Introduction to Bayesian Networks

## Huizhen Yu

janey.yu@cs.helsinki.fi Dept. Computer Science, Univ. of Helsinki

Bayesian Networks

## Overview

Building Models
Modeling Tricks

Acknowledgment: Illustrative examples in this lecture are mostly from Finn Jensen's book, An Introduction to Bayesian Networks, 1996.

## Bayesian Networks Overview

## Outline

Bayesian Networks
Overview
Building Models
Modeling Tricks

DAG:

- Dependence structure is specified hierarchically.
- Edges represent direct or causal influence.


## Undirected graphs/MRF:

- Neighborhood relationship is symmetric.
- Edges represent interaction/association.

Graphs having both directed and undirected edges are called chain graphs; they can represent both kinds of dependence and are more general than DAG or MRF. (We will not study them, however.)

## Bayesian Networks Building Models

Model Elements
Random variables:

- Hypothesis variables:
their values are unobservable, but of interest in our problem.
- Information variables:
their values are observed and informative about the hypothesis variables.
- Mediating variables: related to the underlying physical process, or introduced just for convenience.

Dependence structure: DAG
Conditional probabilities $\left\{p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)\right\}$ for model components

Specifying variables in the model is the first step of model building and very important in practice, although in studying the theory we have taken it for granted.

## Description:

When I go home at night, I want to know if my family is at home before I try the door. Often when the family leaves, an outdoor light is turned on. However, sometimes the light is turned on if the family is expecting a guest. Also, we have a dog. When nobody is at home, the dog is put in the back yard. The same is true if the dog has bowel trouble. Finally, if the dog is in the back yard, I will probably hear her barking, but sometimes I can be confused by other dogs barking.

Hypothesis variable:
1st model of causal structure

- Family out? (F-out)

Information variables:

- Light on? (L-on)
- Hear dog barking? (H-bark)



## Bayesian Networks Building Models

Example I: Family Out?
Introduce mediating variables for assessing probabilities $P$ (H-bark|F-out):

- Dog out? (D-out)
- Bowel problem? (BP)

3rd model
For $P(\mathrm{BP})$ : I set
For $P(\mathrm{D}$-out | F -out, BP ) Sometimes the dog is out just because she wants to be out:
$P(\mathrm{D}$-out $=y \mid \mathrm{F}$-out $=n, \mathrm{BP}=n)=0.2$.
After some reasoning ..., I set
$P(\mathrm{D}$-out $=y \mid \mathrm{F}$-out, BP$)$ to be


For $P$ (H-bark | D-out):
Sometimes I can confuse the barking of the neighbor's dog with that of mine Without introducing another mediating variable, I take this into account in the
 probability assessment by setting

In this example, if mediating variables will never be observed, we can eliminate (marginalize out) them and get back to the 1st model with the corresponding probabilities:


We can verify this directly. Alternatively, w can also use the global Markov property on undirected graphs:
$P$ of the larger model factorizes according to the graph on the right. The vertex set $\{\mathrm{F}$-out $\}$ separates $\{\mathrm{L}$-on $\}$ from $\{\mathrm{H}$-bark $\}$, so

L-on $\perp$ H-bark | F-out.


Example II: Insemination

## Over-confidence of Naive Bayes model:

1st naive Bayes model without the variable Ho


BT and UT results are counted as two independent pieces of evidence:
$P(\mathrm{BT}=n \mid \operatorname{Pr}=n) P(\mathrm{UT}=n \mid \operatorname{Pr}=n) P(\operatorname{Pr}=n)$ $=0.894 \cdot 0.893 \cdot 0.13$
$P(\mathrm{BT}=n \mid \operatorname{Pr}=y) P(\mathrm{UT}=n \mid \operatorname{Pr}=y) P(\operatorname{Pr}=y)$
$=0.36 \cdot 0.27 \cdot 0.87$
and

$$
\begin{aligned}
& P(\operatorname{Pr}=n \mid \mathrm{BT}=n, \mathrm{UT}=n) \\
& =\frac{0.894 \cdot 0.893 \cdot 0.13}{0.894 \cdot 0.893 \cdot 0.13+0.36 \cdot 0.27 \cdot 0.87} \\
& \approx 0.55 .
\end{aligned}
$$

Example II: Insemination

## Description:

Six weeks after insemination of a cow there are three tests for the result: blood test (BT), urine test (UT) and scanning (Sc). The results of the blood test and the urine test are mediated through the hormonal state (Ho) which is affected by a possible pregnancy (Pr). For both the blood test and the urine test there is a risk that a pregnancy does not show after six weeks because the change in the hormonal state may be too weak.

