

Aspects in learning

- Learning the parameters of a Bayesian network
 - Marginalizing over all all parameters
 - Equivalent to choosing the expected parameters
- Learning the structure of a Bayesian network
 - Marginalizing over the structures not computationally feasible
 - Model selection

A Bayesian network

P(Cloudy)

Cloudy

Sprinkler

P(Sprinkler | Cloudy)

Cloudy	Sprinkler=on	Sprinkler=off	
no	0.5	0.5	
ves	0.9	0.1	

P(Rain | Cloudy)

Cloudy	Rain=yes	Rain	=no
no	0.2	8.0	
yes	0.8	0.2	

Wet Grass

Rain

P(WetGrass | Sprinkler, Rain)

Sprinkler	Rain	WetGrass=yes	WetGrass=no
on	no	0.90	0.10
	yes	0.99	0.01
off	no	0.01	0.99
off	yes	0.90	0.10

Learning the parameters

- Given the data D, how should I fill the conditional probability tables?
- Bayesian answer:
 - You should not. If you do not know them, you will have a priori and a posteriori distributions for them.
 - They are many, but again, the independence comes to rescue.
 - Once you have distribution of parameters, you can do the prediction by model averaging.
 - Very similar to Bernoulli case.

A Bayesian network as a generative model

D	Cloudy	Rain
d ₁	yes	no
d_2	no	yes
$d_{_{\rm N}}$	no	yes

Plate notation:

Likelihood P(D|Θ,G)

For one data vector it was:

$$P(x_{1,}, x_{2,}, ..., x_{n}|G) = \prod_{i=1}^{n} P(x_{i}|pa_{G}(x_{i})), \text{ or }$$

$$P(d_1|G,\theta)=\prod_{i=1}^n\theta_{d_{1i}|pa_{1i}}$$
, where d_{1i} and pa_{1i} are the

value and the parent configuration of the variable i in data vector d_1 .

$$P(d_{1}, d_{2}, ..., d_{N}|G, \theta) = \prod_{j=1}^{N} \prod_{i=1}^{n} \theta_{d_{ji}|pa_{ji}} = \prod_{i=1}^{n} \prod_{k=1}^{r_{i}} \prod_{j=1}^{q_{i}} \theta_{ik|j}^{N_{ijk}},$$

where N_{ijk} is the number of data vectors with parent configuration j when variable i has the value k, r_i and q_i are the numbers of values and parent configurations of the variable i.

Bayesian network learning

$$N_{c}(q_{c}=1, r_{c}=2)$$

	Cloudy=no	Cloudy=yes
N _C	0	0

Cloudy

N	(a =	- 2 I	r =	21
' RIC	(M _R	— ,	R	T /

Rain=no

Rain=yes

	Sprinkler=on	Sprinkler=off
N _{S C=no}	0	0
N _{S C=yes}	0	0

Sprinkler	Rain

	n	r_{i}	\boldsymbol{q}_i	
$P(D G,\theta)=$	П	П	П	$\theta_{ik}^{N_{ijk}}$
	i=1	k=1	j=1	IK J

- •i picks the variable (table)
- •j picks the row
- •k picks the column

Wet Grass) N	(a = 4)	r = 2
		('W - ',	- W - /

	WetGrass=yes	WetGrass=no
$N_{\text{W S=on,R=no}}$	0	0
$N_{\text{W S=on,R=yes}}$	0	0
N _{W S=off,R=no}	0	0
N W S=off,R=yes	of Halainki 0	0

Probabilistic Models, Spring 2011

Petri Mynymaki, University of Helsinki

Bayesian network learning after

(C,S,R,W)=[(no, on, yes, yes), (no,on,no,no)]

$$N_{SIC}(q_S=2, r_S=2)$$

	Sprinkler=on	Sprinkler=off
N _{S C=no}	1+1=2	0
N _{S C=yes}	0	0

$$P(D|G,\theta) = \prod_{i=1}^n \prod_{k=1}^{r_i} \prod_{j=1}^{q_i} \theta_{ik|j}^{N_{ijk}}$$

- •i picks the variable (table)
- •j picks the row
- •k picks the column
- r_i, number of columns in table i
- •q_i, number of rows in table i

N	C((q_c)	=	1,	r _c	=2)

	Cloudy=no	Cloudy=yes		
N _c	1+1=2	0	$N_{RIC}(q_{R}=2, r_{R}=2)$	2)
	7		RIC 'R R	

Rain=ves

Rain=no

N I	/	_ 1		-0 \
IN	((=4.	r =	=2)
· WIS	$_{R}(q_{v}$, ,	· W	— /

	WetGrass=yes	WetGrass=no
N _{W S=on,R=no}	0	1
N _{W S=on,R=yes}	1	0
N _{W S=off,R=no}	0	0
N W S=off,R=yes	0	0

