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Factorization and Markov Properties on Undirected Graphs Relations between the Properties
Notation

For an undirected graph G = (V, E),

e (: the set of cliques of G e X ={X,,v € V}: random

e neighbors of v: A, variables associated with V/

e For A C V, boundary of A: ® Xafor Ac Vi {Xy,veA}
bd(A):UveA NV\A, o XL Xg|Xs: Xa and Xp are
closure of A: cl(A) = AU bd(A) independent conditional on Xs

e For A,B,SCV,ALlB|S:
S separates A from B in G

lllustration:

G:
No={b,c,d}
bd({a, b}) = {c,d}, cl({a,b}) ={a,b,c,d}
© ©

C= {{a, b,d},{a,c,d},{d, e, f}, {d,g}} e
{a,b,c} L {e,f}|{d}

©
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Factorization and Markov Properties on Undirected Graphs Relations between the Properties

Markov Properties on Undirected Graphs
Fact: (F) = (G) = (L) = (P).

(F) P factorizes according to G: p(x) = [[cce clxc)-

(G) For any disjoint subsets A,B,S of V, AL B|S = Xal Xg|Xs.
(L) For all v € V, X, L Xv\d(v) |de(v)'
(P)

P) For all pairs of non-adjacent vertices (v,v’) in G, X, L X,/|V\ {v,v'}.

Illustration:

(F) 1 p(x) = d1(Xa, Xby Xd)$2(Xas Xc» Xa ) P3(Xd s Xes X ) ba(Xd, Xg)
(This is the most general form of p that satisfies (F).)

G
o (G): Xpapy L Xieg} |1 Xas  Xiegy L X(ory | X(aays etc.
(L) Xa L Xiergy [ Xipedy, XL XiabererylXa, etc
(P): Xo L XelX(pedery XeLXolXiaderg) etc.
© 0
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Factorization and Markov Properties on Undirected Graphs Relations between the Properties

Usefulness of the Graphical Representation

The fact “(F) = (G)" is extremely useful:
e Read off conditional independence relations from the graph

e Create structures among variables to streamline computation
e Provide the machinery we need to study directed graphical models

(Bayesian networks)

A few practices before we continue:
According to which graph, the following distribution factorizes?

o p(x1, X2, X3, Xa, X5, X6) = P1(x1, X2, X3, Xa ) p2(X3, Xa, X5)
o p(x1, X2, X3, Xa, X5, X6) = P1(x1, X2, x3)P2(x1, Xa ) P3(x2, X3, Xa) Pa (X3, Xa, X5)

e The distribution of a 2nd-order Markov chain
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Factorization and Markov Properties on Undirected Graphs Relations between the Properties

Answers to Previous Questions

Graph G for the first two questions:
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Factorization and Markov Properties on Undirected Graphs Relations between the Properties

Multivariate Gaussian Random Variables

The conclusion (F) = (G) = (L) = (P) extends to rather general random
variables. In particular, they hold for continuous random variables with positive and
continuous densities, in which case (P) = (F) also holds.

Consider a non-degenerate multivariate Gaussian random variable
X =(Xt,..., X)) ~ N(u, X).

Its density function is

fx) = W“P{ - %(X —p) T (x =)}
So f(x) o< exp { — 9(x)}, where

1 Te— 1 . _
P(x) = E(X—,U,) Y ' (x—p)=a+bx+ EZA,;X,—XJ-, with A =31
i
and a, b being some constants. This shows:
e The inverse covariance matrix ¥ reveals the graph G according to
which f(x) factorizes, and from which we can read off the conditional

independence relations among Xi, ..., X,. (The structure of X shows
marginal independence relations.)
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Factorization and Markov Properties on Undirected Graphs Relations between the Properties

Multivariate Gaussian Random Variables

Example: n =25,

5 -1 -3 2 -1 1 05 05 0 O
-1 5 -3 2 -1 L o5 1 05 0 o0
y=(-3 -3 9 -6 3|, ¥'==21]05 05 1 05 O
2 2 -6 8 -4 310 o0 05 1 05
-1 -1 3 -4 5 0 0 0 05 1

®
Graph G:
® @

Remark:

o Recall that for estimating the parameter of a model, we can choose a
parametrization suitable for the problem at hand. In graphical Gaussian
modeling, some elements of ¥ 1 are constrained to be zeros, so (u, X 7!) is a
more convenient parametrization than (u, X).
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Factorization and Markov Properties on Undirected Graphs Relations between the Properties

Does G capture all independence relations?

Generally, G cannot.

e A simple counterexample:
X,Y,Z are pairwise independent but not mutually independent.

Then P(X, Y, Z) factorizes only according to the fully connected graph

So G does not capture the marginal independence.

e Directed graphical models/Bayesian networks (to be introduced in the
next lecture) are more expressive from this perspective.
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Factorization and Markov Properties on Undirected Graphs  Verifying the Relations

Verify (G) = (L) = (P)
(G) = (L): evident, because {v} L V \ cl({v}) | bd({v}).
(L) = (P), ie, X, L XV\cI({v}) |XNV = X, L X, |XV\{v,v’} for
non-adjancent pairs (v, v'):
We use the fact
XL(Y,W)|Z = XL1vyY[(Zw).