## Hypothesis variable:

- Pregnant? (Pr)

Information variables

- Blood test result (BT)
- Urine test result (UT)
- Scanning result (Sc)

Mediating variable:

- Hormonal state (Ho)

$$
\text { Huizhen } Y u \text { (U.H.) }
$$

$\qquad$

## Bayesian Networks Building Models

Example II: Insemination
2nd model with the mediating variable Ho


We calculate $P(\operatorname{Pr}=n \mid \mathrm{BT}=n, \mathrm{UT}=n)$ :

$$
\begin{aligned}
P(\mathrm{Pr}=n, \mathrm{BT}=n, \mathrm{UT}=n) & =\sum_{x \in\{y, n\}} P(\mathrm{BT}=n \mid \mathrm{Ho}=x) P(\mathrm{UT}=n \mid \mathrm{Ho}=x) P(\mathrm{Ho}=x \mid \mathrm{Pr}=n) P(\mathrm{Pr}=n) \\
& =0.3 \cdot 0.2 \cdot 0.01 \cdot 0.13+0.9 \cdot 0.9 \cdot 0.99 \cdot 0.13 \approx 0.1043 \\
P(\mathrm{Pr}=y, \mathrm{Br}=n, \mathrm{UT}=n) & =\sum_{x \in\{y, n\}} P(\mathrm{BT}=n \mid \mathrm{Ho}=x) P(\mathrm{UT}=n \mid \mathrm{Ho}=x) P(\mathrm{Ho}=x \mid \mathrm{Pr}=y) P(\mathrm{Pr}=y) \\
& =0.3 \cdot 0.2 \cdot 0.9 \cdot 0.87+0.9 \cdot 0.9 \cdot 0.1 \cdot 0.87 \approx 0.1175 \\
\text { and } \quad P(\mathrm{Pr} & =n \mid \mathrm{BT}=n, \mathrm{UT}=n) \approx \frac{0.1043}{0.1043+0.1175} \approx 0.47 .
\end{aligned}
$$

(Naive Bayes prediction: 0.55)

## Example II: Insemination

Mediating variable can play another important role, as shown here:

- There is dependence between the results of blood test (BT) and urine test (UT). But there is no causal direction in the dependence, and we are also unwilling to introduce a directed edge between the two variables.
- By introducing a mediating variable as their parent variable, we create association - like an undirected edge - between BT and UT when the mediating variable is not observed



## Bayesian Networks Building Models

Example III: Stud Farm

Introduce mediating variables L and K :


The probabilities $P$ (child | father, mother) Prior probability of a horse being of a child's genetic inheritance: numbers are a carrier or pure: probabilities for ( $a a, a A, A A$ )


## Example III: Stud Farm

## Description:

A stud farm has 10 horses. Their geneological structure is shown below. Ann is the mother of both Fred and Gwenn, but their fathers are unrelated and unknown. Every horse may have three genotypes: it may be sick (aa), a carrier (aA), or he may be pure (AA). None of the horses are sick except for John, who has been born recently. As
the disease is so serious, the farm wants to find out the probabilities for the remaining horses to be carriers of the unwanted gene.
Hypothesis variables:

- genotypes of all the horses except for John

Information variable:

- John's genotype

Additional information:

- none of the other horses are sick

Mediating variables:

- genotypes of the two unknown
fathers (L, K)

fathers (L, K)


## Bayesian Networks Building Models

## Example III: Stud Farm

We can add evidence variables to represent the additional information that the other horses are not sick:
$\mathrm{e}^{-*}=\{$ not $a a\}$, graph partially shown


Now we have specified the model. (How to compute the probability of a horse being a carrier given all the evidence?)

