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Bayesian Networks and DAG

Bayesian network:

• random variables X = {Xv , v ∈ V },
• a directed acyclic graph G = (V , E), and

• a distribution P(X ) that recursively factorizes according to G :

p(x) =
Y
v∈V

p
`
xv |xpa(v)

´
, where pa(v) = {parents of v in G}. (1)

This property of P will be denoted (DF). (‘D’ stands for ‘directed.’ )

(DF) is a well-defined property:

• The right-hand side of (1) defines a valid distribution, i.e., the sum over
all xv , v ∈ V equals 1. (This is obvious, because G has no cycles.)

• There exists P that satisfies the property.

This also seems obvious. To argue more formally, we introduce
well-orderings of vertices.
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Well-Ordering and Property (DF)

We can number the vertices of G in such a way that

(α, β) ∈ E ⇒ number(α) < number(β).

(I.e., a child has a larger number than any of its parents.)

Any such ordering is called a well-ordering.

We then define the set pr(β) of predecessors of β to be

pr(β) = {α | number(α) < number(β)}.

Using this ordering, we can express any distribution P(X ) as

p(x) = p(x1)p(x2 |x1) · · · p(xn |x1, . . . , xn−1), n = |V |. (2)

So, if P satisfies the conditional independence relations

p(xi |x1, . . . , xi−1) = p(xi |xpa(i)), i.e., Xv ⊥ Xpr(v) | Xpa(v), (3)

then Eq. (2) reduces to (1), implying that P satisfies (DF).

The property in (3) is called the ordered directed Markov property (DO).

This shows there exists P that satisfies (DF), and (DO) ⇒ (DF).
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(DF), (F) and Moral Graph

If P factorizes recursively according to G , then P factorizes according to an
undirected graph Gm:

p(x) =
Y
v∈V

p
`
xv |xpa(v)

´
⇒ p(x) =

Y
C∈C(Gm)

φC (xC )

for some functions φC , where

• C(Gm) denotes the set of complete subsets of Gm; and

• Gm is constructed by making v and pa(v) a complete subset for every
v ∈ V .

The construction of Gm is identical to modifying G by

• “marrying” the parents – adding undirected edges between all pairs of
parents who have a common child but are not linked by an edge in G ,
and then

• dropping the arrows of all directed edges.

Gm is called the moral graph of G .
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Moral Graph for Example Stud-Farm

Geneological structure for the horses: “Marrying” the parents:

KCecilyAnn Brian

GwennEricDorothyFred

Henry

John

Irene

L KCecilyAnn Brian

GwennEricDorothyFred

Henry

John

Irene

L

Gm:

KCecilyAnn Brian

GwennEricDorothyFred

Henry

John

Irene

L
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Examples of Moral Graphs

a

c

b

d e

f

G

a

c

b

d e

f

G m

a

c

b

d e

f

G

a

c

b

d e

f

G m

Example Family-Out?:

F-out

L-on

Exp-g

D-out

H-bark

BP F-out

L-on

Exp-g

D-out

H-bark

BP
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Independence Relations Implied by Gm

Since P factorizes according to Gm, P satisfies the global (G), local (L), and
pairwise (P) Markov properties with respect to Gm. (See Lecture 5.)

So we can read off some independence relations from Gm using (G).

For example, consider (L): Denote ne(v) = {neighbors of v in Gm}. Then,

Xv ⊥ XV\ne(v) |Xne(v). (4)

Who are these neighbors ne(v), viewed in G?

• Edges of Gm are either from G or from “marriages,” which means

ne(v) = pa(v) ∪ ch(v) ∪ {w | ch(w) ∩ ch(v) 6= ∅},

where ch(v) = {children of v in G}.
• ne(v) is called the Markov blanket of v in G , denoted by bl(v).

So the statement that given its Markov blanket, Xv is independent of the
rest of the variables,

Xv ⊥ XV\bl(v) |Xbl(v),

is just a rewrite of the local Markov property (4) with respect to Gm.
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Independence Relations Implied by Gm

Many independence relations in P are not captured by Gm, however. This is
because P has extra properties not possessed by a general distribution that
factorizes according to the undirected graph Gm:

p(x) =
Y
v∈V

p
`
xv |xpa(v)

´
6⇐ p(x) =

Y
C∈C(Gm)

φC (xC ).

Example Family-out?:

F-out

L-on

Exp-g

D-out

H-bark

BP F-out

L-on

Exp-g

D-out

H-bark

BP

F-out ⊥ BP

Exp-g ⊥ BP

Clearly, without observing anything, whether the family is out, or whether guests

are being expected, is independent of the dog having bowel problem. But these

vertices are connected in Gm. For their dependence relations, we need to look for

structures in their marginal distributions.
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Ancestral Sets

A sequence of distinct vertices α1, . . . , αm is called a path in G , if
(αi−1, αi ) ∈ E , i = 2, . . . , m.

