Outline

Markov Random Fields

Huizhen Yu

janey.yu@cs.helsinki.fi Dept. Computer Science, Univ. of Helsinki

Probabilistic Models, Spring, 2010

◆ロト ◆園 > ◆ 恵 > ◆ 恵 > り へ ○ Huizhen Yu (U.H.) Markov Random Fields

Markov Random Fields Definition and Two Theorems

Outline

Markov Random Fields

Definition and Two Theorems

Markov Random Fields

Definition and Two Theorems Ising Model and Other Examples Markov Chains Revisited

◆ロ > ◆母 > ◆臣 > ◆臣 > 臣 め < @</p> Huizhen Yu (U.H.) Markov Random Fields Jan 28 2 / 24

Markov Random Fields Definition and Two Theorems

From Markov Chains to Markov Random Fields

Markov chains are suitable models for time-series/sequence data. For spatial data, variables can no longer be placed on a line. What would be an analogous model and an analogous Markov property?

A natural generalization stems from the following conditional independence property of a Markov chain X_1, \ldots, X_n :

$$P(X_j = x_j | X_{-j} = x_{-j}) = P(X_j = x_j | X_{j-1} = x_{j-1}, X_{j+1} = x_{j+1}),$$
 (1)

where
$$X_{-i} = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$$
. (We proved this in slide 22, Lec. 2.)

Consider a collection of random variables $\{Y_{\nu}, \nu \in V\}$, where V consists of "sites" in some space.

To generalize property (1) for $Y = \{Y_v\}$, we introduce the notion of *neighbors* to site *v*:

neighbors of j in a Markov chain:

neighbors of v, in space (illustration):

A Markov Property Analogous to Eq. (1)

Notation:

- \mathcal{N}_{v} : the set of neighbors of v $Y_{A} = (Y_{v})_{v \in A}, \forall A \subseteq V$
- $Y_{\mathcal{N}_i} = (Y_v)_{v \in \mathcal{N}_i}, \forall j \in V$

Eq. (1) for a Markov chain:

$$P(X_j = x_j | X_{-j} = x_{-j}) = P(X_j = x_j | X_{j-1} = x_{j-1}, X_{j+1} = x_{j+1}).$$

Extension of the above property for $\{Y_v, v \in V\}$:

$$P(Y_i = y_i | Y_{-i} = y_{-i}) = P(Y_i = y_i | Y_{\mathcal{N}_i} = y_{\mathcal{N}_i}).$$
 (2)

• The generalized property is identical to

$$Y_j \perp Y_{V \setminus \mathcal{N}_i} | Y_{\mathcal{N}_i}$$
.

In other words, Y_j depends on the other variables only through the neighboring variables.

• Full conditional distributions vs. local characteristics

For Markov chains, transition probabilities determine P.

A natural question here is whether local characteristics determine P. Jan 28 5 / 24

Huizhen Yu (U.H.) Markov Random Fields Jan 28 5 / 24

Markov Random Fields Definition and Two Theorems

Markov Random Fields: Definition

P is called a *Markov random field* with respect to a neighborhood system \mathcal{N} (equivalently, G), if P satisfies the Markov property [Eq. (2)]:

$$P(Y_j = y_j | Y_{-j} = y_{-j}) = P(Y_j = y_j | Y_{N_i} = y_{N_i}), \quad \forall j \in V, \ \forall y.$$

This property will later be referred to as the local Markov property.

Question: P determines the conditional distributions, but

• is P also uniquely determined by its conditional distributions

$$P(Y_j | Y_{N_j}) = P(Y_j | Y_{-j}), j \in V?$$

Answer: generally, no; under a positivity condition, yes.

Positivity condition: for any y_1, \ldots, y_n

$$P(Y_i = y_i) > 0, \forall i = 1, ..., n \Rightarrow P(Y_1 = y_1, ..., Y_n = y_n) > 0.$$

In words, "if y_i 's can occur singly they can occur together."

◆□ > ◆□ > ◆ = > ◆ = > 9 < @ >

Neighborhood System and Undirected Graph

Call $\mathcal{N} = \{\mathcal{N}_i, j \in V\}$ a neighborhood system, if

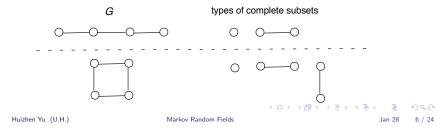
(i)
$$j \notin \mathcal{N}_j$$
, (ii) $i \in \mathcal{N}_j \iff j \in \mathcal{N}_i$.

