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Markov Random Fields Definition and Two Theorems

From Markov Chains to Markov Random Fields

Markov chains are suitable models for time-series/sequence data. For spatial
data, variables can no longer be placed on a line. What would be an
analogous model and an analogous Markov property?

A natural generalization stems from the following conditional independence
property of a Markov chain X1, . . . ,Xn:

P(Xj = xj |X−j = x−j) = P(Xj = xj |Xj−1 = xj−1,Xj+1 = xj+1), (1)

where X−j = (X1, . . . ,Xj−1,Xj+1, . . . ,Xn). (We proved this in slide 22, Lec. 2.)

Consider a collection of random variables {Yv , v ∈ V }, where V consists of
“sites” in some space.

To generalize property (1) for Y = {Yv} , we introduce the notion of
neighbors to site v :

j j+1j-1
v

neighbors of j in 
a Markov chain:

neighbors of v, 
in space 
(illustration):
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Markov Random Fields Definition and Two Theorems

A Markov Property Analogous to Eq. (1)
Notation:

• Nv : the set of neighbors of v

• YNj = (Yv )v∈Nj , ∀j ∈ V

• YA = (Yv )v∈A, ∀A ⊆ V

Eq. (1) for a Markov chain:

P(Xj = xj |X−j = x−j) = P(Xj = xj |Xj−1 = xj−1,Xj+1 = xj+1).

Extension of the above property for {Yv , v ∈ V }:

P(Yj = yj |Y−j = y−j) = P(Yj = yj |YNj = yNj ). (2)

• The generalized property is identical to

Yj ⊥ YV\Nj
|YNj .

In other words, Yj depends on the other variables only through the
neighboring variables.

• Full conditional distributions vs. local characteristics

For Markov chains, transition probabilities determine P.
A natural question here is whether local characteristics determine P.
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Markov Random Fields Definition and Two Theorems

Neighborhood System and Undirected Graph

Call N = {Nj , j ∈ V } a neighborhood system, if

(i) j 6∈ Nj , (ii) i ∈ Nj ⇔ j ∈ Ni .

Equivalence: a neighborhood system N ⇔ an undirected graph G = (V ,E)

with E = {(i , j) | i ∈ Nj}.

Recall the definitions of complete subsets and cliques of G :

• Complete subset: a subset of
vertices that are all pairwise
connected in G

• Clique: a maximal complete
subset of G

Illustrations of cliques and their non-empty subsets:

G types of complete subsets
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Markov Random Fields Definition and Two Theorems

Markov Random Fields: Definition

P is called a Markov random field with respect to a neighborhood system N
(equivalently, G), if P satisfies the Markov property [Eq. (2)]:

P(Yj = yj |Y−j = y−j) = P(Yj = yj |YNj = yNj ), ∀j ∈ V , ∀y .

This property will later be referred to as the local Markov property.

Question: P determines the conditional distributions, but

• is P also uniquely determined by its conditional distributions

P(Yj |YNj ) = P(Yj |Y−j), j ∈ V ?

Answer: generally, no; under a positivity condition, yes.

Positivity condition: for any y1, . . . , yn,

P(Yj = yj) > 0, ∀j = 1, . . . , n ⇒ P(Y1 = y1, . . . ,Yn = yn) > 0.

In words, “if yj ’s can occur singly they can occur together.”
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Markov Random Fields Definition and Two Theorems

Besag’s Theorem

• Besag (1974): Under the positivity condition, P is uniquely determined
by its full conditional distributions P(Yj |Y−j), j ∈ V .

Indeed, for any possible values y , y ′ of Y ,

P(Y = y)

P(Y = y ′)
=

nY
j=1

p(yj |y1, . . . , yj−1, y
′
j+1, . . . , y

′
n)

p(y ′j |y1, . . . , yj−1, y ′j+1, . . . , y
′
n)
.

(Proving it is an exercise.) So fixing y ′, we can determine P from the
relation

P(Y = y) ∝
nY

j=1

p(yj |y1, . . . , yj−1, y
′
j+1, . . . , y

′
n)

p(y ′j |y1, . . . , yj−1, y ′j+1, . . . , y
′
n)
.