For two vertices α, β of G , we say α is an ancestor of β and β a descendant
of α, if there is a path from α to β in G . Denote by an(α) the set of
ancestors of α and by de(α) the set of descendants of α.

We say A is an ancestral set if pa(v) ⊆ A, ∀v ∈ A.

Let An(A) denote the minimal ancestral set containing A.

(In a DAG, An(A) = A ∪α∈A an(α).)

Example Stud-Farm:

de
`
Irene

´
= {John}

an
`
Irene

´
= {Eric, Gwenn, Brian, Cecily, Ann, K}

An
`
{Fred, Gwenn}

´
= {Fred, Gwenn, L, Ann, K}

KCecilyAnn Brian

GwennEricDorothyFred

Henry

John

Irene

L
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Factorization of Marginals corresponding to Ancestral Sets
For A ⊆ V , let GA denote the subgraph of G on A, i.e.,

GA = (A, EA), EA = E ∩ (A× A),

and let PA denote the marginal distribution of XA.

Fact: For an ancestral set A, PA factorizes recursively according to GA.

Verifying the fact: We have

p(x) =
Y
v∈V

p
`
xv |xpa(v)

´
=

“ Y
v∈A

p
`
xv |xpa(v)

´”
·

“ Y
v∈V\A

p
`
xv |xpa(v)

´”
.

Since A is ancestral, pa(v) ⊆ A, ∀v ∈ A, so the first term is a function of xA only.
Hence

pA(xA) =
X
xV\A

p(x) =
“ Y

v∈A

p
`
xv |xpa(v)

´”
·

X
xV\A

“ Y
v∈V\A

p
`
xv |xpa(v)

´”
=

“ Y
v∈A

p
`
xv |xpa(v)

´”
· 1,

where
P

xV\A

Q
v∈V\A p

`
xv |xpa(v)

´
= 1 can be seen by taking any well-ordering of

vertices and summing over xv , v 6∈ A one by one in the descending order, in other

words, successively summing over variables that have no children left.
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Global Directed Markov Property

Let A, B, S be three disjoint subsets of V .

Based on the fact in the preceding slide and the implications of the recursive
factorization property shown in slides 6 and 9,

PAn(A∪B∪S) factorizes recursively according to GAn(A∪B∪S),

⇓
PAn(A∪B∪S) factorizes according to

`
GAn(A∪B∪S)

´m
,

⇓
PAn(A∪B∪S) obeys the global Markov property on

`
GAn(A∪B∪S)

´m
.

Therefore,

A ⊥ B |S in
`
GAn(A∪B∪S)

´m ⇒ XA ⊥ XB |XS . (5)

The property in (5) is called the global directed Markov property (DG).
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Illustrations of (DG)

Example Family-out?:

(1) Is F-out ⊥ BP? (2) Is Exp-g ⊥ BP? (3) Is L-on ⊥ BP |D-out?

F-out

L-on

Exp-g

D-out

H-bark

BP
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Answers to Previous Questions

(1) Is F-out ⊥ BP? – Yes.

Both GAn(A∪B) and
`
GAn(A∪B)

´m

are

F-out BP

F-out

L-on

Exp-g

D-out

H-bark

BP

(3) Is L-on ⊥ BP |D-out? – No.

GAn(A∪B∪S) and
`
GAn(A∪B∪S)

´m
are

L-on D-out

F-outExp-g BP

L-on D-out

F-outExp-g BP

(2) Is Exp-g ⊥ BP? – Yes.

GAn(A∪B) and
`
GAn(A∪B)

´m
are

F-outExp-g

F-outExp-g

BP

BP
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d-Separation: Intuition

Judea Pearl introduced the concept d-separation to define the Markov
property on directed graphs. The intuition comes from how evidence
propagates in the network. To explain this, we consider three types of edge
connections at a vertex X , as illustrated below.

What if X is instantiated?

• Serial connection:

A ⊥ B |X .

• Diverging connection:
A, B, C are mutually independent given X .

• Converging connection:
A, B, C are mutually independent if X is not
observed, but become dependent given X .

So when X is instantiated, in the first two cases,
it blocks the transmission of evidence from one
linked vertex to another, while in the third case, it
opens the channel for transmission of evidence.

A X B

A

X

B C

X

A B C

(remark added after lecture)

But if X is unobserved,
the situation is the opposite.
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d-Separation: Intuition

Similarly, in the case of a converging connection,
when X is not instantiated (“hard” evidence) but
receives “soft” evidence about its value, it also
opens the channel for the evidence of any linked
vertex to pass.

So is the case when there is a path to X from the
vertex at the converging point.