	Rain=yes	Rain=no		
N _{R C=no}	3	13	=	16
N R C=yes	4	0	= .	4
	= 7	/ = 13	'	

		$r_{_i}$		
$P(D G,\theta)=$	П	П	П	$\theta_{ik}^{N_{ijk}}$
	i=1	k=1	i=1	IK J

- •i picks the variable (table)
- •j picks the row
- k picks the column
- •r, number of columns in table i
- •q_., number of rows in table i

	WetGrass=yes	WetGrass=no	
N _{W S=on,R=no}	2	3	= 5
N _{W S=on,R=yes}	1	5	= 6
N _{W S=off,R=no}	6	2	= 8
N _{WIS=off,R=ves}	0	1	= 1

Maximum likelihood

 Since the parameters are occur separately in likelihood we can maximize the terms independently:

$$P(D|G,\theta) = \prod_{i=1}^n \prod_{k=1}^{r_i} \prod_{j=1}^{q_i} \theta_{ijk}^{N_{ijk}} \quad \Rightarrow \quad \hat{\theta}_{ijk} = \frac{N_{ijk}}{\sum_{k'=1}^{r_i} N_{ijk'}}$$

- So you simply normalize the rows in the sufficient statistics tables to get ML-parameters.
- But these parameters may have zero probabilities:
 - not good for prediction; hear the Bayes call

Learning the parameters - again

- Given the data D, how should I fill the conditional probability tables?
- Bayesian answer:
 - You should not. If you do not know them, you will have a priori and a posteriori distributions for them.
 - They are many, but again, the independence comes to rescue.
 - Once you have distribution of parameters, you can do the prediction by model averaging.
 - Very similar to the Bernoulli case.

Prior x Likelihood

A priori parameters independently Dirichlet:

$$P(\Theta|\alpha) = \prod_{i=1}^{n} P(\Theta_{i}) = \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} P(\Theta_{i|j}) = \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \frac{\Gamma(\sum_{k=1}^{i} \alpha_{ijk})}{\prod_{k=1}^{r_{i}} \Gamma(\alpha_{ijk})} \prod_{k=1}^{r_{i}} \theta_{ijk}^{\alpha_{ijk}-1}$$

Likelihood compatible with conjugate prior:

$$P(D|G, heta) = \prod_{i=1}^n \prod_{j=1}^{q_i} \prod_{k=1}^{r_i} heta_{ijk}^{N_{ijk}}$$

Yields a simple posterior

$$P(\Theta|D, \alpha) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} P(\Theta_{ij}|N_{ij}, \alpha_{ij}),$$
 where $P(\Theta_{ij}|N_{ij}, \alpha_{ij}) = Dir(N_{ij} + \alpha_{ij})$

Predictive distribution $P(d|D,\alpha,G)$

- Posterior: $P(\Theta|D, \alpha) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\sum_{k=1}^{n} N_{ijk} + \alpha_{ijk})}{\prod_{k=1}^{r_i} \Gamma(N_{ijk} + \alpha_{ijk})} \prod_{k=1}^{r_i} \theta_{ijk}^{N_{ijk} + \alpha_{ijk} 1}$
- Predictive distribution:

$$\begin{split} P(d|D,\alpha,G) &= \int_{\theta} P(d,\theta|D,\alpha) d\theta = \int_{\theta} P(d|\theta) P(\theta|D,\alpha) d\theta \\ &= \int_{\theta} \prod_{i=1}^{n} P(d_{i}|\theta_{i}) P(\theta_{i}|D,\alpha) d\theta \\ &= \prod_{i=1}^{n} \int_{\theta_{ipa_{i}d_{i}}} \theta_{ipa_{i}d_{i}} P(\theta_{ipa_{i}d_{i}}|N_{ipa_{i}d_{i}},\alpha_{ipa_{i}d_{i}}) d\theta_{ipa_{i}d_{i}} \\ &= \prod_{i=1}^{n} \overline{\theta}_{ipa_{i}d_{i}} = \prod_{i=1}^{n} \frac{N_{ipa_{i}d_{i}} + \alpha_{ipa_{i}d_{i}}}{\sum_{l=1}^{r_{i}} N_{ipa_{i}k} + \alpha_{ipa_{i}k}} \end{split}$$

Predictive distribution

This means that predictive distribution

$$P(d|D, \alpha, G) = \prod_{i=1}^{n} \frac{N_{ipa_{i}d_{i}} + \alpha_{ipa_{i}d_{i}}}{\sum_{k=1}^{r_{i}} N_{ipa_{i}k} + \alpha_{ipa_{i}k}}$$

can be achieved by just setting

$$\theta_{ijk} = \frac{N_{ijk} + \alpha_{ijk}}{N_{ij} + \alpha_{ij}}$$

• So just gather counts N_{ijk} , add α_{ijk} to them and normalize.

