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About the Course

Overview

In reality many tasks require us to reason and act under uncertainty:

• disentangle systematic variation from random variation

• test hypothetical theories about unknown physical processes

• make decisions that will bear consequences in the unforeseen future,
based on fragmentary information

How do we access uncertainty, pool information together, and make
coherent reasoning and decisions?

Probabilistic modeling is a systematic approach to address these problems.
It has a wide range of application areas: e.g.,

• natural/humanity sciences, medicine, signal processing/analysis

and some more recent ones:

• bioinformatics

• natural language processing

• data mining

also artificial intelligence systems, which are traditionally logic-based:

• knowledge-based expert systems
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About the Course

Overview

Two key features of the probabilistic approach are:

• treating observed data as realizations of random variables

• using probability distributions to represent variability

Our focus will be on graphical models; they are

• models that impose on distributions “qualitative structures,” which can
facilitate the elicitation and interpretation of the models, as well as
efficient computation with them

Our goal: study some basic principles and techniques in probabilistic
graphical modeling
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About the Course

Course Syllabus

Syllabus:

• Introduction to graphical models (∼ 2 weeks)

• Markov models

• Markov random fields

• Simple Bayesian networks

• Introduction to Bayesian inference (∼ 1 week)

• Further study of graphical models (∼ 2 1
2

weeks)

• Markov properties in undirected and directed graphs

• Junction tree algorithms

• Case studies

Materials:

• Lecture slides and chapters from several books

Huizhen Yu (U.H.) Overview of the Course and some Basic Concepts Jan 19 5 / 33



About the Course

References

Some class materials will be from the chapters of:

Jensen, Finn V. and Nielsen, Thomas D. Bayesian Networks and Decision
Graphs. Springer, 2007.

Cowell, Robert G., Dawid, Philip A., Lauritzen, Steffen L., and Spiegelhalter,
David J. Probabilistic Networks and Expert Systems: Exact Computational
Methods for Bayesian Networks. Springer, 2007.

Davison, A. C. Statistical Models. Cambridge Univ. Press, 2003.

Remark: These books are quite advanced for our purpose, and we will not delve

deeply into them. But they are worth reading and also good for further self-study.

A lot of helpful materials can be found from the previous course website.
Besides, the following book offers a friendly guide to its subject:

Jensen, Finn V. An Introduction to Bayesian Networks. UCL Press, 1996.

Additional recommended readings will be mentioned at each class.
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About the Course

Course Information and Requirements

Exercises:

• Problem sets will be given weekly. They will be due near the end of the
following week, at the exercise group meeting. This means there will be
about 1 1

2
weeks to work on a problem set, and some overlap between

the start of a new problem set and the end of the previous one.

• You may hand in your answers at the exercise meetings or email them
to me before the meetings.

• Time and location for meetings: temporarily, Fri 14-16, B222
We decide a suitable meeting time in this class.

Grades: exercises 40%, final exam 60%

Office hours: Mon 13-14; or contact me for an appointment

A hands-on project-work course in the next period:

582637 Project in Probabilistic Models/Todennäköisyysmallien harjoitustyö

Other information can be found on the course webpage:

http://www.cs.helsinki.fi/group/cosco/Teaching/Probability/2010/
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Introduction: What is Probability What is Probability, Mathematically

Probability as Defined Mathematically

Probability theory is founded on set and measure theories.

Probability space (Ω,F , P)

• Ω – sample space
possible outcomes of an experiment
outcomes are mutually exclusive and collectively exhaustive

• F – σ-field (σ-algebra)
a collection of subsets of Ω, closed under set operations: complement,
union, and intersection;
important mathematically, but beyond our scope

• P – probability (measure)
a function that assigns mass – a number in [0, 1] – to every event,
which is a subset of Ω (and also in F);
P(A) – probability of event A: mass associated with the set A
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Introduction: What is Probability What is Probability, Mathematically

Examples of Sample Space

Simple examples

• Coin tossing, n times:

Ω = {a1a2 . . . an |ai ∈ {H, T}};

e.g., n = 2 : Ω = {HH, HT , TH, TT}
• Coin tossing, infinitely many times:

H: 1, T: 0; view “a1a2 . . .” as a binary point: 0.a1a2 . . .

