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Aspects In learning

* Learning the parameters of a Bayesian
network

- Marginalizing over all all parameters
- Equivalent to choosing the expected parameters
» Learning the structure of a Bayesian network

- Marginalizing over the structures not
computationally feasible

- Model selection
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A Bayesian network

(Sprinkler | Cloudy)

Cloudy |Sprinkler=on

Sprinkler=off

no

0.5

0.5

”

yes 0.9

0.1

P(Cloudy)

Cloudy=no

Cloudy=yes

0.5

0.5

Sprinkler

P(Rain | Cloudy)

Cloudy Rain=yes|Rain=no
no 0.2 0.8
yes 0.8 0.2

P(WetGrass | Sprinkler, Rain)

Sprinkler |Rain WetGrass=yesWetGrass=no
on no (0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes 0.90 0.10
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Learning the parameters

 Given the data D, how should | fill the
conditional probability tables?

 Bayesian answer:

- You should not. If you do not know them, you will
have a priori and a posteriori distributions for them.

- They are many, but again, the independence comes
to rescue.

- Once you have distribution of parameters, you can
do the prediction by model averaging.

- Very similar to Bernoulli case.
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A Bayesian network revisited

©

C
Cloudy=no |Cloudy=yes
O 0.5 0.5
C . .
@R|C
@S|C Rain=yes Rain=no
. : Rlc=no" (0.2 0.8
Sprinkler=on Sprinkler=off :
: R|C=yes’ 0.8 0.2
sic=no” 0.5 0.5
§iGmyes: 0.9 0.1 & Sprinkler
G)W|S,R
WetGrass=yes WetGrass=no
O sconeno: 0.90 0.10
O isconreyes: 0.99 0.01
O js=ofteno” 0.0 0.99
@W|S=off,R=yes: 0.90 0.10
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A Bayesian network as a
generative model
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A Bayesian network as a
generative model

e

Q)
@W|S=on,R=yes

©
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A Bayesian network as a
generative mode|

e Parameters are
indepengent a priori.

S=off,R=yes

n (d;
— HP<®1|J);
i=1 j=1
where
P(©,;,)=Dir (e ..., )
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a

Generat

R|C=yes

l.i.d, isn't it

a
R|C=no

INg a data set

Rain

no

p D  |Cloudy
R|C=no d
] 1 yes

d no

yes

dN no

yes

 Plate notation:
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Likelihood P(D|©,G)

 For one data vector it was:
P(xq X5 ..., X,|G) HP (xilpags(x;)), or

P(d,|G,0) Hedlmal Whereol11 and pa,; are the

value and the parent configuration of the
variablei in data vectord

P(d, dylG,6e) HHG d Jpa, —HHHszU/

j=1 i=1 i=1 k=1 j=
where N, is the number of data Vectors with parent

configuration j when variablei has the valuek,
r. andq; are the numbers of values and parent

configurations of the variablei.
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Bayesian network learning
N.(a.=1,r.=2)

Cloudy=no |Cloudy=yes
N = =1
c 0 0 NR|C(qR 2,1 =2

I'\J

)

NSlC(qS=2, rS=2)

Rain=yes |Rain=no

Sprinkler=on Sprinkler=off

NR|C=no O O

s|C=no 0 0 0 0
S|C=yes 0
n r; q; N _4 _2
P(D|G,0)= k 1] Ol W|S,R(qW_ T~ )
i=1 k=1 j=1
Nicks th bl WetGrass=yesWetGrass=no
*i picks the variable N 0 0
W|S=0n,R=no
(table) N 0 0
. . W|S=on,R=yes
*| picks the row N, e 0 0
k picks the column | o o
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Bayesian network learning after
(C,S,R,W)=[(no, on, yes, yes), (no,on,no,no)]

N.(a.=1,r.=2)

Cloudy=no |Cloudy=yes

N _ — —),
N _9 =9 ¢ |1+1=2 0 NRlC(qR 2, r.=2)
S|C qS ’'S / \
Rain=yes |Rain=no
Sprinkler=on Sprinkler=off 1 1
Ns|c=no 1+1=2 0 0 0
NSIC=yes 0 0 N ( =4 r =2) /
W|S,R qw W
D|G e H H H lli WetGrass=yes\WetGrass=no
o i=1 k=1 j=1 NW|S=on,R=no 0 1
*i picks the variable (table) N 5o Reyes 1 0
*j picks the row N, ﬁ’R_ 0 0
*k picks the column N
W|S=0ff R=yes 0 0

er, number of columns in table i

«q, number of rows in table i
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Bayesian network learning
after a while (20 data vectors)

