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Maximum Likelihood Estimation Likelihood function

Definitions

Let y be the observed value of a discrete random variable Y .

Consider a model Θ with each θ ∈ Θ specifying a probability distribution of
Y . We denote this distribution by P(Y ; θ) and its PMF by p(y ; θ).

• Likelihood for θ based on y :

L(θ) = P(Y = y ; θ), θ ∈ Θ.

It is a function of θ for fixed y . (For fixed θ, L(θ) is a random variable.)

• Log likelihood: `(θ) = ln L(θ).

• To emphasize the depedence of the likelihood on data, it can help to
write L(θ; y) and `(θ; y).

• Likelihood is a natural basis for assessing the plaussibility of θ.
Maximum likelihood estimation:

max
θ∈Θ

`(θ; y) or max
θ∈Θ

L(θ; y).

The parameter θ̂ that maximizes the likelihood function is called the
maximum likelihood estimate of θ.
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Invariance Properties of Likelihood Function

Likelihood is invariant to one-one reparametrization of parameters:

• Suppose our model is parametrized by ψ and θ = θ(ψ) is a one-one
transformation of ψ. Then P(Y ;ψ) = P(Y ; θ(ψ)), so

L(ψ; y) = L(θ(ψ); y).

• This shows that we can choose a suitable parametrization for a
particular problem.

Likelihood is invariant to known one-one transformations of the data:
• Suppose Z is a known one-one transformation of Y .

• If Y is a discrete random variable, L(θ; y) = L(θ; z) certainly.
• If Y is a continuous random variable and Z = Z(Y ) is a differentiable

one-one transformation of Y , then the density of Z is

fZ (z; θ) = fY (y ; θ) |dy/dz|

where |dy/dz| is the determinant of the Jacobian matrix of the
transformation from Z to Y . So

`(θ; z) = `(θ; y) + some constant.

• This shows that in the continuous case, within a particular model, the
absolute value of the likelihood is irrelevant to inference about θ.
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Example I

Terminology: a random sample of size n refers to a collection of n
independent, identically distributed random variables.

Suppose we observe the values y = (y1, y2, . . . , yn) of a random sample of
size n. Our model is

Θ =
n

(θ1, . . . , θm)
˛̨̨ X

i

θi = 1, θi ≥ 0, ∀i
o
,

and P(Yk = i ; θ) = θi , i = 1, . . . ,m.

Then

L(θ; y) =
nY

k=1

p(yk ; θ) =
mY

i=1

θni
i ,

`(θ; y) =
nX

k=1

ln p(yk ; θ) =
mX

i=1

ni ln θi ,

where ni is the number of occurences of i in y .
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Example I

To maximize the likelihood, we solve maxθ∈Θ L(θ; y), or equivalently,

max
θ∈Θ

`(θ; y) = max
θ∈Θ

n mX
i=1

ni ln θi

o
. (1)

The solution is, (to be shown shortly),

θ̂i =
ni

n1 + n2 + · · ·+ nm
, i = 1, 2, . . . ,m.

I.e., the maximum likelihood estimate θ̂ coincides with the observed
frequencies of 1, 2, . . . ,m in y .

Maximization problems of the form (1) appear often in maximum likelihood

estimation. We show another example next, and we then prove the above

statement using the information inequality.
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Example II: Fitting a Markov Model

Suppose under model Θ, Y = (Y1,Y2, . . . ,Yn) is a homogeneous Markov
chain on S = {1, 2, . . . ,m}.

The parameter θ ∈ Θ consists of the initial distribution, denoted by µi , i ∈ S ,
and the set of transition probabilities, denoted by {θij , i ∈ S , j ∈ S}.

We observe Y = y = (y1, y2, . . . , yn). Then,

L(θ; y) = p(y1; θ)
nY

k=2

p(yk |yk−1; θ) = µy1

Y
i∈S

Y
j∈S

θ
nij

ij

where nij is the number of transitions from state i to j observed in the
sequence y . And

`(θ; y) = ln p(y1; θ) +
nX

k=2

ln p(yk |yk−1; θ)

= lnµy1 +
X
i∈S

X
j∈S

nij ln θij .
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Example II: Fitting a Markov Model

Let θi = (θi1, θi2, . . . , θim) denote the vector of transition probabilities from
state i , and let ∆ denote the space of θi :

∆ =
n

(z1, z2, . . . , zm)
˛̨̨ X

j∈S

zj = 1, zj ≥ 0, j ∈ S
o
.

Maximizing the log likelihood is equivalent to m separate maximization
problems:

max
θ∈Θ

`(θ; y) ⇔ max
θ1∈∆

max
θ2∈∆

· · · max
θm∈∆

n X
i∈S

X
j∈S

nij ln θij

o
=

X
i∈S

max
θi∈∆

n X
j∈S

nij ln θij

o
.

The solution θ̂i of each subproblem maxθi∈∆

n P
j∈S nij ln θij

o
is

θ̂ij =
nij

ni1 + ni2 + · · ·+ nim
, j ∈ S .

