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Three concepts

Information

Compression,
coding, modeling

Probability

Uncertain
reasoning

Utility

(Stochastic) search
Decision making
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Our motivation: 
Uncertain reasoning 

Computer 
Science

Mathematical
Statistics

Information
Theory
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Yet another probability course?
● Computer science point of view
● Artificial Intelligence Point of View

● Agent point of view
● Knowledge representation (KR)
● Reasoning
● Rationality 
● Decision making 
● Grounding

● Machine learning point of view
● Computational methods for data analysis
● Large data bases
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Reasoning under uncertainty

● The world is a very uncertain place
● Thirty years of Artificial Intelligence and 

Database research danced around this fact
● And then a few AI researchers decided to use 

some ideas from the eighteenth century
● Uncertainty in Artificial Intelligence 

conference series 1985-
● Probabilistic reasoning now mainstream AI
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But first there was logic

● Historically too it was first - syllogisms
– a model of rationality

● Certainty, correctness, modularity, 
monotonicity

● BUT limited applicability since

Agents almost never have access 
to the whole truth about their 

environment!
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Acting by certain knowledge only?
● Is it enough to leave home 90 minutes before 

the flight departure?
● Anything can happen.
● How about X minutes before departure?
● Are you bound to stay home?

Qualification problem:
What are the things that have to 

be taken into account?
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Knowledge representation in FOPL

● Let us try to use FOPL for dental diagnosis

∀pSymptomp ,Toothache⇒Diseasep,Cavity 

∀pSymptomp ,Toothache⇒
Diseasep ,Cavity 
∨Diseasep ,GumDisease
∨Diseasep , Abscess...

∀pDiseasep,Cavity ⇒Symptomp ,Toothache

Wrong!

Incomplete!

Wrong again, need to add qualifications!
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FOPL representation fails because
● Laziness
– Its is too much work to list all the factors to ensure 

exceptionless rules

● Theoretical ignorance
– We do not know all the factors that play role in the 

phenomenon

● Practical Ignorance
– Even if we know all the factors in general, we do not  

know them for each particular case
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Probability to rescue

Probability provides a way to 
summarize the uncertainty 

that comes from our 
laziness and ignorance 
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On modeling

In building intelligent systems, in statistics and
in the rest of the world ...



Probabilistic Models, Spring 2011  Petri Myllymäki, University of Helsinki I-12

25.01.11

Modeling framework

Problem

Prediction

Modeling

Decision making
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What does this mean?

● Problem: there is a need to model some part 
of the universe and make decisions based on 
the model

● Modeling: build the best model possible from 
a priori knowledge and data available

● Prediction: use the model to predict properties 
of interest

● Decision making: decide actions based on the 
predictions
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For example
● Problem: online troubleshooting of 

software/hardware 
● Modeling: build a latent variable (Bayes) 

model of the problems user encounters based  
on knowledge about the software and 
symptom data

● Prediction: use the model to predict the 
underlying problem given symptoms

● Decision making: propose actions to remove 
the problem (or to find more symptoms)
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Microsoft Technical support
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Example: Printer Troubleshooter
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Bayesian email spam filters

● SpamBayes, OPFile, Outclass, bayespam, 
bogofilter, ifile, PASP, spamoracle, Spam Assassin 
Annoyance Filter, BSpam, Spam Bully, 
Death2Spam, InBoxer, … 

● Software: 
– http://spambayes.sourceforge.net/related.html

● Background:
– http://spambayes.sourceforge.net/background.html
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Real questions are ...
● Infinite number of models - what 

models do we consider? 
– Model is always chosen from a set of 

possible models!
● How do we compare models (i.e., 

measure that one model is better than 
another one) given some data?

● How do we find good models?
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…and more

● How do we use the models to predict 
unobserved quantities of interest?

● What actions do we choose given the 
predictions?
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General “rational agent” framework

Problem
domain

Sampling

Model
family

Data

Learning
Domain
model

Problem

Inference

Predictive
distribution

Actions

Decision
making

Utilities
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Choice of models

● Simple models vs. complex models
● Linear models vs. non-linear models
● Parametric models vs. non-parametric 

models
● Flat models vs. structural models
● What is complex is a totally nontrivial 

question
● One intuition: a complex model has more 

effective parameters
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The Occam’s razor principle
● The problem:
– You are given the following sequence: -1, 3, 7, 11

– Question: What are the two next numbers?