Ω = [0, 1]

0 11/2

{ 1st toss is a Tail }

3/4

{ 1st & 2nd tosses are both Heads }

0.1 0.11 binary
decimal

• Tossing two coins infinitely many times: Ω = [0, 1]2

The abstract probability framework can handle almost arbitrarily complex
outcomes.

Huizhen Yu (U.H.) Overview of the Course and some Basic Concepts Jan 19 10 / 33



Introduction: What is Probability What is Probability, Mathematically

Axioms of Probability

Axioms

• Nonnegativity: P(A) ≥ 0 for all events A.

• Normalization: P(Ω) = 1.

• Additivity:
For any disjoint events A, B,

P(A ∪ B) = P(A) + P(B).

Countable additivity: for any countable collection of pairwise disjoint
events Ai , i = 1, 2, . . .,

P
“ [

i≥1

Ai

”
=

X
i≥1

P(Ai )

Additivity ensures consistency:
There are many ways to count the total mass P(A) associated with the set
A; at the end they all lead to the same number.

Huizhen Yu (U.H.) Overview of the Course and some Basic Concepts Jan 19 11 / 33



Introduction: What is Probability What is Probability, Mathematically

Probability Calculus

Conditional probability of A given B (definition):

P(A |B) =
P(A ∩ B)

P(B)
, ∀B with P(B) > 0

(undefined if P(B) = 0)

Some properties of P(A |B):

• Asymmetry: P(A ∩ B) = P(B ∩ A), but generally,

P(A |B) 6= P(B |A).

• Meaning: given that the outcome is in B, how likely the outcome is
also in A. E.g., if the number of outcomes is finite and all of them are
equally likely,

P(A |B) = |A ∩ B|/|B|.

• P(· |B) is also a probability on Ω (it concentrates on the “new
universe” B), and it defines the probability of any event A given B.

• Conditional probabilities are derived from P and hence determined by
P. Using the calculus, information is updated consistently with P.
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Introduction: What is Probability What is Probability, Mathematically

Bayes’ Theorem

Bayes’ theorem

P(A |B) =
P(B |A)P(A)

P(B)
, ∀A, B, with P(B) > 0.

• Follows from the definition of conditional probabilities:

P(A ∩ B) = P(B |A)P(A) = P(A |B)P(B)

• P(A): prior probability of A before observing evidence B

• P(A |B): posterior probability of A after observing evidence B

Why is this formula useful?

• The direction A → B can be more intuitive, and related probabilities
are more readily available: e.g.,
A = ‘having disease x ’ and B = ‘showing symptom y ;’
A = ‘word x is spoken’ and B = ‘sound signal y is detected.’

• Reasoning in the reverse direction, about A given B, can be
complicated and counterintuitive, even if the relation A → B is simple.
But the reverse reasoning is often what is needed in applications.
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Introduction: What is Probability What is Probability, Conceptually

Interpretations of Probability

The mathematical framework of probability is clean and general.
But how do we interpret the meanings of probabilities in real world?

This is a serious issue because how we interpret probability relates closely to
how we specify the numbers (probabilities) in the first place, reason about
and react to the numbers obtained from calculation.

Intense interests in and debates on this subject have continued till today.
(Two related articles are given as recommended readings.)

We take a glimpse at this issue in the next few slides. First, does it make
sense to say P(A) = 0.7 or 0.2 for the following A?

• A = {A patient recovers from H1N1 flu}
• A = {It will snow tomorrow}
• A = {It snowed this day last year}
• A = {There is life beyond earth}
• A = {The Suez canal is longer than the Panama canal}
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Introduction: What is Probability What is Probability, Conceptually

Interpretations of Probability

Two commonly used, different interpretations of probability:

• frequency-based, objective:
frequencies from repetitions of experiments (realizable or hypothetical)

• logic of partial belief, subjective:

Here A is a proposition and P(A) the degree of belief in A being true.

• We may say “I believe to the extent of P(A) that A is true,” but not “I
believe A is true to the extent of P(A).”

• Contrast with the objective interpretation: there, P(A) is the proportion
of times that A occurs to be true.

Notes:

• In practice both interpretations may be involved in the same
application, which complicates the overall picture even more.

• “Uncertainty” is a natural concept to use to interpret probability.
However, it faces the same interpretation issue when uncertainty needs
to be quantified.

In the preceding slide, which interpretation might be applied to P(A)?
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Introduction: What is Probability What is Probability, Conceptually

Logic vs. Probability as Partial Belief

Semantic differences between probability and “if-then” logical statements:

• It is natural to do bidirectional inferences with P(A |B) and P(B |A):

causes ↔ effects, evidence ↔ explanations.