I.e., the maximum likelihood estimates θ̂i , i ∈ S coincide with the observed
frequencies of transitions in the sequence y .

Note that each subproblem has the same form as the problem in (1).
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Maximum Likelihood Estimation Information inequality

Information Inequality

Let p = (p1, p2, . . . , pm), q = (q1, q2, . . . , qm) be non-negative vectors in <m.
Then, X

i

qi ln pi ≤
X

i

qi ln qi +
X

i

pi −
X

i

qi , (2)

with equality if and only if (iff.) p = q. (We define 0 · (−∞) = 0 in the above.)

When p, q correspond to PMFs,
P

i pi =
P

i qi = 1,
and inequality (2) simplifies toX

i

qi ln pi ≤
X

i

qi ln qi (3)

with equality iff. p = q.

The difference between the right and left-hand sides of (3) is indeed the
Kullback-Leibler divergence between q and p:

KL(q, p) =
X

i

qi ln(qi/pi ).
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Information Inequality

Let X be a discrete random variable with distribution Q and PMF q.
Let p be the PMF of another probability distribution P on the space of X .
Let qi = q(i) = Q(X = i), pi = p(i) = P(X = i), ∀i .

• Entropy of X :

H(X ) = −
X

i

qi ln qi = EQ

ˆ
− ln q(X )

˜
• KL-divergence between q and p:

KL(q, p) =
X

i

qi ln(qi/pi ) = EQ

h
ln

“q(X )

p(X )

”i
.

(EQ [· · · ] denotes expectation over X with respect to Q.)

Inequality (3),
P

i qi ln pi ≤
P

i qi ln qi (“=” iff. p = q),
is identical to

KL(q, p) ≥ 0 and KL(q, p) = 0 iff. p = q.
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Derivation of Inequality (2)

Consider the function ln x on x > 0.

A first-order approximation of ln x at any x̄ > 0 always lies above ln x :

ln x ≤ ln x̄ +
1

x̄
(x − x̄), ∀ x , x̄ > 0, (4)

and equality holds iff. x = x̄ .

Multiplying both sides by x̄ , we have

x̄ ln x ≤ x̄ ln x̄ + x − x̄ , ∀ x , x̄ ≥ 0, (5)

with equality iff. x = x̄ . In the above we have also extended the inequality
to include the case x = 0 or x̄ = 0, and we define 0 · (−∞) = 0.

Applying (5) to bound qi ln pi with x̄ = qi , x = pi ,

qi ln pi ≤ (qi ln qi + pi − qi ) , ⇒
X

i

qi ln pi ≤
X

i

qi ln qi+
X

i

pi−
X

i

qi ,

and equality holds iff. p = q. This establishes the information inequality (2).
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Implications of Information Inequality

Let X ,Y be discrete random variables with joint distribution P.

• The mutual information between X and Y is defined as

I (X ; Y ) = E

»
ln

„
p(X ,Y )

p(X )p(Y )

«–
,

and equivalently,

I (X ; Y ) =
X
x,y

p(x , y) ln

„
p(x , y)

p(x)p(y)

«
.

• By the information inequality,

I (X ; Y ) ≥ 0, and I (X ; Y ) = 0 iff. X ⊥ Y .
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Implications of Information Inequality

Let X ,Y ,Z be discrete random variables with joint distribution P.

• The conditional mutual information between X and Y given Z is
defined as

I (X ; Y |Z) = E

»
ln

„
p(X ,Y |Z)

p(X |Z)p(Y |Z)

«–
,

and equivalently,

I (X ; Y |Z) =
X
x,y,z

p(x , y , z) ln

„
p(x , y |z)

p(x |z)p(y |z)

«

=
X

z

p(z)
X
x,y

p(x , y |z) ln

„
p(x , y |z)

p(x |z)p(y |z)

«
.

• By the information inequality,

I (X ; Y |Z) ≥ 0, and I (X ; Y |Z) = 0 iff. X ⊥ Y | Z .
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Implications of Information Inequality
for Maximum Likelihood Estimation

Setup for discussion:

• Let yn
1 = (y1, y2, . . . , yn) be the observed values of a random sample of

size n, Y1,Y2, . . . ,Yn. Assume that each Yi is distributed as Y0 and
that the true distribution is Q∗ with the PMF q∗.

• Let Qn be the empirical distribution of Y0, given by the observed
frequencies in the data yn

1 . Let qn denote the PMF.

• For our model Θ, let pθ denote the PMF of Y0 corresponding to θ, and
let θ̂n denote the maximum likelihood estimate based on yn

1 .

Let θ∗ correspond to the distribution in Θ that is closest to Q∗ in terms of
KL-divergence (assume θ∗ exists):

θ∗ ∈ arg min
θ∈Θ

KL
`
q∗, pθ

´
= arg min

θ∈Θ
EQ∗

ˆ
− ln p(Y0; θ)

˜
.

