• The empirical distribution Q(X ): Q(X = x̄) is the observed frequency
of the configuration x̄ in the data.

• PML: the distribution in our model that maximizes the likelihood
function based on the data,

L(P) =
nY

i=1

P(X = x i ) =
nY

i=1

Y
v∈V

p
`
x i

v |x i
pa(v)

´
.

(For simplicity, we do not use the θ notation for parameters here.)
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Maximum Likelihood Parameter Estimation for DAG

Relation between the ML Estimate, the empirical and the true distributions

The relation between PML, Q and Q∗:

{ P(X) :  P factorizes recursively according to G } 

Q  (empirical)

Q*  (unknown)

P ML

• Among all P in our model, PML is the closest distribution to Q in terms
of the KL-divergence KL(q, p). (q is the PMF of Q.)

(See discussions in Lec. 3 and Problem 3 of Exercise 2.)
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Maximum Likelihood Parameter Estimation for DAG

Expression of the ML Estimate
The ML estimate PML is the distribution given by

pML(x) =
Y
v∈V

pML(xv |xpa(v)),

where the component conditional distributions are defined by

pML(xv |xpa(v)) = Q(Xv = xv |Xpa(v) = xpa(v)) =
n(xv , xpa(v))

n(xpa(v))
, (1)

and in the last expression,

• n(xpa(v)): the counts for the configuration xpa(v) in the data;

• n(xv , xpa(v)): the counts for the configuration (xv , xpa(v)) in the data.

The maximized log likelihood can be expressed as

`(PML) = n EQ

ˆ
ln pML(X )

˜
= n EQ

hX
v∈V

ln q(Xv |Xpa(v))
i
, (2)

where EQ denotes expectation with respect to the distribution Q.

(Eqs. (1)-(2) can be derived using the information inequality; see slides 18-19 for

details.)
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Chow-Liu Tree Algorithm

Learning a Rooted Tree

Problem:

• Given the data as described earlier, find a rooted tree G which
maximizes the profile log likelihood `p(G):

`p(G)
def
= `(G , PML

G ) = max
P∈P(G)

`(G , P).

Here P(G) is the set of all distributions that factorize recursively
according to G .

Such a tree is also called a Chow-Liu tree, and can be found by the
Chow-Liu tree algorithm (Chow and Liu, 1968).

The algorithm can be generalized to solve similar types of problems (we will
show one).
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Chow-Liu Tree Algorithm

Recall Mutual Information and Conditional Mutual Information

Let X , Y , Z be discrete random variables with joint distribution P.

• The mutual information between X and Y is defined as

I(X ; Y ) = E

»
ln

„
p(X , Y )

p(X )p(Y )

«–
,

and equivalently,

I(X ; Y ) =
X
x,y

p(x , y) ln

„
p(x , y)

p(x)p(y)

«
.

• The conditional mutual information between X and Y given Z is defined as

I(X ; Y |Z) = E

»
ln

„
p(X , Y |Z)

p(X |Z)p(Y |Z)

«–
,

and equivalently,

I(X ; Y |Z) =
X

z

p(z)
X
x,y

p(x , y |z) ln

„
p(x , y |z)

p(x |z)p(y |z)

«
.

• By the information inequality,

I(X ; Y ) ≥ 0, and I(X ; Y ) = 0 iff. X ⊥ Y ;

I(X ; Y |Z) ≥ 0, and I(X ; Y |Z) = 0 iff. X ⊥ Y | Z .
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Chow-Liu Tree Algorithm

Deriving the Chow-Liu Tree Algorithm

We start with the profile log likelihood: by Eq. (2),

`p(G) = n EQ

hX
v∈V

ln q(Xv |XpaG (v))
i
.

Here paG (v) is the parent of v in the rooted tree G .

Rewrite `p(G) in terms of the mutual information IQ(Xv ; XpaG (v)), v ∈ V
(w.r.t. the distribution Q):

EQ

h
ln q(Xv |XpaG (v))

i
= EQ

»
ln

„
q(Xv |XpaG (v)) · q(XpaG (v)) · q(Xv )

q(Xv ) · q(XpaG (v))

«–
= EQ

»
ln

„
q(Xv , XpaG (v))

q(Xv ) · q(XpaG (v))

«–
+ EQ

ˆ
ln q(Xv )

˜
= IQ(Xv ; XpaG (v)) + EQ

ˆ
ln q(Xv )

˜
;

hence
1

n
`p(G) =

X
v∈V

IQ(Xv ; XpaG (v)) +
X
v∈V

EQ

ˆ
ln q(Xv )

˜
. (3)
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Chow-Liu Tree Algorithm

Deriving the Chow-Liu Tree Algorithm

In the last equation,

1

n
`p(G) =

X
v∈V

IQ(Xv ; XpaG (v)) +
X
v∈V

EQ

ˆ
ln q(Xv )

˜
,

• the second term does not dependent on G and therefore can be left out
when maximizing `p(G) over G ;

• the mutual information is symmetric:
IQ(Xv ; XpaG (v)) = IQ(XpaG (v); Xv ).