Being uncertain about the Bayesian network structure

- Bayesian says again:
 - If you do not know it, you should have an a priori and the a posteriori distribution for it.

$$P(G|D) = \frac{P(D|G)P(G)}{P(D)}$$

- Likelihood P(D|G) is called the marginal likelihood and with certain assumptions, it can be computed in closed form
- Normalizer we can just ignore.

Prediction over model structures

$$\begin{split} &P(X|D) = \sum_{M} P(X|M,D) P(M|D) \\ &= \sum_{M} \int_{\Theta} P(X|\Theta,M,D) P(\Theta|M,D) d\Theta P(M|D) \\ &\propto \sum_{M} P(X|\bar{\Theta}(D),M) P(D|M) P(M) \\ &= \sum_{M} P(X|\bar{\Theta}(D),M) \int_{\Theta} P(D|\Theta,M) P(\Theta|M) d\Theta P(M) \end{split}$$

- This summation is not feasible as it goes over a super-exponential number of model structures
- Does NOT reduce to using a single expected model structure, like what happens with the parameters
- Typically use only one (or a few) models with high posterior probability P(M | D)

Averaging over an equivalence class

 Boils down to using a single model (assuming uniform prior over the models within the equivalence class):

$$P(X|E) = \sum_{M \in E} P(X|M, E) P(M|E)$$
$$= |E|P(X|M) \frac{1}{|E|}$$
$$= P(X|M)$$

Model Selection

- Problem: The number of possible structures for a given domain is more than exponential in the number of variables
- Solution: Use only one or a handful of "good" models
- Necessary components:
 - Scoring method (what is "good"?)
 - Search method (how to find good models?)

d the struc ure: SCOTING

Good models?

- In marginalization/summation/model averaging over all the model structures, the predictions are weighted by P(M | D), the posteriors of the models given the data
- If have to select one (a few) model(s), it sounds reasonable to use model(s) with the largest weight(s)
- P(M | D) = P(D | M)P(M)/P(D)
- Relevant components:
 - The structure prior P(M)
 - The marginal likelihood (the "evidence") P(D | M)

How to set the structure prior P(M)?

- The "standard" solution: use the uniform prior (i.e., ignore the structure prior)
- Sometimes suggested: P(M) proportional to the number of arcs so that simple models more probable
 - Justification???
- Uniform over the equivalence classes?
 Proportional to the size of the equivalence class?
 What about the nestedness (full networks "contain" all the other networks)...?
- ...still very much an open issue

Marginal likelihood P(D|G,α)

$$\begin{split} P(D|G, \alpha) &= P(d_1|G, \alpha) P(d_2|d_{1,G}, \alpha) \dots P(d_N|d_{1,\dots,d_{N-1}}, G, \alpha) \\ &= \prod_{i=1}^n \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})} \end{split}$$

Cloudy=no Cloudy=ves

	Oloday III	oloddy yco	
	N _c 1+1=2	0	
		Rain=yes	Rain=no
Sprinkler=on Sprinkler=o	off		1 1
N _{S C=no} 1+1=2	0		0 0
N _{S C=yes} 0	0		
		WetGrass=yes WetG	rass=no
	$N_{W S=on,R=no}$	0	1
	N _{W S=on,R=yes}	1	0
	N _{W S=off,R=no}	0	0
	N		
Probabilistic Models, Spring 2011	Petri W S=off,R=yes	rsity of Helsinki 0	V-26

Computing the marginal likelihood

- Two choices:
 - 1 Calculate the sufficient statistics N_{ijk} and compute P(D | M) directely using the (gamma) formula on the previous slide
 - 2 Use the chain rule, and compute $P(d_1,...d_n \mid M)$ = $P(d_1 \mid M)P(d_2 \mid d_1,M)...P(d_n \mid d_1,...,d_{n-1} \mid M)$ by using iteratively the predictive distribution (slide 18)
- OBS! The latter can be done in any order, and the result will be the same (remember Exercise 2?)!

How to set the hyperparameters α?

- Assuming...
 - a multinomial sample,
 - independent parameters,
 - modular parameters,
 - complete data,
 - likelihood equivalence,

...implies a certain parameter prior: BDe ("Bayesian Dirichlet with likelihood equivalence")

BDeu

- Likelihood equivalence: two Markov equivalent model structures produce to the same predictive distribution
- Means also that P(D |M) = P(D |M') if M and M' equivalent
- Let $\alpha_i = \sum_j \alpha_{ij}$, where $\alpha_{ij} = \sum_k \alpha_{ijk}$ • BDe means that $\alpha_i = \alpha$ for all i, and α is the
- BDe means that α_i = α for all i, and α is the equivalent sample size
- An important special case: BDeu ("u" for "uniform"): $\alpha_{ijk} = \frac{\alpha}{q_i r_i}$, $\alpha_{ij} = \frac{\alpha}{q_i}$

