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Handling Missing Data
● Different types of missing data: missing completely a 

random, missing at random, not missing at random

● Latent (hidden) variable models, like the finite 
mixture model, always have to deal with hidden data

● We either are interested in the missing data (e.g., we 
could be interested in the values of the a hidden 
variable if it corresponds to a clustering of data), or it 
is treated as ”nuicance” (e.g., if the hidden ”class” 
variable is only used as a modeling tool to produce a 
joint probability distribution on the observed 
variables)

● In the latter case, a Bayesian attempts to marginalize 
over the hidden data
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The Finite Mixture Model

● With hidden data imposed by C, it is 
computationally infeasible to compute
− Maximum likelihood parameters
− Expected parameters (or max. posterior)
− Marginal likelihood

● Model ”structure” learning: how many values for C?
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K-Means

● Normally, a geometric clustering algorithm
● A probabilistic version:

1 Start with a random initial clustering c1,...,cn

2 Build a model  Θ using complete data (Xn,Cn)

3 Using Θ, assign each data vector X 
independently to it's most probable cluster 
(i.e., find max P(Ci | Xi, Θ) for all i)

4 Go to 2.
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Expectation Maximization (EM)

● A ”soft” version of K-Means
● Intuitively: data vectors are assigned 

”fractionally” to each cluster (with the 
fractions determined by the classification 
probabilities)

● The new model Θ is computed from semi-
complete data (fractional sufficient 
statistics)

● For HMMs: the Baum-Welch algorithm
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K-Means and EM in practice
● Both provably monotonically improve the 

likelihood (or posterior), so they converge 
to a local optimum only 

● Convergence can be slow
● To get reasonable results, need to repeat 

several runs from different starting points
● Can be used together: e.g., first run K-

means, then continue with EM
● Can be used to find good starting points for 

other heuristics
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Structure learning with FMM's

● Can find models Θ using different number of values 
for the hidden variable (different number of 
parameters)

● Which Θ to choose? (max. likelihood chooses always 
the model obtained with the highest number of 
parameters)

● Computing the marginal likelihood not feasible with 
the missing data imposed by the hidden variable

P (K∣D)∝P(D∣K )P (K )
P (D∣K )=∫P(D∣K ,θ)P (θ∣K )d θ

P (D∣K ,θ)=∏
i
∑
k=1

K

P(d i∣c k ,θ)P(ck∣θ)
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Approximating the marginal likelihood

● Laplace (Gaussian) approximation
● Bayesian Information Criterion (BIC)
● Akaike Information Criterion (AIC)
● Missing data completion
● Stochastic methods (MCMC etc.)
● Variational methods
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Laplace's method / 
Gaussian approximation

● Based on Taylor approximation at the maximum 
likelihood parameters:

−log P D∣M ≈−log P D∣M , −log P  ∣M  d
2

log n
2

log∣I  ∣

● Here ”d” is the number of parameters, ”n” is the 
size of the data, and |I(Θ)| is the determinant of 
the Fisher information matrix at Θ

● A ”penalized log-likelihood” criterion: likelihood 
grows with more complex models, but it 
compensated by the penalizing factors

● Jeffreys' prior: P ∣M = ∣I ∣
∫∣I ∣d 
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BIC and AIC

● BIC:

● AIC:

● Both converge asymptotically to the marginal 
likelihood (minus a constant)

● Hence marginal likelihood is also in a sense a 
penalized maximum likelihood criterion!

● It is a non-trivial problem to determine the 
”correct” value of d

−logP D∣M ≈−logP D∣M ,  d
2

log n

−logP D∣M ≈−logP D∣M , d
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Missing data completion

● Cn is like an unknown ”parameter”

● If you cannot marginalize over a parameter, 
you can try to maximize it

● As the ”parameter” Cn is actually data, it is 
easy to think of reasonable ”priors” P(Cn | M)

● With fixed M, Cn can be optimized with K-
means, EM, or whatever...

P  X n∣M =∑
C n

P X n ,Cn∣M =∑
C n

P  X n∣C n , M P C n∣M 

P  X n∣M ∝maxC nP X n∣C n ,M P C n∣M 

● Direct marginalization not feasible:
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Supervised BN Learning
● Parameter learning

− Generative modeling:
− Discriminative modeling:
− In general, the result is not the same!