NC
Cloudy=no Cloudy=yes |
N, 16 4 =20
=16 =4
N e .
3|(.3 | Rain=yes Rain=no
Sprinkler=on Sprinkler=off \ N 13 =16
NS|C=no 10 6 =16 o 0 : 4
S|C=yes 1 3 = e ]

1
1
Z
=
(0]
A
|
1 ‘\\l W
|
o

n r. q:
S — WetGrass=yes\WetGrass=no |
N
<D|G 9) ]i!: IH 1_11: eikU NW|S=on,R=no 2 3=9
i _
*| picks the variable (table) Nyyis-on Reyes 1 5 =6
j picks the row Niws=oftReno 6 2=8
*k picks the column [ — 0 1=

er, number of columns in table |

«(, humber of rows in table i
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Maximum likelihood

» Since the parameters are occur separately in
likelihood we can maximize the terms
independently:

ik A N

PDIG,O-TTTITIof = 8-t

i=1 k=1 j=1
ZN

e S0 you simply normalize the rows in the
sufficient statistics tables to get ML-parameters.

» But these parameters may have zero
probabillities:

- not good for prediction; hear the Bayes call ....
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Learning the parameters - again

 Given the data D, how should | fill the
conditional probability tables?

 Bayesian answer:

- You should not. If you do not know them, you will
have a priori and a posteriori distributions for
them.

- They are many, but again, the independence
comes to rescue.

- Once you have distribution of parameters, you can
do the prediction by model averaging.

- Very similar to the Bernoulli case.
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Prior x Likelihood

* A priori parameters independently Dirichlet:

n 4 n 4 r(zl(xljk) Iy

P(0]o)= H P(e)=]] H1 P(©y)=I1 1_[1 _— 11_[1 o5
0 T [T (e
 Likelihood Compatlble with conjugate prior:

* Yields a S|mple posterlor
P(0O|D, ) HHP (04N, &),

i=1 j=1

where P(0, |NU, &;)=Dir (N ;+«;)
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Predictive distribution P(d|D,a,G)
n g Z Nl]k—l_(xljk) r; N 9
« Posterior: P(0|D,«)=]T]1- [ ] oz
i=1 j=1 k 1
HF k—l_cxyk
* Predictive distribution:
P(d|D,cx,G):fP(d,9|D,o<)de=fP(d|e)P(e|D,cx)d9
0
=/, HP (0/D, )d
:F!: f eipaidiP< lpaidi|NipaidilO(ipaidi>deipaidi
=1 0ipga,
:ﬁéipaidi:lﬂ[ szad+(xzpad
i=1 i=1
kzl Nipaik—l_(xipaik
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Predictive distribution

* This means that predictive distribution

n
szad+0(

P(d|D,0(,G)=H
=1
Z Nipaik_l_(xipaik
k=1

can be achieved by just setting
N e+

ijk
Oy = N ..+
ij Ky

Ipa.d.

» SO just gather counts Nijk, add Q, to them and
normalize.

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki V-18




22.02.11

Being uncertain about the Bayesian
network structure
 Bayesian says again:

- If you do not know it, you should have an a priori
and the a posteriori distribution for it.

P(D|G)P(G)

P(GID)=—F75

- Likelihood P(D|G) is called the marginal
likelihood and with certain assumptions, it can
be computed in closed form

- Normalizer we can just ignore.

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki
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Prediction over model structures
P(X|D)=)_ P(X|M,D)P(M|D)
=> [ P(x|©,M,D)P(O|M ,D)d® P(M|D)

<Y P(X|®(D),M)P(D|M)P(M)

=> P(X|®(D),M) [ P(D|®, M)P(O|M)d© P(M)

 This summation is not feasible as it goes over a
super-exponential number of model structures

 Does NOT reduce to using a single expected model
structure, like what happens with the parameters

» Typically use only one (or a few) models with high
posterior probability P(M | D)
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Averaging over an equivalence class

» Boils down to using a single model
(assuming uniform prior over the models
within the equivalence class):

P(X|E)=) P(X|M,E)P(M|E)

MeFE
1
=|E|P(X|M)—;
E]|
—P(X|M)

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki
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Model Selection

* Problem: The number of possible
structures for a given domain is more
than exponential in the number of

variables
e Solution: Use only one or a handful of
"good” models

* Necessary components:
- Scoring method (what is "good™?)