Equivalence: a neighborhood system $\mathcal{N} \Leftrightarrow$ an undirected graph G = (V, E) with $E = \{(i, j) | i \in \mathcal{N}_i\}$.

Recall the definitions of *complete* subsets and *cliques* of *G*:

- Complete subset: a subset of vertices that are all pairwise connected in G
- Clique: a maximal complete subset of G

Illustrations of cliques and their non-empty subsets:



Markov Random Fields Definition and Two Theorems

Besag's Theorem

• Besag (1974): Under the positivity condition, P is uniquely determined by its full conditional distributions $P(Y_j | Y_{-j}), j \in V$.

Indeed, for any possible values y, y' of Y,

$$\frac{P(Y=y)}{P(Y=y')} = \prod_{i=1}^{n} \frac{p(y_i | y_1, \dots, y_{j-1}, y'_{j+1}, \dots, y'_n)}{p(y'_i | y_1, \dots, y_{j-1}, y'_{j+1}, \dots, y'_n)}.$$

(Proving it is an exercise.) So fixing y', we can determine P from the relation

$$P(Y = y) \propto \prod_{j=1}^{n} \frac{\rho(y_{j} | y_{1}, \dots, y_{j-1}, y'_{j+1}, \dots, y'_{n})}{\rho(y'_{j} | y_{1}, \dots, y_{j-1}, y'_{j+1}, \dots, y'_{n})}.$$

Markov Random Fields

Note: P here is general, not necessarily a Markov random field.

Huizhen Yu (U.H.)

Huizhen Yu (U.H.) Markov Random Fields Jan 28 7 /

Representation of P and Hammersley-Clifford Theorem

- Hammersley-Clifford (1971): (i) and (ii) are equivalent:
- (i) P satisfies the positivity condition and the Markov property w.r.t. \mathcal{N} .
- (ii) P has the form

$$P(Y = y) \propto \exp\{-\psi(y)\}$$
 where $\psi(y) = \sum_{C \in \mathcal{C}} \phi_C(y_C)$, (3)

 \mathcal{C} denotes the set of cliques of G and their subsets, and $\phi_{\mathcal{C}}$ is a real-valued function of v_C .

This is a powerful representation because it enables systems with very complex global behavior to be built from simple local components.

Terminology: *P* of the form (3) is called the Gibbs distribution; $\{\phi_C, C \in \mathcal{C}\}\$ is called a *potential*.

Note: the potential $\{\phi_C\}$ in the representation of P is not unique.

Huizhen Yu (U.H.) Markov Random Fields

Outline

Markov Random Fields

Huizhen Yu (U.H.)

Ising Model and Other Examples

Representation of P in the Hammersley-Clifford Theorem

It is easy to show "(ii) \Rightarrow (i)" in the Hammersley-Clifford Theorem.

Suppose $p(y) \propto exp\{-\sum_{C \in \mathcal{C}} \phi_C(y_C)\}$. Then for some constant α ,

$$p(y_j, y_{-j}) = \alpha \exp \left\{ -\sum_{C:C \in C, j \in C} \phi_C(y_C) \right\} \cdot \exp \left\{ -\sum_{C:C \in C, j \notin C} \phi_C(y_C) \right\}$$
$$= \exp \left\{ -\sum_{C:C \in C, j \in C} \phi_C(y_C) \right\} \cdot h(y_{-j})$$

for some function $h(y_{-i})$. Since $C \in \mathcal{C}$ is a complete subset of G,

$$j \in C \quad \Rightarrow \quad C \setminus \{j\} \subseteq \mathcal{N}_i.$$

Hence p has the form $p(y_i, y_{-i}) = g(y_i, y_{N_i}) h(y_{-i})$ for some functions h and g This implies (as shown in the first exercise)

$$p(y_j | y_{-j}) = p(y_j | y_{\mathcal{N}_i}).$$

Furthermore, as a function of y_i for fixed $y_{\mathcal{N}_i}$,

$$p(y_j | y_{\mathcal{N}_j}) \propto \exp \left\{ - \sum_{C: C \in \mathcal{C}, j \in C} \phi_C(y_C) \right\}.$$

Huizhen Yu (U.H.) Markov Random Fields

Ising Model

Sites: V $Y_i \in \{0,1\}, \forall i \in V$

G:

Ising model and its variants are used in

- statistical physics (phase transition)
- image analysis

A homogeneous Ising model:

$$\psi(y) = \sum_{j} b(y_j) + \sum_{i \sim j} c(y_i, y_j).$$

(Homogeneous in the sense that the potential functions b and c do not vary with sites.) The second summation is over all edges (cliques). We have

$$p(y) \propto \exp \left\{ -\sum_{j} b(y_j) - \sum_{i \sim j} c(y_i, y_j) \right\},$$

$$p(y_j | y_{\mathcal{N}_j}) \propto \exp \left\{ -b(y_j) - \sum_{i \in \mathcal{N}_j} c(y_i, y_j) \right\}.$$