Therefore,

max
G∈{rooted trees}

`p(G) ⇔ max
G∼∈{undirected trees}

X
v

G∼∼ u

IQ(Xv ; Xu), (4)

where the summation
P

v
G∼∼ u

is over all edges of G∼.
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Chow-Liu Tree Algorithm

Chow-Liu Tree Algorithm

(1) Compute all pairwise mutual information

IQ(Xv ; Xu) = EQ

»
ln

„
q(Xv , Xu)

q(Xv )q(Xu)

«–
, v , u ∈ V .

(2) Find a maximum spanning tree of the undirected, fully connected graph
on V with

• edge weight IQ(Xv ; Xu) between node v and u.

This can be done by Kruskal’s algorithm:

• repeatedly select an edge with maximum weight that does not create a
cycle.

(3) Make any node of the spanning tree as the root and direct edges away
from it.

The result is a rooted tree G that maximizes `p(G).
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Chow-Liu Tree Algorithm

Generalization to Learning Tree Augmented Naive Bayes

A naive Bayes classifier with class variable C and feature variables Fi :

C

F F F1 2 m

Naive Bayes neglects the dependence
between feature variables. This can
be troublesome for rare classes that
have characteristic combinations of
features.

Tree augmented naive Bayes classifiers (TAN):

• Each feature variable has at most one other feature variable as its
parent besides the class variable.

• In other words, the subgraph induced by the feature variables is a
rooted tree or forest.

Consider the problem of learning a TAN G with maximum likelihood.
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Chow-Liu Tree Algorithm

Learning TAN

Notation:

• Xv , v ∈ V : feature variables.

• bG : the subgraph of G induced by the feature variables Xv , v ∈ V .

• pa bG (v): the parent of v in bG , i.e., the parent of v in G besides C .

Note that a TAN G is uniquely determined by its associated bG .

Apply the Chow-Liu tree algorithm to learning TAN:

• Replace all pairwise mutual information by the conditional mutual
information between all pairs of feature variables given the class
variable:

IQ(Xv ; Xu |C) = EQ

»
ln

„
q(Xv , Xu |C)

q(Xv |C)q(Xu |C)

«–
, v , u ∈ V .

• The output of the algorithm is the subgraph bG whose associated TAN
G maximizes the profile log likelihood among all TANs.
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Chow-Liu Tree Algorithm

Deriving the Chow-Liu Tree Algorithm for TAN

Similarly to learning a rooted tree, we start with the profile log likelihood:
by Eq. (2),

`p( bG) = `p(G) = n EQ

hX
v∈V

ln q(Xv |Xpa bG (v), C)
i

+ n EQ

ˆ
ln q(C)

˜
. (5)

We rewrite `p( bG) in terms of the conditional mutual information
IQ

`
Xv ; Xpa bG (v) |C

´
between Xv and Xpa bG (v) given C for v ∈ V :

EQ

ˆ
ln q(Xv |Xpa bG (v), C)

˜
= EQ

"
ln

 
q
`
Xv |Xpa bG (v), C

´
· q
`
Xpa bG (v) |C

´
· q
`
Xv |C

´
q
`
Xv |C

´
· q
`
Xpa bG (v) |C

´ !#

= EQ

"
ln

 
q
`
Xv , Xpa bG (v) |C

´
q
`
Xv |C

´
· q
`
Xpa bG (v) |C

´!#+ EQ

ˆ
ln q(Xv |C)

˜
= IQ

`
Xv ; Xpa bG (v) |C

´
+ EQ

ˆ
ln q(Xv |C)

˜
;

hence

1

n
`p( bG) =

X
v∈V

IQ

`
Xv ; Xpa bG (v) |C

´
+
X
v∈V

EQ

ˆ
ln q(Xv |C)

˜
+EQ

ˆ
ln q(C)

˜
. (6)
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Chow-Liu Tree Algorithm

Deriving the Chow-Liu Tree Algorithm for TAN
In the last equation,

1

n
`p( bG) =

X
v∈V

IQ

`
Xv ; Xpa bG (v) |C

´
+
X
v∈V

EQ

ˆ
ln q(Xv |C)

˜
+ EQ

ˆ
ln q(C)

˜
,

• the second and third terms do not dependent on bG and therefore can
be left out when maximizing `p( bG) over bG ;

• the conditional mutual information is symmetric:

IQ(Xv ; Xpa bG (v) |C) = IQ(Xpa bG (v); Xv |C);

• if bG is a forest, adding edges to make it a tree will not decrease `p( bG).

