
Reading from and writing into files

Timo Karvi

September, 2012

Timo Karvi () Reading from and writing into files September, 2012 1 / 32

File pointers I

Files are handled through file pointers which are defined using the
type FILE:

FILE* fp;

A concrete file can be opened and connected to fp using fopen

function:

fp = fopen("fileA", "r");

Here, ”fileA” is a file name and ”r” means that the file is opened for
reading. Instead of ”r”, other possibilities are: ”w” (write), ”a”
(append), ”rb” (read binary), ”wb” (write binary).

A file is closed with fclose command:

fclose(fp);

In the next example we use these functions with putc and puts. The
first prints a character into a stream, the latter prints a string into the
standard stream. Streams are either standard streams (screen,
keyboard) or user defined (for example files).

Timo Karvi () Reading from and writing into files September, 2012 2 / 32

Example 1: Writing characters to a disk file I

/* This program reads characters typed at the keyboard

and writes them

one at a time to a disk file.

*/

#include <stdio.h>

int main(void)

{

FILE *fptr;

char ch;

puts("Enter what you want to save in the file.");

puts("End your input with a Return key.");

fptr = fopen("file-a.txt","w");

Timo Karvi () Reading from and writing into files September, 2012 3 / 32

Example 1: Writing characters to a disk file II

while ((ch = getchar()) != ’\n’)

putc(ch, fptr);

fclose(fptr);

puts("Your input string is saved in file-a.txt");

puts("End of my act!");

return 0;

}

Timo Karvi () Reading from and writing into files September, 2012 4 / 32

Example 2: Reading from and writing characters to a disk

file I

In Example 2, we use the previous i/o functions, this time with error
checking. The ” character in the fopen statement means that the file
is openend for reading and writing.

In addition, we the exit(int) statement. It stops the execution of
the program and outputs the error code given as a parameter.

Second extra function is the rewind function. rewind(fptr) moves
the file position indicator to the beginning of the stream pointed by
fptr.

Timo Karvi () Reading from and writing into files September, 2012 5 / 32

Example 2: Reading from and writing characters to a disk

file II

/* This program reads characters typed at the keyboard

and writes them

one at a time to a disk file,

then reads from the same file and

displays the characters.

*/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fptr;

int ch;

puts("Enter what you want to save in the file.");

Timo Karvi () Reading from and writing into files September, 2012 6 / 32

Example 2: Reading from and writing characters to a disk

file III

puts("End your input with a Return key.");

if ((fptr = fopen("file-a.txt", "w+")) == NULL)

{

printf("Failed to open file: file-a\n");

exit(1);

}

while ((ch = getchar()) != ’\n’)

putc(ch, fptr);

rewind(fptr);

puts("The contents of the file file-a.txt is : ");

Timo Karvi () Reading from and writing into files September, 2012 7 / 32

Example 2: Reading from and writing characters to a disk

file IV

while ((ch = getc(fptr)) != EOF)

putchar(ch);

fclose(fptr);

puts("\nEnd of my act! :-) ");

return 0;

}

Timo Karvi () Reading from and writing into files September, 2012 8 / 32

Example 3: Reading and writing strings I

In Example 3, we use the library string and its functions.

fgets reads a string from a stream to an array. The third parameter
is the length of the string. (The other option to read a string from
the standard input is gets, but its use is dangerous, because it has no
parameter for the length of the string. That’s why its use is
prohibited or at least the system gives a warning.)

strlen gives the elngth of the string.

fputs writes a string to a file.

We add a newline character to the end of the string with strcat

function.