• P(A |B) is our uncertainty about A given we know B but nothing else.
If we also know C , our uncertainty about A changes to P(A |B ∩ C).
Correlation between the sources of evidences is accounted for.

With logical statements, it is not easy to handle

• Bidirectional inferences:

• “If A then B with certainty x” does not entail that B being true makes
A more credible. Example: “Fire implies smoke.”

• Suppose “If A then B with certainty x” and “If C then B with certainty
y .” Finding B and A being true does not make C less credible – does
not explain away the cause C .

• Correlated evidences:

• From “If B then A with certainty x” and “If C then A with certainty y ,”
how do we deduce the certainty of A when both B and C are true?

• Exceptions: such as “Birds fly,” “Penguins can’t fly.”
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Introduction: What is Probability What is Probability, Conceptually

More about Interpretations of Probability
About subjective probability/partial belief:
• The purely subjective case is self-coherent (follows probability calculus), but

unscientific: anything goes.
Okay for personal use, but not much can be said beyond that.

• For applications with public impact, impersonal subjective probabilities need
to be carefully sought.

About probabilistic modeling:
People differ in opinions on how uncertainty should be assessed. Choosing a model

already involves subjectivity. The model can have no relation to the data

generating process – how do we then interpret the probabilities even if they are

frequencies-based? These are among the difficult conceptual issues.

About relation between two kinds of consistency:
• self-consistency in the way one reasons: rationality
• consistency with facts (not implied by the first)

Implications to us:

(i) A probabilistic approach does not guarantee our being correct. Self-critisicm
is always important: checking whether assumptions and their implications are
sound based on data.

(ii) A self-consistent reasoning method may not be “trouble-free” when
confronting the truth. (This can be conceptually more difficult to understand
when studying various statistical methods.)
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Notation and some Basic Notions Random Variables and Probability Distributions

Random Variables

Random variables are functions on the sample space Ω.

• They can take arbitrary values. They will be denoted by capital letters,
and their values lower-case letters.

Examples

• Discrete random variables

Ω

{ X = a }

{ X = b }

{ X = c }
a b c x

P(X = x)
 or, p (x)X

• Continuous random variables

Ω

{ x - h < X  < x + h } x

f(x)

P( x - h < X < x + h )

• Functions of random variables

e.g., the indicator function I (X ∈ A), f (X ), E [f (X , Y ) |Y ]

Remark: In practice we usually work with random variables and their distributions

directly, and we do not specify explicitly Ω, which we may not know actually, (for

instance, in scientific studies). It is also usual to construct Ω for the variables of

interest and expand Ω if we want to take more variables into consideration.
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Notation and some Basic Notions Random Variables and Probability Distributions

Some Concepts Associated with Random Variables
Let X , Y be discrete random variables on (Ω,F , P), with x ∈ SX , y ∈ SY .

• Joint distribution PXY : probability on SX × SY

PXY

`
(X , Y ) ∈ A

´
= P

`
(X , Y ) ∈ A

´
, A ⊂ SX × SY .

Probability mass function (PMF) pXY : SX × SY → [0, 1]

pXY (x , y) = P(X = x , Y = y), x ∈ SX , y ∈ SY .

• Marginal distribution PX and its PMF pX :

PX (X ∈ A) = P(X ∈ A), A ⊂ SX ; pX (x) = P(X = x), x ∈ SX .

• Relation between the joint and marginal

pX (x) =
X
y∈SY

pXY (x , y), x ∈ SX .

• Expectation: E [f (X )], where f is a real-valued function on SX .

Notes:
• For continuous random variables with PXY , PX having densities, we use

density functions in place of PMFs – both are referred to generally as
densities in some books.

• For general random variables, we either define densities in a general sense or
work with distributions. These are beyond our scope; we will mostly focus on
discrete random variables.
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Notation and some Basic Notions Random Variables and Probability Distributions

Some Concepts Associated with Random Variables

• Conditional probabilities of X given Y (defined as those for events):

P(X = x |Y = y) =
P(X = x , Y = y)

P(Y = y)
, if P(Y = y) > 0.