To see this,

e Intuitive argument: if given Z, knowing further the values of (Y, W) will not
change our uncertainty about X, then given both Z and W, knowing further
the value of Y will not change our uncertainty about X.

e Formal argument: as shown in the first exercise,
p(x,y,w,z) = a(x, z)b(y,w,z) & X L(Y,W)|Z
= p(x,y,w,z)=c(x,w,2)d(y,w,z) & X LY[(Z,W)

where a, b, ¢, d are some functions.

“(L) = (P)" then follows by taking

X=X Y =X, Z=Xn W=X0\ (hua(in))

and noticing for a non-adjacent pair (v, v'),

v\ ({v'} Ucl({v})) UN, = V\{v,V'}, so (Z,W) =X\ (v}
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Factorization and Markov Properties on Undirected Graphs  Verifying the Relations

Verify (F) = (G)
(F) = (G),ie., p(x) =[Icec oc(xc) = Xa L Xg|Xs, for all disjoint
subsets A, B,S C V such that A L B|S.
For any such subset A, B, S, we show that the marginal PMF of X4, Xg, Xs satisfies
p(xa, xg, xs) = a(xa, xs)b(xg, xs), for some functions a, b,
which then implies X4 L Xg|Xs (by the first exercise).
Let A’, B’ C V be such that A’, B/, S are disjoint, and
ACA, BCB, AUBUS=V, A LB'S.
We first show (F) implies X4 L Xg/ | Xs.

We examine which variables co-occur with Xy, as the ar-
guments of some function ¢¢. Denote

Ci={CeC|A' NnC#0}.
Because C € C is a complete subset,
ieC,andAANC#D = iecl(A)=A UbdA),
and because S separates A’ from B/,

bd(A) CS, so CCAUS, VCEeC.

Similarly,
CCB'US, vCecC\C(.
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Factorization and Markov Properties on Undirected Graphs  Verifying the Relations

Verify (F) = (G)

Therefore
PO xerxs) = [ ocxe) = ( I] ¢ctx0) - ( TT ¢cxo))
cec cecy cee\e
= P1(xar, xs)¥2(xpr, Xs)
for some functions 11, ¥, (which implies X4, L Xg/ | Xs).
We then marginalize over X4\ 4 and Xp/\ g to obtain

p(xasxg,xs) = > > ti(xar Xs)¥2(xer, xs)

XA'\A *B/\B

( > wl(XA':XS))< > 1/’2(XB/7XS)>

XAT\ A XB/\B

a(xa, xs)b(xg, xs)

for some functions a, b. This establishes “(F) = (G).”
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Modeling with Undirected Graphs and Using Them in Practice Graph and Other Model Elements

Reading and Building the Graph
The graph shows conditional independence relations.

Besides, it also visualizes local dependence structures:

e The edges are naturally thought to represent direct interaction/association
among the variables. Directions in the interaction are lost in the
representation, so cause/effect relations cannot be modeled explicitly.

e Interactions are not restricted to be among pairs of variables. Indeed, local
interaction is between a variable and its neighbors, with contributions from
individual complete subsets (corresponding to terms appeared in the
factorized p). This suggests that we think of a group of edges/nodes as a
whole unit, when we interpret the graph in terms of interactions.

When building the graph of a model:

e We may start by specifying a factorized representation of P and obtain the
associated graph. This is natural in the case where there is a certain global
“energy” function we want to minimize.

e Or, more generally, we may start by considering properties (L) or (P) for our
problem, obtain the associated graph, and hope (G), (L), (P) and (F) are all
equivalent for the problem.

The graph is useful also for model checking: When property (G) is implied, the
graph reveals other conditional independence assumptions implicit in the model. If
some of them appear to be inappropriate, we can revise the model.
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Modeling with Undirected Graphs and Using Them in Practice Graph and Other Model Elements

Elements of an Undirected Graphical Model

Typical elements:
e Graph G
e Form of distribution P: with C being the set of complete subsets of G,

p(x) x H oc(xc), or p(x) O(exp{ Z(j)c(xc }

cec cec

e Function forms of ¢¢ and parameters in them

Maximum likelihood estimation is in general not easy, because, for example,

when
p(x; H bc(xe: ),
CeC
L(6; x) H dc(xei0), and £(0;x) =Y Ingc(xe;0) —In Z(6),
CEC ceC

and the normalizing constant Z(0) is a complicated, unknown function of 6,
which makes the maximization of £(8) difficult.

Z(0): also called the partition function.
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Modeling with Undirected Graphs and Using Them in Practice Gibbs Sampling
Gibbs Sampling

Goal: draw samples from an unknown distribution P(X)

E.g., p(x) may be known only up to a normalizing constant,
or p(x) may be known only through its local characteristics.