Example Family-Out?:

F-out

L-on D-out

H-bark

BP

X

A B C

X

A B C

D

Hearing dog barking makes any change in the belief of family-out to affect
the belief of the dog having bowel trouble. For example, if the family is out,
then “bowel trouble” would be explained away.
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d-Separation: Definition
d-Separation is defined in terms of the non-existence of certain kind of
routes, called active trails, which can open channels for evidence
transmission in the graph.

Definitions:

A sequence of distinct vertices α1, α2, . . . , αm is called a trail in G , if for
i = 2, . . . , m, either (αi−1, αi ) ∈ E or (αi , αi−1) ∈ E . I.e., a trail is a path in
the undirected version of G .

Given S ⊆ V , a trail is said to be active, if it satisfies two conditions:

(1) Every vertex with converging arrows is in S or has a descendant in S ;

(2) Every other vertex is outside S .

Trails that are not active are said to be blocked by S . (remark added after lecture)

Such vertex is on a serial or diverging connection;
if instantiated (in S), it would block the trail.

d-Separation: Let A, B, S be three disjoint subsets of vertices of a DAG G .
S is said to d-separate A from B, if there are no active trails from A to B.

A Markov property defined in terms of d-separation:

S d-separates A from B ⇒ XA ⊥ XB | XS .
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d-Separation: Illustration

Recall the definition of an active trail:

(1) Every vertex with converging arrows is in S or has a descendant in S ;

(2) Every other vertex is outside S .

Does {x , y} d-separate a from b?

a b

x

y

Two trails from a to b here,
one blocked by x and the other by y .

Does {x , y , w , z} d-separate a from
b or c or d?

a

b

x y

wz

c

d

The d-separation concept is not convenient for computation, as can be seen
from the above examples.
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Equivalence between (DG) and d-Separation Based Markov Property

Proposition: Let A, B, S be three disjoint subsets of vertices of a DAG G.
Then S d-separates A from B in G if and only S separates A from B in`
GAn(A∪B∪S)

´m
.

Proof sketch: By definition,

S does not d-separate A from B in G . ⇔ ∃ an active trail from A to B in G .

S does not separate A from B
in

`
GAn(A∪B∪S)

´m
.

⇔ ∃ a path from A to B
in

`
GAn(A∪B∪S)

´m
, circumventing S .

We will show: (a) ⇓ and (b) ⇑

Recall the definition of an active trail:

(1) Every vertex with converging arrows is in S or has a descendant in S ;

(2) Every other vertex is outside S .
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Equivalence Proof: Part (a)

Under the assumption, there is an active trail from A to B in G . We want to show
that there is a path from A to B in

`
GAn(A∪B∪S)

´m
, circumventing S .

We first argue that

• All the vertices on the trail are in An(A ∪ B ∪ S):

Since the trail is active, vertices with converging arrows are in An(S).

Other vertices are on either a serial or diverging connection. Consider any one
of these vertices and call it γ. Following an outgoing edge from γ, either the
trail leads all the way to A or B without traversing against the direction of
any edge on its way, or it leads to a vertex with converging arrows. In the
former case, γ ∈ An(A) or An(B), and in the latter case, γ ∈ An(S).

This shows that the trail lies in
`
GAn(A∪B∪S)

´m
.

Illustration:

c

a b

d
an active trail

S

A B
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Equivalence Proof: Part (a) Cont’d

We now modify the trail, if necessary, to make it circumvent S in
`
GAn(A∪B∪S)

´m
.

Consider the vertices on the trail. Since the trail is active, any vertex that is in S

must have converging arrows. The marriage edge it creates between its two parents

on the trail are in
`
GAn(A∪B∪S)

´m
, and the parents are not in S (since they cannot

have converging arrows). This shows that we can create the desired path from A

to B in
`
GAn(A∪B∪S)

´m
, by following the trail and traversing along the marriage

edges to circumvent S whenever necessary.

Illustration:

c

a b

d
an active trail

S

A B

c

a b

d

a path circumvernting 
S in the moral graph

S

A B
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Equivalence Proof: Part (b)

Under the assumption, there is a path from A to B in
`
GAn(A∪B∪S)

´m
,

circumventing S . We want to construct an active trail from A to B in G .

First, from the given path in
`
GAn(A∪B∪S)

´m
,

• We construct a trail from A to B in GAn(A∪B∪S):

If the path traverses through a marriage edge, the child of the marriage must
be in An(A ∪ B ∪ S). We modify the path to go through that child, thereby
reducing the number of marriage edges of the path by one. Repeating this
process, we obtain a path in

`
GAn(A∪B∪S)

´m
which does not have marriage

edges, and which corresponds to a trail from A to B in GAn(A∪B∪S).