● Solution 1:
– Answer: 15 and 19

– Explanation: add 4 to the previous number

● Solution 2:
– Answer: -19.9 and 1043.8

– Explanation: if the previous number is x, the next one is –
x3/11 + 9/11x2 + 23/11

● “Of two competing hypotheses both conforming to 
our observations, choose the simpler one.”
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Occam’s Razor in Modeling

● there is a trade-off between the model 
complexity and fit to the data

# of car accidents

age

too simple

too complex
Occam
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● interpretation: they are easier to understand
● computation: predictions are typically easier 

to compute (not necessarily!)
● universality: they can be applied in more 

domains (more accurate predictions)
● “models should be only as complex as the 

data justifies”
● BUT: simpler models are NOT more probable 

a priori!
● Bayesian model selection: automatic Occam’s 

razor for model complexity regularization

Simpler models are better than 
complex models
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Two types of modeling

● Descriptive models (“Statistical modeling”)
– describe objects (e.g., data) as they are

– typically exploratory structures

● Predictive models (“Predictive inference”)
– models that are able to predict unknown objects 

(e.g., future data)

– models of the underlying process
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Some viewpoints

● “prediction is our business”
● why the best fit to data is not the best 

predictor
– data can be erroneous - perfect fit is too 

“specialized” and models the errors also!

– a sample can only “identify” up to a certain level of 
complexity 

● intuitive goal: minimize model complexity + 
prediction error - it keeps you honest!
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Alternatives

● Probabilistic inference
– Statistical inference

– Bayesian inference

● Fuzzy inference
● Dempster-Shafer inference
● Non-monotonic logic
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Bayesian inference: 
basic concepts
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Some early history

● Bernoulli (1654-1705)
● Bayes (1701-1761)
● Laplace (1749-1827)
● Prediction problem (“forward probability”): 
– If the probability of an outcome in a single trial is p, 

what is the relative frequency of occurrence of this 
outcome in a series of trials?

● Learning problem (“inverse probability”):
– Given a number of observations in a series of trials, 

what are the probabilities of the different possible 
outcomes?
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The Bayes rule
● Axioms of probability theory:
– The sum rule:

● P(A | C) + P(Ā | C) = 1
– The product rule: 

● P(AB | C) = P(A | BC) P (B | C)
● The Bayes rule:
– P(A | BC) = P(A | C) P(B | AC) / P(B | C)

● A rule for updating our beliefs after obtaining 
new information

●  H = hypothesis (model), I = background 
information, D = data (observations):

– P(H | D I) = P(H | I) P(D | H I) / P(D | I)
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Do I have a good test?

● A new home HIV test is assumed to have 
“95% sensitivity and  98% specificity”

● a population has HIV prevalence of 1/1000. If 
you use the test, what is the chance that 
someone testing positive actually has HIV?
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Test continued ...
● P(HIV + | test HIV +) = ?
● We know that
– P(test HIV + | HIV +) = .95
– P(test HIV + | HIV -) = .02

● from Bayes we have learned that we can 
calculate the probability of having HIV given a 
positive test result by

45

P test HIV +∣HIV +P HIV +
P test HIV +∣HIV +P HIV +P  test HIV +∣HIV - P HIV -

= 0.95 x0.001
0.95 x0.0010.02x 0.99

=0.045
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Thus finally

● thus over 95% of those testing positive will, in 
fact, not have HIV

● the right question is:

How should the test result change our belief that we are
HIV positive?
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Bayesian?
● Probabilities can be interpreted in various 

ways:
– Frequentist interpretation (Fisher,Neyman, 

Cramer)

– “Degree of belief” interpretation (Bernoulli, 
Bayes, Laplace, Jeffreys, Lindley, Jaynes)
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Frequentist says ...

● The long-run frequency of an event is the 
proportion of the time it occurs in a long 
sequence of trials - probability is this 
frequency

● probability can only be attached to “random 
variables” - not to individual events
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Bayesian says ...
● an event x  = state of some part of the 

universe
● probability of x is the degree of belief that 

event x will occur
● probability will always depend on the state of 

knowledge
● p(x|y,C) means probability of event x given 

that event y is true and background 
knowledge C
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Frequentist language for solving 
problems 

● P(data | model)
● sampling distributions

Model

?

Data
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Bayesian language for solving 
problems 

● Bayesian: P(data | model)  &  P(model | data)

?

Prior knowledge

Data
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Isn’t this what I already do? No.

…...

Estimator
(function of
data)

…...