Bayesian Networks
Overview
Building Models
Modeling Tricks
$\qquad$ $\begin{array}{cc}\text { Feb. } 4 & \text {. } 41 / 3\end{array}$

Bayesian Networks Modeling Tricks
Handling Undirected Relations and Constraints
Suppose $A, B, C$ are variables that do not have parents. They are marginally dependent with PMF $r(a, b, c)$, but it is undesirable to link them with directed edges.

Introduce variable $D$, and define
$P(D=y \mid A=a, B=b, C=c)=r(a, b, c)$,
$P(D=n \mid A=a, B=b, C=c)=1-r(a, b, c)$.
Let $P(A), P(B), P(C)$ be uniform distributions. When using the network, we always enter the evidence $D=y$. Now

$P(A=a, B=b, C=c \mid D=y)=r(a, b, c)$.

Constraints can be handled similarly. In this case $A, B, C$ can also have parents. If they have to satisfy $f(A, B, C)=0$, we let

$$
P(D=y \mid A=a, B=b, C=c)= \begin{cases}1 & \text { if } f(a, b, c)=0 \\ 0 & \text { otherwise }\end{cases}
$$

and we always let $D=y$. (For an example, see the washed-socks example in

```
reference [1].)
"Noisy-or" assumption (binary case):
- Each event \(X_{i}=1\) can cause \(Y=1\) unless an inhibitor prevents it.
- The inhibition probability is \(q_{i}\), and the inhibitors are independent.


The conditional probabilities of \(y_{0}=0, y_{1}=1\) :
\[
p\left(y_{0} \mid x_{1}, \ldots, x_{n}\right)=\prod_{i: x_{i}=1} q_{i}
\]
- \# parameters is now linear in the number of parents

Corresponding graphical model:
\[
p\left(y_{1} \mid x_{1}, \ldots, x_{n}\right)=1-\prod_{i: x_{i}=1} q_{i} .
\]


Generalization: "noisy-and," "noisy-max," "noisy" functional dependence.

\section*{Noisy Functional Dependence}

\section*{Example: Headache}

Headache ( Ha ) may be caused by fever ( Fe ), hangover \((\mathrm{Ho})\), fibrositis ( Fb ), brain tumor \((\mathrm{Bt})\), and other causes \((\mathrm{Ot})\). Let Ha has states no, mild, moderate, severe. The various causes support each other in the effect. We still feel however that the impacts of the causes are independent: if the headache is at level \(\ell\), and we add an extra cause for headache, then we expect the result to be a headache at level \(q\) independent of how the initial state has been caused. We want to combine the effects of various causes

In the Family-out? example, to assign probabilities \(P\) (D-out | F-out, BP), I reason that there are three causes for the dog to be out, and if any one of them is present, the dog is out:
- the "background event" that the dog wants to be out: probability 0.2 ;
- F -out \(=y\), which causes the dog to be out with probability 0.85 ;
- \(\mathrm{BP}=y\), which causes the dog to be out with probability 0.95 .

Then \(P(\mathrm{D}\)-out \(=y \mid \mathrm{F}\)-out, BP\()\) is given by
\begin{tabular}{|ccc|}
\hline & \(B P=y\) & \(B P=\mathrm{n}\) \\
\hline F-out \(=\mathrm{y}\) & 0.994 & 0.88 \\
F-out \(=\mathrm{n}\) & 0.960 & 0.2 \\
\hline
\end{tabular}

(


Huizhen \(Y\) ( (U.H.) \(\qquad\)

Further Readings

For an introduction to building models:
1. Finn V. Jensen. An Introduction to Bayesian Networks. UCL Press, 1996. Chap. 3.
2. Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs. Springer, 2007. Chap. 3.
[2] describes more advanced models such as object-oriented Bayesian networks.

Expert Disagreement and Model Adaptation
Suppose two experts agree on the model structure for \(A, B, C, D\), but disagree on the probabilities \(P(A)\) and \(P(D \mid B, C)\).


We can add a node \(S\) representing the experts, \(s \in\{1,2\}\), and express our confidence in the experts via \(P(S)\).

Similarly, we can prepare for adaptation of model parameters based on data by introducing a type variable \(T\) and copying other variables for each case:

```