Interpret 0 as white, 1 as black. We calculate next

Markov Random Fields

$$P(Y_i = \text{white} | Y_{-i} = y_{-i}) = p(0 | y_{N_i}).$$

Ising Model

From $p(y_j \,|\, y_{\mathcal{N}_i}) \propto \expig\{-b(y_j) - \sum_{i \in \mathcal{N}_i} c(y_i, y_j)ig\}$ we obtain

$$p(0|y_{-j}) = \frac{\exp\{-b(0) - \sum_{i \in \mathcal{N}_j} c(y_i, 0)\}}{\exp\{-b(0) - \sum_{i \in \mathcal{N}_j} c(y_i, 0)\} + \exp\{-b(1) - \sum_{i \in \mathcal{N}_j} c(y_i, 1)\}}$$
$$= \frac{1}{1 + \exp\{b(0) - b(1) + \sum_{i \in \mathcal{N}_j} (c(y_i, 0) - c(y_i, 1))\}}.$$

Let

 $n_0 = \#$ white neighbors, $n_1 = \#$ black neighbors $= |\mathcal{N}_i| - n_0$.

$$\sum_{i\in\mathcal{N}_j} (c(y_i,0)-c(y_i,1)) = n_0c(0,0) + n_1c(1,0) - n_0c(0,1) - n_1c(1,1)$$

$$= n_0 (c(0,0) + c(1,1) - c(0,1) - c(1,0)) + |\mathcal{N}_i| (c(1,0) - c(1,1)).$$

So we can write

$$p(0|y_{-j}) = p(0|y_{\mathcal{N}_j}) = \frac{1}{1 + \exp\{\beta + \gamma |\mathcal{N}_i| + \delta n_0\}}.$$

Interpretation of parameters: $\beta + \gamma |\mathcal{N}_i|$ controls the overall size of the probability; δ controls the degree of dependence of Y_i on its white neighbors: when $\delta = 0$, the color of site j is independent of the colors around it. When $\gamma \to -\infty$, $p(0|y_{-i})$ increases to 1.

Huizhen Yu (U.H.) Markov Random Fields

Markov Random Fields Markov Chains Revisited

Outline

Markov Random Fields

Markov Chains Revisited

4□ > 4□ > 4 = > 4 = > = 90

Other Application Examples of MRF

Mulecular structure simulation: e.g.,

- protein structural simulation
- protein folding finding "minimal-energy" configuration

Solving optimization problems: $\min_{x} \psi(x)$ where $\psi(x) = \sum_{C} \phi_{C}(x_{C})$

• We embed the objective $\psi(x)$ in $e^{-\frac{1}{T}\psi(x)}$ and sample from the density

$$\pi(x;T) \propto e^{-\frac{1}{T}\psi(x)}$$
.

As the "temperature" T decreases, the probability mass concentrates around the near-optimal points x:

$$\begin{array}{l} \forall \ x,x' \text{with} \ \psi(x')-\psi(x)>0, \\ \\ \frac{\pi(x;T)}{\pi(x';T)}=e^{\frac{1}{T}\left(\psi(x')-\psi(x)\right)}\to\infty, \ \ \text{as} \ T\to0. \end{array}$$

MRF with sampling methods provides a powerful approach to address large-scale problems of this kind in practice.

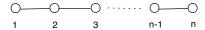
Huizhen Yu (U.H.) Markov Random Fields

Markov Random Fields Markov Chains Revisited

Markov Chains Revisited

Let $X_1, \ldots X_n$ be a Markov chain with joint distribution P.

• Recall that by Eq. (1), P is a Markov random field w.r.t. the graph



• The joint PMF p factorizes as

$$p(x) = p(x_1)p(x_2|x_1)p(x_3|x_2)\cdots p(x_n|x_{n-1}),$$

so, if p is strictly positive, p may be written as for some functions

$$p(x) \propto \exp\big\{-\sum_{i=1}^{n} \phi_{i}^{a}(x_{i}) - \sum_{i=1}^{n-1} \phi_{i}^{b}(x_{i}, x_{i+1})\big\}. \tag{4}$$

 Such expressions are not unique. For example, an alternative expression of p in terms of the marginals is

$$p(x) = \frac{p(x_1, x_2)p(x_2, x_3)\cdots p(x_{n-1}, x_n)}{p(x_2)p(x_3)\cdots p(x_{n-1})}.$$