Data

0

0,05

0,1

0,15

0,2

0,25

0 .2 .4 .6 .8

1
.0

M

“Sampling distribution
of the estimator”

Hypothesis testing X
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“The Bayesian way”

Data

Likelihood
 Prior
 distribution
 of the models 

0

0,05

0,1

0,15

0,2

0,25

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

M

0

0,05

0,1

0,15

0,2

0,25

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

M

0

0,05

0,1

0,15

0,2

0,25

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

M

Posterior
distribution
of the models

X
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Reasons for using probability theory

● Cox/Jaynes argument: probability is an 
appealing choice as the language for 
plausible inference

● Berger argument: Decision theory offers a 
theoretical framework for optimal decision 
making, and decision theory needs 
probabilities

● Pragmatic argument: it is a very general 
framework and it works
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On plausible reasoning
● “The actual science of logic is conversant at present only with 

things either certain, impossible, or entirely doubtful, non of which 
(fortunately) we have to reason on. Therefore the true logic for this 
world is the calculus of Probabilities, which takes account of the 
magnitude of the probability which is, or ought to be, in a 
reasonable man’s mind” (James Clerk Maxwell)

● Probabilistic reasoning is intuitively easy to understand, but on the 
other hand intuition may be a poor guide when facing probabilistic 
evidence

● “Inside every non-Bayesian there is a Bayesian struggling to get 
out” (Dennis V. Lindley)
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Real questions

● Q1: Given plausibilities Plaus(A) and Plaus(B), 
what is Plaus(AB)?

● Q2: How is Plaus(~A) related to Plaus(A)?
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Qualitative properties of p.r.
● D1. Degrees of plausibility are represented by real 

numbers
● D2. Direction of inference has a qualitative 

correspondence with common sense
– For example: if Plaus(A | C´) > Plaus(A | C) and 

Plaus(B |C’) = Plaus(B | C), then Plaus(AB | C’) > 
Plaus(AB | C)

– Ensures consistency in the limit (with perfect 
certainty) with deductive logic 

● D3. If a conclusion can be inferred in more than one 
way, every possible way should lead to the same 
result

● D4. All relevant information is always taken into 
account

● D5. Equivalent states of knowledge must be 
represented by equivalent plausibility assignments
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Cox/Jaynes/Cheeseman argument

● Every allowed extension of Aristotelian logic to 
plausibility theory is isomorphic to Bayesian 
probability theory

● Product rule (answers question Q1)
– P(AB | C) = P(A | BC) P (B | C)

● Sum rule (answers question Q2)
– P(A | C) + P(Ā | C) = 1
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Bayesian inference: How to update 
beliefs?

● Select the model space
● Use Bayes theorem to obtain the 

posterior probability of models 
(given data)

Posterior distribution is “the result” of the inference; 
what one needs from the posterior depends on what 
decisions are to be made

P Model∣Data =
P Data∣Model P Model

P Data 
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The Bayesian modeling viewpoint

● Explicitly include prediction (and intervention) 
in modeling

Models are a means (a language) to describe 
interesting properties of the phenomenon to 
be studied, but they are not intrinsic to the 
phenomenon itself.

“All models are false, but some are useful.”
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(Being predictive …)

Good predictive models describe useful regularities 
of the data generating mechanism, while models 
that give a high probability to the observed data 
have possibly only learnt to memorize it.

 True prediction performance is a function of future data, 
not a model fit to current data
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Bayesian decision making for 
kids

● assign a benefit for every possible outcome 
(for every possible decision)

● assign a probability to every possible outcome 
given every possible decision

● what is the best decision?
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Decision theory argument

● Decision theory offers a theoretical framework 
for optimal decision making

? P($100)=0.1, P($50)=0.9
Expected utility:
0.1*$100+0.9*$50=$55

P($200)=0.2, P($5)=0.8
Expected utility:
0.2*$200+0.8*$5=$44

P($80)=0.5, P($50)=0.5
Expected utility:
0.5*$80+0.5*$50=$65
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Optimal actions

● Optimal policy: choose the action with 
maximal expected utility

● The Dutch book argument: betting agencies 
must be Bayesians

● Where to get the utilities? (decision theory)
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“Pragmatic” reasons for using 
probability theory

● The predictor and predicted variables (the 
inference task) do not have to be 
determined in advance

– probabilistic models can be used for solving both 
classification (discriminative tasks), and 
configuration problems and prediction (regression 
problems) 

– predictions can also be used as a criteria for Data 
mining (explorative structures)
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More pragmatic reasons for using 
probability theory

● consistent calculus
– creating a consistent calculus for uncertain 

inference is not easy (the Cox theorem)
– cf. fuzzy logic

● Probabilistic models can handle both 
discrete and continuous variables at the 
same time 

● Various approaches for handling missing 
data (both in model building and in 
reasoning)
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Nice theory, but...