- Search method (how to find good models?)
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Good models?

* In marginalization/summation/model
averaging over all the model structures, the
predictions are weighted by P(M | D), the
posteriors of the models given the data

* If have to select one (a few) model(s), it
sounds reasonable to use model(s) with the
argest weight(s)

* P(M| D) =P(D [ M)P(M)/P(D)
 Relevant components:

- The structure prior P(M)
- The marginal likelihood (the "evidence™) P(D | M)

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki V-24
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How to set the structure prior P(M)?

 The "standard” solution: use the uniform prior
(i.e., ignore the structure prior)

» Sometimes suggested: P(M) proportional to the
number of arcs so that simple models more
probable

- Justification???

* Uniform over the equivalence classes?
Proportional to the size of the equivalence class?
What about the nestedness (full networks
"contain” all the other networks)...?

« ...still very much an open issue

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki V-25



22.02.11

Marginal likelihood P(D\G,a)

P(D|G/0(): ( 1|G 0‘) ( 2|d1,G/0()- ( N|d N 1,G 0‘)

_HH ﬁ [ (Nt )

11]1FN+0() I (o)
Cloudy=no |Cloudy=yes
Ne |1+1=2 0
\Rain=yes Rain=no
Sprinkler=on Sprinkler=off 1 1
Ns|c=no 1+1=2 0 0 0
NS|C=yes 0 O /
WetGrass=yes WetGrass=no
NW|S=on,R=no O 1
NW|S=on,R=yes 1 O
NW|S=off,R=no O O
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Computing the marginal likelihood

e Two choices:

1 Calculate the sufficient statistics N;i and
compute P(D | M) directely using the (gamma)
formula on the previous slide

2 Use the chain rule, and compute P(d4,...d, | M)
= P(dq [ M)P(d2 | d1,M)...P(dp | d1,...,dn-1 | M)
by using iteratively the predictive distribution
(slide 18)

 OBS! The latter can be done in any order,
and the result will be the same (remember
Exercise 27)!
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How to set the hyperparameters a?

* Assuming...

- a multinomial sample,

- Independent parameters,
- modular parameters,

- complete data,

- likelihood equivalence,

...Implies a certain parameter prior. BDe
("Bayesian Dirichlet with likelihood equivalence”)

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki V-28
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BDeu

* Likelihood equivalence: two Markov
equivalent model structures produce to the
same predictive distribution

 Means also that P(D |M) =

and M' equivalent

e Let o= Z(xl],where(x —Z(x
. BDe means that Qi = a for all i, and a is the

equivalent sample size

* An important special case: BDeu ("u” for

X

uniform”): =~ Oy =—

qi7;

P(D [M") if M

X

q;
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Model selection in the Bernoulli case

Toss a coin 250 times, observe D: 140 heads and 110 tails.
Hypothesis H,: the coin is fair (P(6=0.5)=1)
Hypothesis H,: the coin is biased

Statistics:
- The P-value is 7%

- ‘“suspicious”, but not enough for rejecting the null hypothesis (Dr. Barry Blight,
The Guardian, January 4, 2002)

Bayes:
- Let’'s assume a prior, e.g. Beta(a,a)
- Compute the Bayes factor

0.0& M —
0.04 ﬂH‘
D|H,) | P(D|0,H, a)P(0|H, a)d0
— 0.02 140
o.M

P
P(D|H0) 1/2*°

—/
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Equivalent sample size and the Bayes
Factor

T

s

5
I
£

£ 0,5
)

(7))

Q

? 0 [ [ [ [ [ [ [ [
[41]

037 1 2,7 7,4 20 55 148 403 1096

Equivalent sample size
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- Hypothesis H,: the coin is fair (P(©6=0.5)=1)
» Hypothesis H,: the coin is biased

« Statistics:
- The P-value is 4,97%

- Bayes:
- Let's assume a prior, e.g. Beta(a,a)
- Compute the Bayes factor

P(D|H,) | P(D|6,H, a)P(6|H, a)do
P(D|H0) 1/2*°

- Reject the null hypothesis at a significance level of 5%

0.05
0.04
0.03
0.02
0.01

0

0

50

A slightly modified example

* Toss a coin 250 times, observe D = 141 heads and 109 tails.