Use of the samples:
e understand the global behavior of the system
e find minimal energy configurations (when p(x) oc e ¥*)/T)

e approximate expected values
Gibbs sampling (Geman and Geman, 1984):
e We decompose x into d components:

x=(x1,...,Xd),

update each component while fixing the others,
and generate a sequence of x' = (x{,...x}) with the goal that

P(X*) — P(X), and the frequency of xin {x'} — P(X = x), ast — oo.
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Modeling with Undirected Graphs and Using Them in Practice Gibbs Sampling
Gibbs Samplers

Gibbs sampling algorithm:
e Start with any initial (x?,...,x9).

e At iteration t + 1, select a coordinate i,

draw X/ ~ P(Xi| X_i = x5)), X = Xt

—i —1

Two basic samplers:
e Random-scan Gibbs sampler:
select i randomly according to a given distribution.
e Systematic-scan Gibbs sampler:
select i according to a given order.

Notes:

e {X*'} is a Markov chain on the space of x. Here the properties of long-term
behavior of Markov chains are key to achieve the goal that

P(X') — P(X), and the frequency of x in {x'} — P(X =x), ast — oo.
(We talk about why in the future.)

e Intuitively, the components of the system interact with each other, and after
sufficiently long time, the system is expected to be at “equilibrium.”
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Modeling with Undirected Graphs and Using Them in Practice Gibbs Sampling

Gibbs Sampling

Gibbs sampling is particularly appealing for MRF, because

The full conditional distributions used in sampling reduces to the local
characteristics

P(X{|X—i :Xt—i) = P(XI|XNi = Xft\/f)?

and local characteristics are much simpler, of much lower dimension,
and easy to normalize even if the normalizing constant is unknown.

If the graph corresponds to a network and each node has a processor,
sampling can be carried out in parallel and asynchronously throughout
the network. Each processor only needs to do simple local computation.
Thus large-scale problems can be handled.

Convergence can be slow when local interactions are strong, but not pushing
towards the same direction.

Things can also go wrong, for example, when

From some state x’ not all states x with p(x) > 0 are reachable.
The state space is infinite and the chain somehow drifts to infinity.

We hypothesized some wrong local characteristics for which there exists no
compatible joint distribution. (Existence and uniqueness results such as Besag
and Hammersley-Clifford theorems are useful here to prevent pathologies.)
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Modeling with Undirected Graphs and Using Them in Practice ~ An MRF/CRF Application Example

HMM for Sequence Labeling

Recall the HMM for parts-of-speech tagging example in Lec. 2:

e Possible tags:
pron v adv  final punct. I: n, pron
I drove home . drove: v, n
home: n, adj, adv, v

Two models for words W = {W;} and associated tags T = {T;}:

p(w,t) =[] p(wi|t:)p(ti|ti1);

i

p(w,t) = HP(W,' | t)p(ti| ti—1, ti—2).

i

Question: What are the undirected graphs according to which the above
P(W, T) factorize?
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Modeling with Undirected Graphs and Using Them in Practice ~ An MRF/CRF Application Example

Conditional Random Fields (CRF)

Suppose that X = {X,} and Y = {Y,} correspond to the latent and
observable random variables, respectively, in a particular application.

In an MRF model: we specify the graph and the functions ¢¢ for (x, y).

Main features of CRF models:

(i) P(X]Y) factorizes according to an undirected graph G’, and

p(x|y) ccexp{—v(xy)},  ¥(x,y) = d0x,y)-
cec
(i) P(Y) is not modeled.
We specify neither the probabilities nor the dependence among Yis.
(iii) Maximum likelihood estimation: maximize []; P(X = XY =y 0)
over ©, based on complete data {(x/,y/)}.

Notes:

e Equivalently to (i), P(X, Y) factorizes according to the graph which is G’
added with the node Y and edges linking Y to the rest of the nodes.

e The main difference between CRF and a typical MRF model of (X, Y) is in
(ii), namely, CRF models only the conditional distributions.
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Modeling with Undirected Graphs and Using Them in Practice ~ An MRF/CRF Application Example

Three CRF Models for Sequence Labeling

X, <+— Tags

<+— Sentence

Pairwise edges among
~— Tags the word variables are not
drawn in the left.

<— Words

b b -

Questions:

(iii

(1) Suppose p(x|y) o< e=¥("¥). What are the most general forms of v for the
three models?

(2) Is model (iii) the same as an HMM? Do we obtain the same P(X|Y), if we
train the HMM also by maximizing []; P(X = x| Y = y/; ) based on

complete data {(x/, y/)}, like when training a CRF?
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Further Readings

About MRF:

1. A. C. Davison. Statistical Models, Cambridge Univ. Press, 2003.
Chap. 6.2.

For the next class, it would be good to take a look of

2. Robert G. Cowell et al. Probabilistic Networks and Expert Systems,
Springer, 2007. Chap. 2.8, 2.9.
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