Note: P here is general, not necessarily a Markov random field.
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Markov Random Fields Definition and Two Theorems

Representation of P and Hammersley-Clifford Theorem

• Hammersley-Clifford (1971): (i) and (ii) are equivalent:

(i) P satisfies the positivity condition and the Markov property w.r.t. N .

(ii) P has the form

P(Y = y) ∝ exp
˘
− ψ(y)

¯
where ψ(y) =

X
C∈C

φC (yC ), (3)

C denotes the set of cliques of G and their subsets, and φC is a
real-valued function of yC .

This is a powerful representation because it enables systems with very
complex global behavior to be built from simple local components.

Terminology: P of the form (3) is called the Gibbs distribution;
{φC ,C ∈ C} is called a potential.

Note: the potential {φC} in the representation of P is not unique.
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Markov Random Fields Definition and Two Theorems

Representation of P in the Hammersley-Clifford Theorem

It is easy to show “(ii) ⇒ (i)” in the Hammersley-Clifford Theorem.

Suppose p(y) ∝ exp{−
P

C∈C φC (yC )}. Then for some constant α,

p(yj , y−j ) = α exp
˘
−

X
C :C∈C,j∈C

φC (yC )
¯
· exp

˘
−

X
C :C∈C,j 6∈C

φC (yC )
¯

= exp
˘
−

X
C :C∈C,j∈C

φC (yC )
¯
· h(y−j )

for some function h(y−j ). Since C ∈ C is a complete subset of G ,

j ∈ C ⇒ C \ {j} ⊆ Nj .

Hence p has the form p(yj , y−j ) = g(yj , yNj
) h(y−j ) for some functions h and g .

This implies (as shown in the first exercise)

p(yj |y−j ) = p(yj |yNj
).

Furthermore, as a function of yj for fixed yNj
,

p(yj |yNj
) ∝ exp

˘
−

X
C :C∈C,j∈C

φC (yC )
¯
.
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Markov Random Fields Ising Model and Other Examples

Ising Model

G :

Sites: V
Yj ∈ {0, 1}, ∀j ∈ V

Ising model and its vari-
ants are used in
• statistical physics

(phase transition)

• image analysis

• A homogeneous Ising model:

ψ(y) =
X

j

b(yj) +
X
i∼j

c(yi , yj).

(Homogeneous in the sense that the
potential functions b and c do not vary
with sites.) The second summation is over
all edges (cliques). We have

p(y) ∝ exp
˘
−

X
j

b(yj)−
X
i∼j

c(yi , yj)
¯
,

p(yj |yNj ) ∝ exp
˘
− b(yj)−

X
i∈Nj

c(yi , yj)
¯
.

Interpret 0 as white, 1 as black.
We calculate next

P
`
Yj = white |Y−j = y−j

´
= p(0 |yNj ).
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Markov Random Fields Ising Model and Other Examples

Ising Model

From p(yj |yNj
) ∝ exp

˘
− b(yj )−

P
i∈Nj

c(yi , yj )
¯

we obtain

p(0 |y−j ) =
exp

˘
− b(0)−

P
i∈Nj

c(yi , 0)
¯

exp
˘
− b(0)−

P
i∈Nj

c(yi , 0)
¯

+ exp
˘
− b(1)−

P
i∈Nj

c(yi , 1)
¯

=
1

1 + exp
˘
b(0)− b(1) +

P
i∈Nj

`
c(yi , 0)− c(yi , 1)

´¯ .

Let
n0 = # white neighbors, n1 = # black neighbors = |Nj | − n0.X

i∈Nj

`
c(yi , 0)− c(yi , 1)

´
= n0c(0, 0) + n1c(1, 0)− n0c(0, 1)− n1c(1, 1)

= n0

`
c(0, 0) + c(1, 1)− c(0, 1)− c(1, 0)

´
+ |Nj |

`
c(1, 0)− c(1, 1)

´
.

So we can write

p(0 |y−j ) = p(0 |yNj
) =

1

1 + exp
˘
β + γ|Nj |+ δn0

¯ .

