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Generative model

Data
Generates

● The world is described by a model that governs 
the probabilities of observing different kinds of 
data.

ϴ
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Steps in Bayesian inference
● Specify a set of generative probabilistic 

models
● Assign a prior probability to each model
● Collect data
● Calculate the likelihood  P(data|model) of each 

model
● Use Bayes’ rule to calculate the posterior 

probabilities P(model | data)
● Draw inferences (e.g., predict the next 

observation)
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● Data item d is generated by a mechanism 
(model), parameters Θ of which determine how 
probably different values of d are generated, 
i.e., the distribution of d.

● An example:
− Mechanism is drawing with replacement from a 

bucket of black and white balls, and the parameter 
θ

b
 is the probability of drawing a black ball, and θ

w
 is 

the probability of a white ball: P(b|θ
b
,θ

w
) = θ

b
 and 

P(w|θ
b
,θ

w
) = θ

w

● In orthodox statistics, likelihood P(D|ϴ) is often seen as a 
function of ϴ, a kind of L

D
(ϴ). Whatever.

Likelihood P(d|Θ)
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i.i.d.
● If the data generating mechanism depends on 

ϴ only (and not on what has been generated 
before), the sequence of data data is called 
independent and identically distributed. 

● Then 
● And 

− order of d
i
 does not matter.

−

P d1,d2,,dn∣=∏
i=1

n

P di∣

P b,w ,b ,b ,w∣=P b,b ,w ,w ,w∣
=P b∣P b∣P w∣P w∣P w∣
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The Bernoulli model
● A model for i.i.d. binary outcomes (heads,tails), 

(1,0), (black, white), (true, false),....
● One parameter: ϴ ϵ [0,1]. For example: 

P(d=true | ϴ) = ϴ, P(d=false| ϴ) = 1-ϴ.
− NB! The probabilities of d being true are defined by 

the parameter ϴ. Parameters are not probabilities.
− Black and white ball bucket as a Bernoulli model: 

• ϴ is the proportion of black balls in a bucket P(b | ϴ) = ϴ.
• P(D|ϴ) = ϴNb (1−ϴ)Nw, where N

b
 and N

w
 are numbers of 

black and white balls in the data D. 
• NB! P(D|ϴ) depends on data D through N

b
 and N

w
 only 

(=sufficient statistics)
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Example
● You are installing WLAN-cards for different 

machines. You get the WLAN-cards from the 
same manufacturer, and some of them are 
faulty.

● We are asking the question: “Is the next 
WLAN-card we are installing going to work?”

● We are allowed to have background 
knowledge of these cards (they have been 
reliable/unreliable in the past, the 
manufacturing quality has gone up/down etc.)
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Assessing models

● Let A = “The WLAN-card is not faulty”, and 
B=~A

● A proportion model can be understood  as 
a bowl with labeled balls (A,B)

● each model M(ϴ) is characterized by the 
number of A balls, ϴ is the proportion 
(Obs! Assume here that ϴ is discrete, i.e., 
only consider  ϴ ϵ {0,0.1,0.2,…,1})
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Our 11 models
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Priors and the models
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The prior distribution P(M(ϴ))
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Prediction by model averaging

● A Bayesian predicts by model averaging: 
the uncertainty about the model is taken 
into account by weighting the predictions 
of the different alternative models M

i 

(=marginalization over the unknown)

P  X =∑
i

P  X∣M i P M i 
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So: the predictive probability is...
● What is P(A), the probability that the next 

WLAN-card is not faulty?

● ”Mean or average” model: ϴ =0.598
● 60/40 odds a priori

P A=P A∣M 0.0P M 0.0P A∣M 0.1P M 0.1...P A∣M 1.0P M 1.0
=0.00.020.03...0.0=0.598
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Enter some data ...
● Assume that I have installed three WLAN-

cards: first was non-faulty (A), the two latter 
ones faulty (B), i.e., D={ABB}

● what are the updated (posterior) probabilities 
for the models M(ϴ)?