Conditional distributions PX |Y and conditional PMFs pX |Y :

PX |Y (X ∈ A |Y = y) = P(X ∈ A |Y = y), A ⊂ SX , y ∈ SY ;

pX |Y (x |y) = P(X = x |Y = y) = PX |Y (X = x |Y = y), x ∈ SX , y ∈ SY .

• Relation between pX |Y , pXY and pX , pY :

pXY (x , y) = pY (y)pX |Y (x |y), ∀x , y . (by def. of conditional probability)

pX (x) =
X
y∈SY

pY (y)pX |Y (x |y), ∀x . (marginalization)

(Define 0 · undefined value = 0 in the above.)

• Conditional expectation: E [f (X ) |Y = y ]

Notation:
• We will often identify Ω with the space of all possible values of random

variables of interest, so P will simply be the joint distribution.

• We will often omit the subscripts X , Y of p or P for simplicity, when the
context is clear from the arguments of p or P.
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Notation and some Basic Notions Independence and Conditional Independence

Independence/Conditional Independence of Events
Let A, B, C be events.

• A and B are independent if

P(A∩B) = P(A)P(B), equivalently, P(A |B) = P(A), if P(B) > 0.

This implies that Ac and Bc are independent:

P
`
Ac ∩ Bc

´
= P

`
(A ∪ B)c

´
= 1− P(A ∪ B) (axioms)

= 1−
“
P(A) + P(B)− P(A ∩ B)

”
(axioms)

= 1− P(A)− P(B) + P(A)P(B) (independence)

=
`
1− P(A)

´`
1− P(B)

´
= P(Ac )P(Bc ),

and also that A and Bc are independent.

• Meaning: knowing B or Bc (and nothing else) does not change our
uncertainty about A.

• A and B are conditionally independent given C , where P(C) > 0, if

P(A∩B |C) = P(A |C)P(B |C), equivalently, P(A |B∩C) = P(A |C).

• Meaning: if we already know C , knowing B or Bc (and nothing else)
does not change our uncertainty about A.
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Notation and some Basic Notions Independence and Conditional Independence

Independence of Random Variables

Independence of random variables

• X and Y are (marginally) independent, written as X ⊥ Y , if

P(X = x , Y = y) = P(X = x)P(Y = y), or p(x , y) = p(x)p(y), ∀x , y .

• Equivalent definition, but in an asymmetric form:

P(X = x |Y = y) = P(X = x), or p(x |y) = p(x), ∀ x , y with p(y) > 0.

• Meaning: knowing Y (and nothing else) does not change our
uncertainty about X (vice versa).

• Xi , i = 1, . . . , n, are mutually independent, if

P(X1 = x1, . . . , Xn = xn) =
nY

i=1

P(Xi = xi ), ∀xi , i = 1, . . . , n.

• Pairwise independence does not imply mutual independence.
Parity-checking example: Xi , i = 1, . . . , n − 1 are mutually independent with

xi ∈ {0, 1}; Xn =
“Pn−1

i=1 Xi

”
mod 2. Then any n − 1 variables of Xi s are

mutually independent, but together Xi s are not independent.
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Notation and some Basic Notions Independence and Conditional Independence

Conditional Independence of Random Variables

Conditional independence of random variables

• X and Y are conditionally independent given Z , written as X ⊥ Y |Z ,
if ∀x , y , z with P(Z = z) > 0,

P(X = x , Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z).

• Equivalent definition in an asymmetric form: ∀x , y , z with p(y , z) > 0,

P(X = x |Y = y , Z = z) = P(X = x |Z = z), or p(x |y , z) = p(x |z).

• Meaning: If we already know Z , knowing Y (and nothing else) does
not change our uncertainty about X (vice versa).

Notes:

• X ⊥ Y |C for an event C is analogously defined; it is weaker than
conditional independence between variables.

• Independence/conditional independence has more to do with the
form/“structure” than the numerical values of distributions.

• In practice, independence/conditional independence are often related to
the natural concept of “irrelevance;” and being able to identify
irrelevant factors helps efficient decision making.
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Notation and some Basic Notions Independence and Conditional Independence

Some Conventions to Simplify Expressions

When expressing X ⊥ Y |Z in terms of P or p, it is bothersome to write the
positivity conditions on the conditioning variables, such as “P(Z = z) > 0.”