● Structure learning

− Generative modeling:
− Discriminative modeling:
− In general, the result is not the same!
− Marginal conditional likelihood not feasible 

• Kontkanen et al. (UAI 1999): approximations, 
connection to cross-validation

Find arg max P  X n ,Cn∣M ,

Find arg max P Cn∣X n , M ,

Find arg maxM P X n ,C n∣M 
Find arg maxM P C n∣X n , M 
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Optimizing the conditional likelihood

● Bad news: even for the Naive Bayes model, the 
maximum of the conditional likelihood cannot be 
presented in closed form

● Good news: For some Bayesian networks (e.g., 
NB and TAN), the the conditional log-likelihood 
space is concave (Roos et al., MLJ 2005) → it 
has a single global optimum

● ”Supervised” Naive Bayes = logistic regression
● For model structure learning: marginal conditional 

likelihood not feasible (Kontkanen et al., UAI 
1999)
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Models with many hidden nodes
● Is it sensible to first learn a Bayesian 

network (NP-hard) and then try to 
transform it to a simpler representation for 
probabilistic inference (NP-hard)?

● How about learning directly structures 
where inference is easy?
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Dynamic Bayesian networks
● Complex Markov models involving 

temporal dependencies
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Undirected 
Graphical 

Models



Probabilistic Models, Spring 2011  Petri Myllymäki, University of Helsinki VI-17

22.02.11

Definitions of independence
● Following definitions equivalent for X1⊥ X2 | 

Z:
− p(X1,X2 | Z) = p(X1 | Z)p(X2 | Z) whenever p(Z)>0
− p(X1 | X2,Z) = p(X1 | Z) whenever p(X2,Z)>0
− p(X2 | X1,Z) = p(X2 | Z) whenever p(X1,Z)>0
− p(X1,X2,Z) = f(X1,Z)g(X2,Z) for non-negative 

functions f(·),g(·)

● Definitions symmetric in X1 and X2
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Image models

● The graph on the 
right says that each 
pixel is influenced 
only by its 
neighbors
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Undirected graphical models
● Local Markov property:

−  X ┴ (G-nbrs(X)-{X}) | nbrs(X)
− Minimal independence properties to uniquely 

determine a graph
● Global Markov property:

− For all X1,X2,Z: X1 ┴ X2 | Z iff X1 is separated in 
the graph from X2 by Z.

− How to test for independence
● Functional form:

− Product over cliques C (XC denoting the 
members of the clique)

− Definition for purposes of computation

P X 1 , ... , X n=∏
C

f CX C
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For example...

● Local Markov property:
− E.g.: B ┴ E,F | A,C,D; C ┴ A,F | B,D,E;...

● Global Markov property:
− E.g.: A,B ┴ E,F | C,D.

● Functional form: 
− P(A,B,C,D,E)=e(A,B)f(B,C,D)g(C,D,E)h(E,F)

AA BB

CC

DD

EE FF
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The three properties are 
equivalent

● Global Markov property implies the local
● Functional form implies the global Markov 

property
● Hammersley-Clifford theorem: Local 

Markov property implies the functional form 
(for discrete variables)
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Markov Random Fields
● Undirected graphical models, a.k.a. Markov 

networks
● Typically use alternative functional form:

● Sometimes also called the Gibbs 
distribution

● The cliquewise functions fC are called 
clique potentials

● The normalizer Z is called the partition 
function

P  X = 1
Z

exp ∑
C

C f CX C 
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Mapping a DAG to a MRF is 
possible...

● Mapping is straightforward if a node and its 
parents in a DAG belong to the same clique 
in the MRF

● This means that to get the corresponding 
MRF, we need to ”marry” nodes with common 
children (this is called moralizing the graph)

● It follows that inference in undirected graphs 
is NP-hard too...

∏
i
P X i∣Pai ∏

C
f C  X C 
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...but DAGs and MRFs are not 
equivalent independence models

● A ┴ D | B,C and

B ┴ C | A,D

● A ┴ B and 

A ┴/// B | C

AA

DD

CCBB

BB

CC

AA
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Final remarks
● The Bayesian framework offers an elegant, consistent 

formalism for uncertain reasoning

● The basic principle is simple: compute the probability of what 
you want to know while marginalizing over the other unknown 
factors

● We have focused on the discrete Dirichlet-multinomial case 
and directed acyclic graphs (Bayesian networks), but the 
same principles apply with other probabilistic model families 
as well

● Graphical models offer a unifying framework where many 
popular methods are easily understood

− E.g. Factor analysis, PCA, ICA, mPCA, HMM, Kalman 
filter, switching Kalman filter, AR models,...

− See: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
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