● Enter Bayes, for example for M(0.6):
0.2

P M 0.6∣D =
P D∣M 0.6P M 0.6

P D 
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Calculating model likelihoods

● i.i.d.: we assume that the observations are 
independent given any particular model M(ϴ)

● P(ABB | M(0.6)) = 0.6 * 0.4 * 0.4 = 0.096
● This is repeated for each model M(ϴ)

To calculate the likelihood of a model, multiply the
probabilities of the individual observations given the model
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Likelihood histogram P(ABB|M(ϴ))
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Posterior = likelihood x prior
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The normalizing factor P(D)

P M ∣D=
P D∣M P M 

P D
Calculate:
P D∣M 0.0P M 0.0=s1

P D∣M 0.1P M 0.1=s2

...
P D∣M 1.0P M 1.0=s11

Then:
P D=s1s2...s11
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Posterior distribution P(M(ϴ)|D)
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Predictive probability with data D
● With data D, the prediction is based on 

averaging over the models M(ϴ) weighted 
now by the posterior (instead of the prior 
used earlier) probability of the models:

P X ∣D=∑
i

P X ∣M i , DP M i∣D
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How did the probabilities
change?

● The predictive probability P(A | D) =  P(A|ABB) 
that the next (fourth) WLAN-card is OK came 
down from the prior 60% to 52% (the change 
is not great because the data set is small)
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Densities for proportions
● a richer set of models allows more precise 

proportion estimates, but comes with a cost: 
the amount of calculations necessary increase 
proportionally

● we can move to consider infinite number of 
models

– each model ϴ is now a point on the interval from 
[0,1]

– we get a “smoothed” bar chart called a density P(ϴ)
– ∫P(ϴ)dϴ=1
– only collections of models can have a probability > 0
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Bayesian inference with densities?
● Using densities means that we no longer add 

probabilities, but calculate areas
● To represent “infinite bar charts” we use 

curves that approximate the heights of bars
● But how to predict with densities? We cannot 

go over all the individual models as we did in 
the discrete case

● What about the prior?
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Maximum likelihood
● Given a data D, different values of ϴ yield 

different probabilities P(D|ϴ). The parameters 
that yield the largest probability of P(D|ϴ) are 
called maximum likelihood parameters for the 
data D.
− P(b,b,w,w,w|Θ=0.7) = 0.720.33=0.1323
− P(b,b,w,w,w|Θ=0.1) = 0.120.93=0.00729

− argmax
ϴ
 P(b,b,w,w,w|ϴ) = argmax

ϴ
 ϴ2(1−ϴ)3=?
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Likelihood P(b,b,w,w,w|Θ)
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●NB! Not a distribution, but a function of ϴ.
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ML-parameters for the Bernoulli model.
(High school math refresher)

● So let us find ML-parameters for the Bernoulli 
model for the data with N

b
 black balls and N

w
 

white ones.
P D∣=Nb 1−Nw ,
so let us check when P ' D∣=0,∈]0,1[ .
P 'D∣=Nb

Nb−1 1−NwNbNw1−Nw−1⋅−1

=Nb−11−Nw−1[Nb1−−Nw]
=Nb−11−Nw−1[Nb−NbNw]=0

⇔Nb−NbNw=0 ⇔=
Nb

NbNw
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But ML-parameters are too gullible
● Assume D=(w,w), i.e., two white balls. 

− ML-parameter is Θ=0. 
− Now P(next ball is black | Θ=0)= 0. 
− Selecting ML parameters do not appear to be a 

rational choice.

● Be Bayesian:
− Parameters are exactly the things you do not know 

for sure, so they have a (prior and posterior) 
distribution. 

− Posterior distribution of the model is the goal of 
the Bayesian data-analysis.
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Predicting with posterior 
distribution

● Not a two phase process like in ML-case
− first find ML parameters Θ.
− then use them to calculate P(d|Θ).

● Instead: P d∣D=∫
∈

P  ,d∣D

=∫
∈

P d∣ , DP ∣D

=∫
∈

P d∣P ∣D

● Bayesian prediction uses predictions P(d|ϴ) 
from all the models ϴ, and weighs them by the 
posterior probability P(ϴ|D) of the models. 
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Posterior for Bernoulli parameter
● So likelihood P(D|ϴ) we can calculate.
● How about the prior P(ϴ)? 