HO
H1

140

100 150 200 250

Probabilistic Models, Spring 2011

Petri Myllymaki, University of Helsinki
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Equivalent sample size and the Bayes
Factor (modified example)

2.5

z . / \
5 y

8 ~
£ 1

s

s 0,5

.:; y /

0

= O

m

037 1 2,7 7,4 20 55 148 403 1096

Equivalent sample size
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Lessons learned NH
» Classical statistics and the Bayesian approach may give

contradictory results

- Using a fixed P-value threshold is problematic as any null
hypothesis can be rejected with sufficient amount of data

- The Bayesian approach compares models and does not aim at an
“absolute” estimate of the goodness of the models

» Bayesian model selection depends heavily on the priors selected

- However, the process is completely transparent and suspicious
results can be criticized based on the selected priors

- Moreover, the impact of the prior can be easily controlled with
respect to the amount of available data

* The issue of determining non-informative priors is controversial
- Reference priors

- Normalized maximum likelihood & MDL (see
www.mdl-research.org)
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- 22.02.11
D 0

On Bayes factor and Occam’s razor

» The marginal likelihood (the “evidence”) P(D |
H) yields a probability distribution (or density)
over all the possible data sets D.

» Complex models can predict well many
different data sets, so they need to spread the
probability mass over a wide region of models

P(D | Hy)

7T T
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Hyperparameters in more complex
cases
e Bad news: the BDeu score seems to be

quite sensitive to the equivalent sample
size (Silander & Myllymaki, UAI'2007)

iy |

..........................

.....

}.i",____"l'.FI'. 1: Mumher of arces in the BDen ._-_.I_'|r_i_|'|'|;:_|5_ metwark Figure 2: BDeu scores of different MAP models for the
for the Yeast data as a function of o. Liver data as a function of a.
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So which prior to use?

 An open issue

* One solution: use the "priorless”
Normalized Maximum Likelihood approach

A more Bayesian solution: use the Jeffreys
prior

- Can be formulated in the Bayesian network
framework (Kontkanen et al., 2000), but
nobody has produced software for computing it
In practice (good toplc for your thesis!)

- B-Course: u——Zr
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Learning the structure when
each node has at most one parent

 The BD score is decomposable'
max,, P(D|M)= maXMHP [ D]|Pa;" [ D])
—=min,, ). f (X, Pa ),
whete £, (X . Pa"")=log P( X [D]|Pa}'[ D))"
 For trees (or forests), can use the minimum

spanning tree algorithm (see Chow & Liu,
1968)

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki
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The General Case

* Finding the best structure is NP-hard, if
max. number of parents > 1
(Chickering)

 New dynamic programming solutions
work up to ~30 variables (Silander &
Myllymaki, UAI'2006) ‘ G
+ Heuristics ]
- Greedy bottom-up/top-down TR L
- Stochastic greedy (with restarts) ‘--.L_ '-" ":'|

- Simulated annealing and other I\/Ionte-
Carlo approaches

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki V-40
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Local Search

/ * prior structure
initialize - empty graph
structure \ * max spanning tree
* random graph
Y
score
all possible

single changes perform

- best

l change

any
changes
etter?

—>

yes

no

Y
return

saved structure

extension:
multiple restarts

Probabilistic Models, Spring 2011

Petri Myllymaki, University of Helsinki V-41



22.02.11

Simulated Annealing

structure

<~
<-

initialize -
and temperature T| ———__

pick random change
and compute:
p=exp(score/T);
decrease T;

* prior structure

* empty graph

* max spanning tree
* random graph

Y

no

perform
change
with prob

P

A

|

quit?

yes
Y

return
saved structure

Probabilistic Models, Spring 2011
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Evaluation Methodology

random
sample data
Gold / score + ) learned
standard search network(s)
network o
| ~ \;l . |/ — -
noise ,prior

network

-

Measures of utility of learned network:
- Cross Entropy (Gold standard network, learned network)
- Structural difference (e.g. #missing arcs, extra arcs, reversed arcs,...)

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki V-43
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Problems with the Gold standard
methodology

» Structural criteria may not properly reflect
the quality of the result (e.g., the relevance
of an extra arc depends on the parameters)

* Cross-entropy (Kullback-Leibler distance)
hard to compute

* With small data samples, what is the
"correct” answer? Why should the learned
network be like the generating network?

* Are there better evaluation strategies? How
about predictive performance?

Probabilistic Models, Spring 2011 Petri Myllymaki, University of Helsinki
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