Model selection in the Bernoulli case

- Toss a coin 250 times, observe D: 140 heads and 110 tails.
- Hypothesis H_0 : the coin is fair $(P(\Theta = 0.5) = 1)$
- Hypothesis H₁: the coin is biased
- Statistics:
- The P-value is 7%
- "suspicious", but not enough for rejecting the null hypothesis (Dr. Barry Blight, The Guardian, January 4, 2002)
- Bayes:
- Let's assume a prior, e.g. Beta(a,a)
- Compute the Bayes factor

$$\frac{P(D|H_1)}{P(D|H_0)} = \frac{\int P(D|\theta, H_{1,}a)P(\theta|H_{1,}a)d\theta}{1/2^{250}}$$

Equivalent sample size and the Bayes Factor

A slightly modified example

- Toss a coin 250 times, observe D = 141 heads and 109 tails.
- Hypothesis H_0 : the coin is fair $(P(\Theta=0.5)=1)$
- Hypothesis H₁: the coin is biased
- Statistics:
- The P-value is 4,97%
- Reject the null hypothesis at a significance level of 5%
- Bayes:
- Let's assume a prior, e.g. Beta(a,a)
- Compute the Bayes factor

$$\frac{P(D|H_1)}{P(D|H_0)} = \frac{\int P(D|\theta, H_{1,}a)P(\theta|H_{1,}a)d\theta}{1/2^{250}}$$

Equivalent sample size and the Bayes Factor (modified example)

Lessons learned

- Classical statistics and the Bayesian approach may give contradictory results
- Using a fixed P-value threshold is problematic as any null hypothesis can be rejected with sufficient amount of data
- The Bayesian approach compares models and does not aim at an "absolute" estimate of the goodness of the models
- Bayesian model selection depends heavily on the priors selected
- However, the process is completely transparent and suspicious results can be criticized based on the selected priors
- Moreover, the impact of the prior can be easily controlled with respect to the amount of available data
- The issue of determining non-informative priors is controversial
 - Reference priors
- Normalized maximum likelihood & MDL (see www.mdl-research.org)

On Bayes factor and Occam's razor

- The marginal likelihood (the "evidence") P(D | H) yields a probability distribution (or density) over all the possible data sets D.
- Complex models can predict well many different data sets, so they need to spread the probability mass over a wide region of models

Hyperparameters in more complex cases

 Bad news: the BDeu score seems to be quite sensitive to the equivalent sample size (Silander & Myllymäki, UAI'2007)

Figure 1: Number of arcs in the BDeu optimal network for the Yeast data as a function of α .

Figure 2: BDeu scores of different MAP models for the Liver data as a function of α .

So which prior to use?

- An open issue
- One solution: use the "priorless"
 Normalized Maximum Likelihood approach
- A more Bayesian solution: use the Jeffreys prior
 - Can be formulated in the Bayesian network framework (Kontkanen et al., 2000), but nobody has produced software for computing it in practice (good topic for your thesis!)

- B-Course:
$$\alpha = \frac{1}{2n} \sum_{i=1}^{n} r_i$$

Learning the structure when each node has at most one parent

• The BD score is decomposable:

$$\begin{aligned} & \max_{M} P(D|M) = \max_{M} \prod_{i} P(X_{i}[D]|Pa_{i}^{M}[D]) \\ &= \min_{M} \sum_{i} f_{D}(X_{i}, Pa_{i}^{M}), \\ & \text{where } f_{D}(X_{i}, Pa_{i}^{M}) = \log P(X_{i}[D]|Pa_{i}^{M}[D])^{-1} \end{aligned}$$

 For trees (or forests), can use the minimum spanning tree algorithm (see Chow & Liu, 1968)

The General Case

- Finding the best structure is NP-hard, if max. number of parents > 1 (Chickering)
- New dynamic programming solutions work up to ~30 variables (Silander & Myllymäki, UAI'2006)
- Heuristics:
 - Greedy bottom-up/top-down
 - Stochastic greedy (with restarts)
 - Simulated annealing and other Monte-Carlo approaches

Local Search

Simulated Annealing

Evaluation Methodology

Measures of utility of learned network:

- Cross Entropy (Gold standard network, learned network)
- Structural difference (e.g. #missing arcs, extra arcs, reversed arcs,...)

Problems with the Gold standard methodology

- Structural criteria may not properly reflect the quality of the result (e.g., the relevance of an extra arc depends on the parameters)
- Cross-entropy (Kullback-Leibler distance) hard to compute
- With small data samples, what is the "correct" answer? Why should the learned network be like the generating network?
- Are there better evaluation strategies? How about predictive performance?