Interpretation of parameters: β + γ|Nj | controls the overall size of the probability;

δ controls the degree of dependence of Yj on its white neighbors: when δ = 0, the

color of site j is independent of the colors around it. When γ → −∞, p(0 |y−j )

increases to 1.
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Markov Random Fields Ising Model and Other Examples

Other Application Examples of MRF

Mulecular structure simulation: e.g.,

• protein structural simulation

• protein folding – finding “minimal-energy” configuration

Solving optimization problems: minx ψ(x) where ψ(x) =
P

C φC (xc)

• We embed the objective ψ(x) in e−
1
T
ψ(x) and sample from the density

π(x ; T ) ∝ e−
1
T
ψ(x).

As the “temperature” T decreases, the probability mass concentrates
around the near-optimal points x :

∀ x , x ′with ψ(x ′)− ψ(x) > 0,

π(x ; T )

π(x ′; T )
= e

1
T

`
ψ(x′)−ψ(x)

´
→∞, as T → 0.

MRF with sampling methods provides a powerful approach to address
large-scale problems of this kind in practice.
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Markov Random Fields Markov Chains Revisited

Markov Chains Revisited
Let X1, . . .Xn be a Markov chain with joint distribution P.

• Recall that by Eq. (1), P is a Markov random field w.r.t. the graph

nn-11 2 3

• The joint PMF p factorizes as

p(x) = p(x1)p(x2 |x1)p(x3 |x2) · · · p(xn |xn−1),

so, if p is strictly positive, p may be written as for some functions
φa

i , φ
b
i ,

p(x) ∝ exp
˘
−

nX
i=1

φa
i (xi ) −

n−1X
i=1

φb
i (xi , xi+1)

¯
. (4)

• Such expressions are not unique. For example, an alternative expression
of p in terms of the marginals is

p(x) =
p(x1, x2)p(x2, x3) · · · p(xn−1, xn)

p(x2)p(x3) · · · p(xn−1)
.

The potential functions in (4) may be chosen as φa
i = − ln p(xi ), and

φb
i = − ln p(xi , xi+1). Generally, φa

i , φ
b
i do not have to correspond to

probability distributions.
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Markov Random Fields Markov Chains Revisited

Markov Chains Revisited
Conversely, if P is a Markov random field w.r.t. the graph

nn-11 2 3

is {Xn} a Markov chain?

• Not necessarily, without the positivity condition.

• A counter-example:

X1 = X2, X3 ⊥ X2, X4 = X2 + X3, X5 = X4.

Then, Xj is independent of the other variables conditionally on the
neighboring variables:

P(X1 |X−1) = P(X1 |X2); P(X2 |X−2) = P(X2 |X1);

P(X4 |X−4) = P(X4 |X5); P(X5 |X−5) = P(X5 |X4);

P(X3 |X−3) = P(X3 |X2,X4).

But
P(X4 |X1,X2,X3) = P(X4 |X3,X2).

So X1,X2, . . . ,X5 is not a Markov chain.
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Markov Properties on Undirected Graphs

Motivation

Observations from the preceding discussion on MRF and Markov chains:

• Different graphs can represent the same set of conditional
independence relations for a distribution.

• Conditional independence seems to have similarity with
separation between vertices in graphs.

Separation in an undirected graph G = (V ,E):
• For A,B, S ⊆ V , S is said to separate A from B, if every path from

some α ∈ A to some β ∈ B intersects S .

In what follows we introduce more Markov properties on undirected graphs,
placing the Markov property in MRF among them.

We mention some relations between these properties without proofs.
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Markov Properties on Undirected Graphs

Factorized Representation of Distribution and Global Markov Property

Notation and definitions:

• G = (V ,E): an undirected
graph

• C: the set of cliques of G

• For A,B, S ⊆ V , A ⊥ B |S :
S separates A from B in G

• X = {Xv , v ∈ V }: random
variables associated with V

• XA for A ∈ V : {Xv , v ∈ A}
• XA ⊥ XB |XS : XA and XB are

independent conditional on XS

We name some properties for P(X ): We say

• P factorizes according to G (F), if

p(x) =
Y
C∈C

φC (xC ), for some nonnegative functions φC ,C ∈ C.