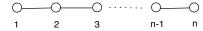
The potential functions in (4) may be chosen as $\phi_i^a = -\ln p(x_i)$, and $\phi_i^b = -\ln p(x_i, x_{i+1})$. Generally, ϕ_i^a, ϕ_i^b do not have to correspond to probability distributions. 4□ > 4酉 > 4 至 > 4 至 > 至 900

Huizhen Yu (U.H.) Markov Random Fields

Huizhen Yu (U.H.) Markov Random Fields

Markov Chains Revisited

Conversely, if P is a Markov random field w.r.t. the graph



is $\{X_n\}$ a Markov chain?

- Not necessarily, without the positivity condition.
- A counter-example:

$$X_1 = X_2$$
, $X_3 \perp X_2$, $X_4 = X_2 + X_3$, $X_5 = X_4$.

Then, X_j is independent of the other variables conditionally on the neighboring variables:

$$P(X_1|X_{-1}) = P(X_1|X_2); P(X_2|X_{-2}) = P(X_2|X_1);$$

 $P(X_4|X_{-4}) = P(X_4|X_5); P(X_5|X_{-5}) = P(X_5|X_4);$
 $P(X_3|X_{-3}) = P(X_3|X_2, X_4).$

But

$$P(X_4 | X_1, X_2, X_3) = P(X_4 | X_3, X_2).$$

So X_1,X_2,\ldots,X_5 is not a Markov chain.

Huizhen Yu (U.H.) Markov Random Fields Jan 28 17 /

Markov Properties on Undirected Graphs

Motivation

Observations from the preceding discussion on MRF and Markov chains:

- Different graphs can represent the same set of conditional independence relations for a distribution.
- Conditional independence seems to have similarity with separation between vertices in graphs.

Separation in an undirected graph G = (V, E):

• For $A, B, S \subseteq V$, S is said to *separate* A from B, if every path from some $\alpha \in A$ to some $\beta \in B$ intersects S.

In what follows we introduce more Markov properties on undirected graphs, placing the Markov property in MRF among them.

We mention some relations between these properties without proofs.

Outline

Markov Random Fields

Definition and Two Theorems

Ising Model and Other Examples

Markov Chains Revisited

Markov Properties on Undirected Graphs

 4 □ ▶ 4 ₱ ▶ 4 ₺ ▶ ₺ ₺ ▶ ₺ ♥ へ ○

 Huizhen Yu (U.H.)
 Markov Random Fields
 Jan 28
 18 / 24

Markov Properties on Undirected Graphs

Factorized Representation of Distribution and Global Markov Property

Notation and definitions:

- G = (V, E): an undirected graph
- ullet \mathcal{C} : the set of cliques of \mathcal{G}
- For $A, B, S \subseteq V$, $A \perp B \mid S$: S separates A from B in G
- $X = \{X_v, v \in V\}$: random variables associated with V
- X_A for $A \in V$: $\{X_v, v \in A\}$
- $X_A \perp X_B \mid X_S$: X_A and X_B are independent conditional on X_S

We name some properties for P(X): We say

• P factorizes according to G (F), if

$$p(x) = \prod_{C \in \mathcal{C}} \phi_C(x_C)$$
, for some nonnegative functions $\phi_C, C \in \mathcal{C}$.

• *P* obeys the *global Markov property* (G) with respect to *G*, if for any disjoint subsets *A*, *B*, *S* of *V*,

$$A \perp B \mid S \Rightarrow X_A \perp X_B \mid X_S$$
.

Note the direction of implication in (G).

Local Markov Property and Pairwise Markov Property

Notation: for $A \subseteq V$,

• boundary of A:

• *closure* of *A*:

$$\mathsf{bd}(A) = \cup_{v \in A} \ \mathcal{N}_v \setminus A$$

$$\mathsf{cl}(A) = A \cup \mathsf{bd}(A)$$

i.e., all neighbors of members of A that are not in A

i.e., A and its boundary

(Example: for $v \in V$, what is bd(v), cl(v)?)

The Markov property that defines MRF [Eq. (2)] can be rewritten in this new notation. We say

• P obeys the *local Markov property* (L) with respect to G, if for all $v \in V$.

$$X_{\nu} \perp X_{V \setminus \mathsf{cl}(\nu)} | X_{\mathsf{bd}(\nu)}.$$

Clearly, the neighbors of v separate v from the rest of the vertices. So (L) is weaker than (G). A Markov property weaker than (L) is:

 P obeys the pairwise Markov property (P) with respect to G, if for all pairs of non-adjacent vertices (v, v') in G,

$$X_v \perp X_{v'} \mid V \setminus \{v, v'\}.$$

Huizhen Yu (U.H.)