(The equality above follows from

KL
`
q∗, pθ

´
= EQ∗

h
ln

“ q∗(Y0)

p(Y0; θ)

”i
= EQ∗

ˆ
− ln p(Y0; θ)

˜
− H(Y0)

and the fact that the entropy term H(Y0) is a constant independent of θ.)
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˜
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KL
`
q∗, pθ

´
= EQ∗

h
ln
“ q∗(Y0)

p(Y0; θ)

”i
= EQ∗

ˆ
− ln p(Y0; θ)

˜
− H(Y0),

and the entropy term H(Y0) is a constant that does not depend on θ.
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Under mild conditions, as n → ∞,
θ̂n → θ∗, and

"(θ̂n; y
n
1 ) = n EQn

ˆ
ln p(Y0; θ̂n)

˜

≈ n EQ∗
ˆ
ln p(Y0; θ)

˜
+ o(n)

= −n KL
`
q∗, pθ

´
− nH(Y0) + o(n).

With sufficient data, one can always distinguish a fixed correct model from a
fixed wrong model Θ, (i.e., a model that does not contain the true
distribution):

EQ

ˆ
min
θ∈Θ

KL(q∗, pθ) > 0, KL(q∗, pθ) = EQ∗
ˆ

Suppose instead of maximizing the log likelihood, we wish to maximize

max
θ∈Θ

"(θ) + λKL(p0, pθ)
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Under mild conditions, as n →∞, Qn → Q∗,
θ̂n → θ∗, and

−`(θ̂n; y
n
1 ) = n EQn

ˆ
− ln p(Y0; θ̂n)

˜
≈ n EQ∗

ˆ
− ln p(Y0; θ̂n)

˜
+ o(n)

≈ n KL
`
q∗, pθ∗

´
+ nH(Y0) + o(n).

We can always distinguish between a fixed correct model Θ1 and a fixed
wrong model Θ2 with enough data, because

∃ θ ∈ Θ1, s.t. pθ = q∗, (def. of a correct model)

⇒ KL
`
q∗, pθ∗1

´
= 0;

6 ∃ θ ∈ Θ2, s.t. pθ = q∗, (def. of a mis-specified – wrong – model)

⇒ KL
`
q∗, pθ∗2

´
> 0.

(We assume θ∗2 exists in the above.)
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Maximum Likelihood Estimation Model Selection

Occam’s Razor – Principle of Parsimony
Occam’s razor:
• William of Ockham or Occam (?1285-1937/1349) is regarded as one of the

most important philosophers of his time.

• Occam’s razor refers to the principle of parsimony:
‘it is vain to do with more what can be done with fewer.’

• Apply the principle to model selection:
We favor simple models over complex ones if they fit data about equally well.
(But what does “about equally well” mean?)

Informal discussion:
• If models Θ1, Θ2, · · · are all correct, then minθ∈Θi

KL(q∗, pθ) = 0 for all Θi ,
so on this basis they are all indistinguishable from the true model. Following
the parsimony principle, we would prefer the simplest model.

• An observation from a different viewpoint: We have

KL(q∗, pθ∗ ) = min
θ∈Θ

KL(q∗, pθ) ≤ KL(q∗, pθ̂).

Adding more parameters to the model decreases KL(q∗, pθ∗ ). But with finite
samples, such decrease may be outweighed by the increase in KL(q∗, pθ̂).
This suggests that we may compare models based on

E
ˆ
KL(q∗, pθ̂)

˜
,

where the expectation is with respect to the true distribution of the random

sample that gives rise to θ̂.
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Two Likelihood Criteria for Model Selection

Suppose that Θ has d free parameters. Let θ̂ be the maximum likelihood
estimate of θ based on the observed values of a random sample of size n.

Akaike’s information criterion (AIC) and Bayes information criterion (BIC):

AIC = −2 `(θ̂) + 2d , BIC = −2 `(θ̂) + 2d ln n.

Model selection with AIC/BIC:
calculate the AIC/BIC scores for models Θ1,Θ2, . . .; select the model with
the minimal score (or consider several near-optimal models)

Notes:

• Both AIC and BIC can be viewed as crude approximations of the quantity
2n E

ˆ
KL(q∗, pθ̂)

˜
+ 2n c, where c is some constant.

• AIC is inconsistent in the sense that if both the true, simpler model and a
correct model are fitted, the probability of selecting the true model does not
approach 1 as n →∞.

• BIC is consistent in the above sense, but with finite samples it tends to
suggest a too parsimunous model and leads to underfit.

• Both criteria are used in practice beyond random samples.

• Model selection criteria continue to be an important research topic.
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Further Readings

For an overview of likelihood and model selection with likelihood criteria:

1. A. C. Davison. Statistical Models, Cambridge Univ. Press, 2003.
Chap. 4.1, 4.7.

Announcement:
The first three books in the reference list given in the first lecture are now in
the reading room of the Kumpula library (1st floor). Books there are
ordered alphabetically by authors’ names.
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