− We should give a real number for each ϴ.
• One way out: as earlier, use a discrete set of 

parameters instead of continuous ϴ. (Works, is flexible, 
but does not scale up well.)

• Another way: Study calculus. 
● And how about P D=∫

0

1

P P D∣d
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● The form of the likelihood gives us a hint for a 
comfortable prior 
− P(D|ϴ) = ϴNb (1−ϴ)Nw

− If we define the P(ϴ) = c ϴα-1 (1−ϴ)β-1, 

• c taking care that ∫P(ϴ)dϴ = 1, then 

− P(ϴ)P(D|ϴ) = c  ϴNb+α-1 (1−ϴ)Nw+β-1

● Thus updating from prior to posterior is easy: 
just use the formula for the prior, and update 
exponents α-1 and β-1 (conjugate prior).

Prior for Bernoulli model
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P(ϴ) of a form c ϴα-1(1−ϴ)β-1 is called 
Beta(α,β) distribution

● The expected value of Θ is α/(α+β).
● The normalizing constant is

c= 1

∫
0

1

−1 1−−1d

=

  

,

where   is the
gamma function,
a continuous version
of the factorial:

 n=n−1!
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Posterior of the Bernoulli model

● Thus, a posteriori, Θ is distributed by                 
Beta(α+N

b
,β+N

w
). 

● And prediction:

P ∣D, ,=
NbNw
 Nb Nw

Nb−11−Nw−1

P b∣D , ,=∫
0

1

P b∣ , D , ,P ∣D , ,d

=∫
0

1

P b∣P ∣D , ,d=∫
0

1

P ∣D , ,d

=EP =
Nb

NbNw

.



Probabilistic Models, Spring 2011  Petri Myllymäki, University of Helsinki II-33

25.01.11

Bernoulli prediction

● So P(b|w,w,α=1,β=1) = (1+0) / (1+0+1+2) = 1/4.
− Sounds more rational!
− Notice how the hyperparameters α and β act 

like extra counts.
− That's why α + β is often called “equivalent 

sample size”. The prior acts like seeing α 
black balls and β white balls before seeing 
data.

P b∣D, ,=
Nb

NbNw

.
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Laplace smoothing = Beta(1,1)
● For Bayesian inference, we can use a single 

model ϴ* which is the mean of the Beta(α,β) 
density: 

• ϴ* = (α + N+)/(α + N+ 
+ β + N-)

● E.g.: flip a coin 10 times, observe 7 heads 
(“success”). Assuming a uniform prior Beta(1,1), 
the posterior for the ϴ becomes Beta(8,4), and 
hence the predictive probability of heads is 
8/12=2/3, or:
− ϴ* = (7+1)/(10+2)

● Also known as Laplace’s rule of succession or 
Laplace smoothing
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Equivalent sample size

● Predictive probabilities change less radically 
when α+β is large

● Interpretation: before formulating the prior, 
one has experience of previous observations 
- thus with α+β one can indicate confidence 
measured in observations

● Called “prior sample size” or “equivalent 
sample size”

● Beta(1,1) is the uniform prior
● Beta(0.5,0.5) is the Jeffreys prior
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● Variable X with possible values 1,2,...,n.

● Parameter vector =(ϴ
1
, ϴ

2
, ..., ϴ

n
) with Σϴ

i
=1.

● P(X=i|ϴ)=ϴ
i
.   Prior P(ϴ) =

Dirichlet(ϴ; α
1
, α

2
, ..., α

n
) =

● Posterior P(ϴ)=Dir(ϴ; α
1
+N

1
, α

2
+N

2
, ..., α

n
+N

n
)

● Prediction P(x
i
 | D, α) = 

One variable, more than two values

∑
i=1

n

i

∏
i=1

n

i
∏
i=1

n

i
i−1

iN i

∑
j=1

n

 jN j

.

http://en.wikipedia.org/wiki/Dirichlet_distribution
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