● “isn’t probabilistic reasoning counter-intuitive, 
something totally different from human reasoning?”

● Cause for confusion: the old frequentist 
interpretation. But probabilities do NOT have to be 
thought of as frequencies, but as measures of 
belief

● The so called paradoxes are often misleading
– A: P(€1.000.000)=1.0

– B: P(€1.000.000)=0.25, P(€4.000.000)=0.25, 
P(€0)=0.5

● Even if that were true, maybe that would be a 
good thing!
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Nice theory, but...

● “Where do all the numbers come from?”
– Bayesian networks: small number of parameters
– the numbers do not have to be accurate
– probability theory offers a framework for 

constructing models from sample data, from 
domain knowledge, or from their combination 
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We can learn from Bayesians :-)

● Bayesian approaches never overfit (in 
principle)

● Bayesian approaches infer only from 
observed data (not possible data)

● Bayesian inference is always relative to a 
model family

● Does all this semi-philosophical debate 
really matter in practice? 

– YES!!

– see e.g. “The great health hoax” by Robert 
Matthews, The Sunday Telegraph, 
September 13, 1998, or “Why Most 
Published Research Findings are False” 
by John Ioannidis, PLOS Medicine 2 
(2005) 8.

“I rest my 
case”
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What is the model
space?

Fundamental questions

How do we search?

How do we 
compare models?
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Bayesian answers
● Model family (space) is made explicit
● Comparison criteria is a probability
● No restrictions on the search algorithm

 Model family is implicit (normal distributions)

 Comparison criteria is fit to data, deviation from “random” behavior, “model index”

 Simple deterministic “greedy” algorithms( )
Classical statistics answers
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Bayesian inference: 
basic operations
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Probability of propositions
● Notation P(x) : read “probability of “x-pression”

● Expressions are statements about the contents of 
random variables

● Random variables are very much like variables in 
computer programming languages.

– Boolean; statements, propositions

– Enumerated, discrete; small set of possible values

– Integers or natural numbers; idealized to infinity  

– Floating point (continuous); real numbers to ease 
calculations
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Elementary “probositions”
● P(X=x)
– probability that random variable X has value x

● we like to use words starting with capital letters to denote 
random variables

● For example:
– P(It_will_snow_tomorrow = true)

– P(The_weekday_I'll_graduate = sunday)

– P(Number_of_planets_around_Gliese_581 = 7)

– P(The_average_height_of_adult Finns = 1702mm)
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Semantics of P(X=x)=p
● So what does it mean?
– P(The_weekday_I'll_graduate = sunday)=0.20

– P(Number_of_planets_around_Gliese_581 = 
7)=0.3

● Bayesian interpretation:
– The proposition is either true or false, nothing in 

between, but we may be unsure about the truth. 
Probabilities measure that uncertainty.

– The greater the p, the more we believe that X=x:
● P(X=x) = 1 : Agent totally believes that X = x. 
● P(X=x) = 0 : Agent does not believe that X=x at all.
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● Elementary propositions can be combined 
using logical operators ˄, ˅ and ¬.
− like P(X=x ˄ ¬ Y=y) etc.
− Possible shorthand: P(X ϵ S) 

●  P(X≤x) for continuous variables 

– Operator �  is the most common one, and often 
replaced by just comma like : P(A=a, B=b).

– Naturally other logical operators can also be 
defined as derivatives.

Compound “probositions”
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Axioms of probability

● Kolmogorov's axioms:

1.0 ≤ P(x) ≤ 1

2.P(true) = 1, P(false)=0

3.P(x ˅ y) = P(x) + P(y) – P(x ˄ y)
● Some extra technical axioms needed to make theory rigorous

● Axioms can also be derived from common 
sense requirements (Cox/Jaynes argument)
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BA

Axiom 3 again
– P(x or y) = P(x) + P(y) – P(x and y)

– It is there to avoid double counting:

– P(“day_is_sunday” or  “day_is_in_July”) = 1/7 + 
31/365 - 4/31.

A and Β
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Discrete probability distribution
● Instead of stating that 

• P(D=d
1
)=p

1
, 

• P(D=d
2
)=p

2
, 

• ...  and  

• P(D=d
n
)=p

n
  

● we often compactly say 

– P(D)=(p
1
,p

2
, ..., p

n
). 

● P(D) is called a probability distribution of D.

– NB!  p
1 
+ p

2
 +

 
... +  p

n 
= 1.