Illustration of removing marriage edges from the path:

a b

S

A B

the trail corresponding 
to the path
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Equivalence Proof: Part (b) Cont’d

We now modify the trail just constructed to make it active. Consider the vertices
of the trail. By construction, all the vertices that are not in the original path have
converging arrows, and since the original path circumvents S , all the vertices with
non-converging arrows are outside S . So, to satisfy the first condition in the
definition of an active trail, we only need to consider those vertices with converging
arrows. Consider any one of them and call it γ.

• Case (i): γ ∈ An(S). Then, it does not block the trail.

• Case (ii): γ 6∈ An(S). In this case, γ ∈ An(A ∪ B) (since γ ∈ An(A ∪ B ∪ S)).
Therefore, there is a path in GAn(A∪B∪S) from γ to its descendant in either
the set A or B, and we use this path to replace the piece of the trail from γ to
the corresponding set. This eliminates a converging connection from the trail.

Repeating the above process, eventually all the vertices on the trail that have

converging arrows must be in An(S), and the trail is made active.

Illustration of making
an active trail:

b

S

B
a

A
a*
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Illustration
Does {x , y} d-separate a from b? – Yes.

a b

x

y

a b

x

y

`
G

An
`
{a,b,x,y}

´´m

Does {x , y , w , z} d-separate a from b or c or d? – No.

a

b

x y

wz

c

d a

b

x y

wz

c

d

`
G

An
`
{a,x,y,w,z}

´´m
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Local Directed Markov Property

Denote nd(v) the set of non-descendants of v in G , i.e.,
nd(v) = V \ (de(v) ∪ {v}).

Consider v , its parents pa(v), and its non-descendants nd(v).

• Because An
`
{v} ∪ pa(v) ∪ nd(v)

´
is the minimal ancestral set

containing these vertices,

ch(v) ∩ An
`
{v} ∪ pa(v) ∪ nd(v)

´
= ∅.

• Edges in the moral graph
`
GAn({v}∪ pa(v)∪ nd(v))

´m
are either from

GAn({v}∪ pa(v)∪ nd(v)) or from marriages.

• The two facts above imply that v is not connected directly to
nd(v) \ pa(v) in

`
GAn({v}∪ pa(v)∪ nd(v))

´m
.

By (DG), A ⊥ B | S in
`
GAn(A∪B∪S)

´m ⇒ XA ⊥ XB | XS .

So
Xv ⊥ Xnd(v) | Xpa(v). (6)

The property in (6) is called the local directed Markov property (DL). The
discussion above shows also (DG) ⇒ (DL).
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Illustrations of (DL)

Example Stud-Farm:

pa
`
Dorothy

´
= {Ann, Brian}

de
`
Dorothy

´
= {Henry, John}

Given the genotypes of Ann and Brian,
Dorothy’s genotype is independent of the
genotype of all the other nodes in the graph
below.

KCecilyAnn Brian

GwennEricDorothyFred

Henry

John

Irene

L

KCecilyAnn Brian

GwennEricDorothyFred

Irene

L
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Equivalence between Directed Markov Properties

In contrast to undirected graphical models, we have for a DAG G , the
Markov properties (DF), (DG), (DL) and (DO) are all equivalent, where
these properties are as defined earlier:

(DF) P factorizes recursively according to G , i.e.,

p(x) =
Y
v∈V

p
`
xv |xpa(v)

´
.

(DG) P obeys the global directed Markov property, i.e.,

A ⊥ B |S in
`
GAn(A∪B∪S)

´m ⇒ XA ⊥ XB |XS .

(DL) P obeys the local directed Markov property, i.e.,

Xv ⊥ Xnd(v) | Xpa(v).

(DO) P obeys the ordered directed Markov property, i.e., with respect to any
well-ordering,

Xv ⊥ Xpr(v) | Xpa(v).

We have verified “(DF) ⇒ (DG) ⇒ (DL)” and “(DO) ⇒ (DF).” It is also
straightforward to show “(DL) ⇒ (DO)” (exercise).
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Further Readings and Announcements

For directed Markov properties:

1. Robert G. Cowell et al. Probabilistic Networks and Expert Systems,
Springer, 2007. Chap. 5.3.

This lecture is mainly based on [1]; some examples used are from
Chaps. 2 and 3 of [2] below.

For d-separation, see [2] for an introduction, and [3] for deep analysis:

2. Finn V. Jensen. An Introduction to Bayesian Networks. UCL Press,
1996. Chap. 2.

3. Judea Pearl. Probabilistic Reasoning in Intelligent Systems, Morgan
Kaufmann, 1988. Chap. 3.

Exercise-related announcements:

• Written solutions need to be handed in, if you have done them, whether you
come to the exercise meetings or not. Please submit the earlier solutions
you’ve completed, if you forgot to do so.

• If for research, travel-related, or other proper reasons, you need extra time to
finish a problem set, you may ask for an extension in advance.
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