We will adopt some conventions to omit writing these conditions:

• For discrete random variables, when we write

P(X = x , Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z), ∀x , y , z ;

P(X = x |Y = y , Z = z) = P(X = x |Z = z), ∀x , y , z ;

P(X |Y , Z) = P(X |Z);

or
p(x , y |z) = p(x |z) p(y |z), ∀x , y , z ;

p(x |y , z) = p(x |z), ∀x , y , z ,

we mean that equality holds whenever all the quantities involved are
well-defined under P.
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Notation and some Basic Notions Independence and Conditional Independence

Importance of Dependence/Independence Relations

Ignoring dependences can mislead us

• An example of Simpson’s paradox:

20-year survival and smoking status
for 1314 women; numbers refer to
dead/total (% dead)

Smokers Non-smokers
139/582 (24) 230/732 (31)

Conclusion: smoking is better for health (?)

Full data on smoking and survival:

Age Smokers Non-smokers
overall 139/582 (24) 230/732 (31)

18-24 2/55 (4) 1/62 (2)
25-34 3/124 (2) 5/157 (3)
35-44 14/109 (13) 7/121 (6)
45-54 17/130 (21) 12/78 (15)
55-64 51/115 (44) 40/121 (33)
65-74 29/36 (81) 101/129 (78)
75+ 13/13 (100) 64/64 (100)

Smoking? Age

Survive in 
20 years?

We interpret an edge ‘X → Y ’

loosely as “X has direct influence

on Y” for the time being.

• Another example:
association between a child’s reading ability and shoe size
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Notation and some Basic Notions Independence and Conditional Independence

Importance of Dependence/Independence Relations

The naive structureless probabilistic approach:

a look-up table for P(X1, X2, . . . , Xn) + probability calculus for inference

• Intractable computationally even for small n
For instance, with n = 100 and xi ∈ {0, 1}, the table size is 2100. To calculate

p(x1, . . . , x80 |x81, . . . , x100), we need to add up 280 numbers.

• Difficult to understand and interpret
dependence structures are buried in a table of numbers

• Difficult to specify P in the first place
for either experts, or automatic data-analysis programs (would require an

enormous amount of data)

Key dependence relations, such as cause-effect, direct interaction, are often

• what we are interested to discover

• qualitative building blocks of a modular model
easy to understand and manipulate computationally
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Notation and some Basic Notions Independence and Conditional Independence

Snapshots of Real Application Systems

A trouble-shooting system based on Bayesian network (network structure
can be specified before any quantitative modeling):
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Notation and some Basic Notions Independence and Conditional Independence

Snapshots of Real Application Systems

CHILD: a medical diagnosis system based on Bayesian network
(Spiegelhalter et al. Statistical Science, 8(3):219-283, 1993)

Network structure is elicited from experts before any quantitative modeling.
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Probabilistic Models and Graphical Models

What is a Graphical Model?
A model, often denoted by Θ, is a collection of probability distributions for
random variables of interest. It may not contain the true distribution of the
random variables.

• θ ∈ Θ refers to the parameters of a distribution or the distribution itself.

• The distributions in the model usually share some common features.

• Some people refer to an individual distribution θ ∈ Θ as a model.

In a graphical model:

• There is an associated graph whose vertices correspond to random
variables and edges represent “direct interactions” among variables.

• This graph is more than a pictorial representation: it “encodes”
conditional independence relations. (The encoding is by convention

different for different types of graphs: directed, undirected, and mixed, etc.)

• All distributions in the model obey the independence relations specified
by the graph.

With graphical models, modeling can be divided into two stages:

• qualitative modeling stage – specifying the graph

• quantitative modeling stage – specifying numerical attributes of the
model
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Recommended Further Readings

On meanings of probability:

1. Alan Hájek. Interpretations of probability, 2002.

2. Frank P. Ramsey. Truth and Probability, 1926.

You can find the articles online from the links on the course webpage.

For comparison between probability and logic:

3. Judea Pearl. Probabilistic Reasoning in Intelligent Systems, Morgan
Kaufmann, 1988. Chap. 1.

For a brief overview of probabilistic expert systems:

4. Robert G. Cowell et al. Probabilistic Networks and Expert Systems,
Springer, 2007. Chap. 2.

Huizhen Yu (U.H.) Overview of the Course and some Basic Concepts Jan 19 33 / 33


	About the Course
	Introduction: What is Probability
	What is Probability, Mathematically
	What is Probability, Conceptually

	Notation and some Basic Notions
	Random Variables and Probability Distributions
	Independence and Conditional Independence

	Probabilistic Models and Graphical Models
	