Markov Random Field

21 / 24

Markov Properties on Undirected Graphs

Positivity Condition and a Counter-Example

Without the positivity condition, $(G) \not\Rightarrow (F)$.

Counter-example due to Moussouris (1974) (see Lauritzen 1996):

Let X_1, X_2, X_3, X_4 be four binary random variables taking the follow values, each with equal probability of 1/8:

$$(0,0,0,0)$$
 $(1,0,0,0)$ $(1,1,0,0)$ $(1,1,1,0)$ $(0,0,0,1)$ $(0,0,1,1)$ $(0,1,1,1)$ $(1,1,1,1)$

As can be verified, P so defined satisfies the global Markov property w.r.t. the graph shown on the right. But P does not admit a factorized representation.

To see this, suppose it does. Then, from

$$0 \neq 1/8 = \rho(0,0,0,0) = \phi_{\{1,2\}}(0,0)\phi_{\{2,3\}}(0,0)\phi_{\{3,4\}}(0,0)\phi_{\{4,1\}}(0,0),$$

$$0 = \rho(0,0,1,0) = \phi_{\{1,2\}}(0,0)\phi_{\{2,3\}}(0,1)\phi_{\{3,4\}}(1,0)\phi_{\{4,1\}}(0,0),$$

$$0 \neq 1/8 = \rho(0,0,1,1) = \phi_{\{1,2\}}(0,0)\phi_{\{2,3\}}(0,1)\phi_{\{3,4\}}(1,1)\phi_{\{4,1\}}(1,0),$$

we must have

$$\phi_{\{2,3\}}(0,1) \neq 0, \quad \phi_{\{3,4\}}(1,0) = 0.$$

But

$$0 \neq 1/8 = p(1,1,1,0) = \phi_{\{1,2\}}(1,1)\phi_{\{2,3\}}(1,1)\phi_{\{3,4\}}(1,0)\phi_{\{4,1\}}(0,1),$$

contradiction.

Markov Random Fields

Relations between Markov Properties on Undirected Graphs

 $\textbf{Fact} \colon \quad (\mathsf{F}) \quad \Rightarrow \quad (\mathsf{G}) \quad \Rightarrow \quad (\mathsf{L}) \quad \Rightarrow \quad (\mathsf{P}).$

- (F) P factorizes according to G.
- (G) For any disjoint subsets A, B, S of V, $A \perp B \mid S \Rightarrow X_A \perp X_B \mid X_S$.
- (L) For all $v \in V$, $X_v \perp X_{V \setminus cl(v)} | X_{bd(v)}$.
- (P) For all pairs of non-adjacent vertices (v, v') in G, $X_v \perp X_{v'} \mid V \setminus \{v, v'\}$.

Implication:

$$\mathcal{M}_{\mathsf{F}}(\mathsf{G}) \subseteq \mathcal{M}_{\mathsf{G}}(\mathsf{G}) \subseteq \mathcal{M}_{\mathsf{L}}(\mathsf{G}) \subseteq \mathcal{M}_{\mathsf{P}}(\mathsf{G})$$

where $\mathcal{M}_*(G)$ denotes the set of P satisfying the property indicated by * with respect to the graph G. (All inclusions are strict generally.)

- The above fact follows from the properties of conditional independence. (By a conclusion in the 1st exercise, (F) \Rightarrow (L), (F) \Rightarrow (P) are immediate. We verify the fact entirely at another time.)
- The version of Hammersley-Clifford theorem shown earlier establishes
 (L) ⇔ (F) under the positivity condition. (You can find a proof in
 Davison's book.) There is another version for (P) ⇔ (F) under the
 same condition (see *Graphical Models* by Lauritzen, 1996).

 4 □ > 4 □ > 4 □ > 4 ₹ > ₹ ₹ > ₹ ₹
 ₹ ₹ 2 > 2
 2
 24

 Huizhen Yu (U.H.)
 Markov Random Fields
 Jan 28
 22 / 24

Markov Properties on Undirected Graphs

Further Readings

About MRF:

 A. C. Davison. Statistical Models, Cambridge Univ. Press, 2003. Chap. 6.2.

About Markov properties on undirected graphs:

2. Robert G. Cowell et al. *Probabilistic Networks and Expert Systems*, Springer, 2007. Chap. 5.1, 5.2.

Markov Random Fields