Mon Tue Wed Thu Fri

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

P(D)
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Continuous probability distribution
● In continuous case, the area under P(X=x) must 

equal one. For example P(X=x) = exp(-x):
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Main toolbox of the Bayesians

● Definition of conditional probability
● Chain rule
● The Bayes rule
● Marginalization

● NB. These are all direct derivates of the 
axioms of probability theory
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Conditional probability
● Let us define a notation for the probability of x 

given that we know (for sure) that y:

P x∣y =
P x∧y 
P y 

● Let us define a notation for the probability of x 
given that we know (for sure) that y, and we 
know nothing else:

● Bayesians say that all probabilities are 
conditional since they are relative to the agent's 
knowledge K.

●

– But Bayesians are lazy too, so they often drop K.

– Notice that P(x,y) = P(x|y)P(y) is also very useful!

P x∣y , K =P x∧y∣K 
P y∣K 
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Chain rule

● From the definition of conditional 
probability, we get:

P X 1 , X 2=P X 2∣X 1P X 1

P X 1 , ... , X n=∏
i

P X 1P X 2∣X 1...P  X n∣X 1 , X 2, ... , X n−1

● And more generally:
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Marginalization
● Let us assume we have a joint probability 

distribution for a set S of random variables.
● Let us further assume S1 and S2 partitions the 

set S.
● Now  
●

●

● where  s
1
 and s are vectors of possible value 

combination of S1 and S2 respectively.
●

P S1=s1= ∑
s∈dom S2

P S1=s1,S2=s

= ∑
s∈domS2

P S1=s1∣S2=sP S2=s ,
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● You may also think this as a P(Too_Cat_Cav=x), 
where x is a 3-dimensional vector of truth values.

● Generalizes naturally to any set of discrete 
variables, not only Booleans.

Joint probability distribution

Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

1,000

● P(Toothache=x,Catch=y,Cavity=z) for all 
combinations of truth values (x,y,z):
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Joys of joint probability distribution
● Summing the condition matching numbers from 

the joint probability table you can calculate 
probability of any subset of events.

● P(Cavity=true or Toothache=true):

Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

0,280
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Marginal probabilities are 
probabilities too

● P(Cavity=x, Toothache=y)
Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

1,000

● Probabilities of the lines with equal values for marginal 
variables are simply summed.
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Conditioning
● Marginalization can be used to calculate 

conditional probability:

PCavity=t∣Toothache=t =PCavity=t∧Toothache=t 
P Toothache=t 

Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

1,000

0.1080.012
0.1080.0160.0120.064

=0.6
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Conditioning via marginalization

P  X∣Y 

(definition) =
P X ,Y 
P Y 

(marginalization) =
∑
Z

P X , Z ,Y 

P Y 

(chain rule) =
∑
Z

P X∣Z ,Y P Z∣Y P Y 

P Y 
=∑

Z

P X∣Z ,Y P Z∣Y .
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Bayes' rule

● yields the famous Bayes formula

P x∣y , K =P x∧y∣K 
P y∣K 

P x∧y∣K =P y∧x∣K =P y∣x ,K P x∣K 

P x∣y ,K =P x∣K P y∣x ,K 
P y∣K 

P h∣e= P hP e∣h
P e

● or

● Combining
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Bayes formula as an update rule
● Prior belief P(h) is updated to posterior belief 

P(h|e
1
). This, in turn, gets updated to P(h|e

1
,e

2
) 

using the very same formula with P(h|e
1
) as a 

prior. Finally, denoting P(·|e
1
) with P

1
 we get

P h∣e1,e2=
P h,e1,e2
P e1,e2

=
P h,e1P e2∣h,e1

P e1P e2∣e1

=
P h∣e1P e2∣h,e1

P e2∣e1
=
P1hP1e2∣h

P1e2
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Bayes formula for diagnostics
● Bayes formula can be used to calculate the 

probabilities of possible causes for observed 
symptoms. 

P cause∣symptoms= P causeP symptoms∣cause
P symptoms

● Causal probabilities P(symptoms|cause) are 
usually easier for experts to estimate than 
diagnostic probabilities P(cause|symptoms).
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Bayes formula for model selection
● Bayes formula can be used to calculate the 

probabilities of hypotheses, given observations

P H1∣D=
P H1P D∣H1

P D

P H2∣D=
P H2P D∣H2

P D
...



Probabilistic Models, Spring 2011  Petri Myllymäki, University of Helsinki I-81

25.01.11

General recipe for Bayesian inference
● X: something you don't know and need to 

know
● Y: the things you know
● Z: the things you don't know and don't need 

to know
● Compute: 

● That's it - we're done.

P X ∣Y =∑
Z

P X ∣Z ,Y P Z∣Y 
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