Therefore,

maxbG∈{rooted trees}
`p( bG) ⇔ maxbG∼∈{undirected trees}

X
v

bG∼∼ u

IQ(Xv ; Xu |C), (7)

where the summation
P

v
bG∼∼ u

is over all edges of bG∼.

This verifies the claim in slide 14, that we can apply the Chow-Liu tree
algorithm with IQ(Xv ; Xu |C) replacing IQ(Xv ; Xu) for all v , u ∈ V , to

obtain the desirable bG .
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Chow-Liu Tree Algorithm

Discussion

• Rooted trees and TANs are perfect DAGs: Gm = G∼.

• So the models are equivalent to those associated with the undirected
graphs G∼, and it is not surprising that the structure learning
algorithms we derived can disregard edge directions.
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Chow-Liu Tree Algorithm

Further Readings

For TAN:

1. Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and
Decision Graphs. Springer, 2007. Chap. 8.

For learning a singly connected network (under certain assumptions) with
the Chow-Liu tree algorithm, see Pearl’s 1988 book.

An old review article discussing the ideas and steps involved in developing a
probabilistic expert system, using the example CHILD network:

2. David J. Spiegelhalter et al. Bayesian analysis in expert systems,
Statistical Science, Vol. 8, No. 3, pp. 219-283, 1993.

(It includes Bayesian inference, which we did not talk about.) You may also
find the related materials in the book by Cowell et al. 2007.

A recent book by Koller and Friedman, Probabilistic Graphical Models, 2009
has many materials on both approximate and exact inference algorithms.
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Chow-Liu Tree Algorithm

Derivation of Eqs. (1)-(2)

The likelihood and log likelihood functions are

L(P) =
nY

i=1

Y
v∈V

p
`
x i
v |x i

pa(v)

´
, `(P) =

nX
i=1

X
v∈V

ln p
`
x i
v |x i

pa(v)

´
.

The variables in the maximization of `(P) are the conditional distributions
p(xv |xpa(v)) of Xv for each configuration xpa(v) of v ’s parents, for all v ∈ V .

We next express `(P) in terms of these variables (colored in blue below)

By exchanging the order of summations in the expression of `(P),

`(P) =
X
v∈V

nX
i=1

ln p
`
x i
v |x i

pa(v)

´
=

X
v∈V

X
xpa(v)

X
xv

n(xv , xpa(v)) ln p
`
xv |xpa(v)

´
.

where n(xv , xpa(v)) is the counts for the configuration (xv , xpa(v)) in the data.

Under our model, there are no constraints between the component conditional
distributions we can choose. So the maximization problem maxP `(P) decomposes
into separate maximization problems, one for each v and its parent configuration
xpa(v):

max
p(·|xpa(v))

X
xv

n(xv , xpa(v)) · ln p
`
xv |xpa(v)

´
. (8)

(xpa(v) is fixed in the above subproblem.)
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Chow-Liu Tree Algorithm

Derivation of Eqs. (1)-(2)
The subproblem (8) is equivalent to

max
p(·|xpa(v))

X
xv

n(xv , xpa(v))

n(xpa(v))
· ln p

`
xv |xpa(v)

´
, (9)

where n(xpa(v)) =
P

xv
n(xv , xpa(v)), and it is the counts of the parent configuration

xpa(v) in the data.

By the information inequality (see Lec. 3), the maximum of (9) is attained at

p(xv |xpa(v)) =
n(xv , xpa(v))

n(xpa(v))
, ∀xv ,

which is the ML estimate pML(· | xpa(v)) given in Eq. (1).

The maximized log likelihood thus equals

`(PML) =
X
v∈V

X
xpa(v)

X
xv

n(xv , xpa(v)) · ln
n(xv , xpa(v))

n(xpa(v))

= n ·
X
v∈V

X
xpa(v)

X
xv

n(xv , xpa(v))

n
· ln

n(xv , xpa(v))

n(xpa(v))

= n ·
X
v∈V

X
xpa(v)

X
xv

q(xv , xpa(v)) · ln q(xv |xpa(v)) = n EQ

h X
v∈V

ln q(Xv |Xpa(v))
i
.

(q is the PMF of Q.) This verifies Eq. (2).
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