• P obeys the global Markov property (G) with respect to G , if for any
disjoint subsets A,B, S of V ,

A ⊥ B |S ⇒ XA ⊥ XB |XS .

Note the direction of implication in (G).
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Markov Properties on Undirected Graphs

Local Markov Property and Pairwise Markov Property
Notation: for A ⊆ V ,

• boundary of A:

bd(A) = ∪v∈A Nv \ A

i.e., all neighbors of members of A
that are not in A

• closure of A:

cl(A) = A ∪ bd(A)

i.e., A and its boundary

(Example: for v ∈ V , what is bd(v), cl(v)?)

The Markov property that defines MRF [Eq. (2)] can be rewritten in this
new notation. We say

• P obeys the local Markov property (L) with respect to G , if for all
v ∈ V ,

Xv ⊥ XV\cl(v) |Xbd(v).

Clearly, the neighbors of v separate v from the rest of the vertices. So (L) is
weaker than (G). A Markov property weaker than (L) is:

• P obeys the pairwise Markov property (P) with respect to G , if for all
pairs of non-adjacent vertices (v , v ′) in G ,

Xv ⊥ Xv′ |V \ {v , v ′}.
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Markov Properties on Undirected Graphs

Relations between Markov Properties on Undirected Graphs
Fact: (F) ⇒ (G) ⇒ (L) ⇒ (P).

(F) P factorizes according to G .

(G) For any disjoint subsets A, B, S of V , A ⊥ B |S ⇒ XA ⊥ XB |XS .

(L) For all v ∈ V , Xv ⊥ XV\cl(v) |Xbd(v).

(P) For all pairs of non-adjacent vertices (v , v ′) in G , Xv ⊥ Xv′ |V \ {v , v ′}.

Implication:

MF(G) ⊆ MG(G) ⊆ ML(G) ⊆ MP(G)

where M∗(G) denotes the set of P satisfying the property indicated by *
with respect to the graph G . (All inclusions are strict generally.)

• The above fact follows from the properties of conditional independence.
(By a conclusion in the 1st exercise, (F) ⇒ (L), (F) ⇒ (P) are immediate.

We verify the fact entirely at another time.)

• The version of Hammersley-Clifford theorem shown earlier establishes
(L) ⇔ (F) under the positivity condition. (You can find a proof in
Davison’s book.) There is another version for (P) ⇔ (F) under the
same condition (see Graphical Models by Lauritzen, 1996).
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Markov Properties on Undirected Graphs

Positivity Condition and a Counter-Example

Without the positivity condition, (G) 6⇒ (F).

Counter-example due to Moussouris (1974) (see Lauritzen 1996):

Let X1, X2, X3, X4 be four binary random variables taking the follow values, each
with equal probability of 1/8:

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)
(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

As can be verified, P so defined satisfies the global Markov
property w.r.t. the graph shown on the right. But P does not
admit a factorized representation.

1 2

34

To see this, suppose it does. Then, from

0 6= 1/8 = p(0, 0, 0, 0) = φ{1,2}(0, 0)φ{2,3}(0, 0)φ{3,4}(0, 0)φ{4,1}(0, 0),

0 = p(0, 0, 1, 0) = φ{1,2}(0, 0)φ{2,3}(0, 1)φ{3,4}(1, 0)φ{4,1}(0, 0),

0 6= 1/8 = p(0, 0, 1, 1) = φ{1,2}(0, 0)φ{2,3}(0, 1)φ{3,4}(1, 1)φ{4,1}(1, 0),

we must have
φ{2,3}(0, 1) 6= 0, φ{3,4}(1, 0) = 0.

But

0 6= 1/8 = p(1, 1, 1, 0) = φ{1,2}(1, 1)φ{2,3}(1, 1)φ{3,4}(1, 0)φ{4,1}(0, 1),

contradiction.
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Markov Properties on Undirected Graphs

Further Readings

About MRF:

1. A. C. Davison. Statistical Models, Cambridge Univ. Press, 2003.
Chap. 6.2.

About Markov properties on undirected graphs:

2. Robert G. Cowell et al. Probabilistic Networks and Expert Systems,
Springer, 2007. Chap. 5.1, 5.2.
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