Timo Karvi () Reading from and writing into files September, 2012 9 / 32

Example 3: Reading and writing strings II

/* This program reads and writes strings from and to a file.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

FILE *fptr;

char string [81];

puts("Enter what you want to save in a file.");

puts("End each line with a Return key.");

puts("Enter a Return key at the beginning of the line to END

Timo Karvi () Reading from and writing into files September, 2012 10 / 32

Example 3: Reading and writing strings III

if ((fptr = fopen("file-a.txt", "w+")) == NULL)

{

printf("Failed to open file: file-a.txt\n");

exit(1);

}

while ((strlen(fgets(string,81,stdin))) > 1)

{

strcat(string, "\n");

fputs(string, fptr);

}

rewind(fptr);

puts("The contents of the file file-a.txt are: ");

Timo Karvi () Reading from and writing into files September, 2012 11 / 32

Example 3: Reading and writing strings IV

while ((fgets(string, 80, fptr)) != NULL)

printf("%s", string);

fclose(fptr);

puts("End of my act! :-) \n");

return 0;

}

Timo Karvi () Reading from and writing into files September, 2012 12 / 32

Reading and writing binary data I

Two functions from the stdio library are used to perform binary I/O:

int fread(void* ar, size_t sz, size_t, count, FILE* fptr);

int fwrite(void* ar, size_t sz, size_t, count, FILE* fptr);

In fread, the first parameter is is a pointer to the array in which the
data will be stored. The type void* is used, because the function
must be able to read data into an array, whose type is unknown. The
function need not know the base type of the array, because it simply
copies the bytes of data directly from the stream into the memory; no
conversion is done.

The second parameter specifies the size of the base type of the data
being read.

The third parameter indicates how many data items will be read in
one input operation.

The function returns the number of bytes actually read.

Timo Karvi () Reading from and writing into files September, 2012 13 / 32

Reading and writing binary data II

/* This program reads and writes a structure to a disk file.

User-defined

functions are defined to handle the file I/O.

*/

#include <stdio.h>

#include <stdlib.h>

struct car {

char maker [40], model [40];

int year; };

FILE * fp;

Timo Karvi () Reading from and writing into files September, 2012 14 / 32

Reading and writing binary data III

int main(void)

{

struct car FirstCar, SecondCar;

/* declaring functions */

void input(struct car * pointer);

void open_it(void);

void write_it(struct car);

struct car read_it(void);

void output(struct car temp);

void close_it(void);

input(&FirstCar);

open_it();

write_it(FirstCar);

Timo Karvi () Reading from and writing into files September, 2012 15 / 32

Reading and writing binary data IV

rewind(fp);

SecondCar = read_it();

output(FirstCar);

output(SecondCar);

fputs("End of my act! :-) \n", stdout);

return 0;

}

Timo Karvi () Reading from and writing into files September, 2012 16 / 32

Reading and writing binary data V

void input(struct car * pointer)

{

/* This function takes a pointer to a structure of

car type.

It reads data items from the keyboard and

saves them in the

specified structure members.

*/

fputs("*** Car Information System ***\n", stdout);

fputs("Maker? ", stdout);

gets(pointer -> maker);

fputs("Model? ", stdout);

gets(pointer -> model);

fputs("Year? ", stdout);

Timo Karvi () Reading from and writing into files September, 2012 17 / 32

Reading and writing binary data VI

fscanf(stdin, "%d", &pointer -> year);

return;

}

Timo Karvi () Reading from and writing into files September, 2012 18 / 32

Reading and writing binary data VII

void output(struct car temp)

{

/* This function takes a structure of type car.

It displays the member

variables of the specified structure.

*/

fprintf(stdout, "your car: %s, %s, %d\n",

temp.maker, temp.model,

temp.year);

return;

}

Timo Karvi () Reading from and writing into files September, 2012 19 / 32

Reading and writing binary data VIII

void open_it(void)

{

/* This function opens the binary file of cars

for read and write. */

if ((fp = fopen("CarInfo.bin", "wb+")) == NULL)

{

fprintf(stderr, "Failed to open file: CarInfo.bin\n");

exit(1);

}

return;

}

Timo Karvi () Reading from and writing into files September, 2012 20 / 32

Reading and writing binary data IX

void close_it(void)

{

fclose(fp);

}

Timo Karvi () Reading from and writing into files September, 2012 21 / 32

Reading and writing binary data X

void write_it(struct car temp)

{

fwrite(&temp, sizeof(temp), 1, fp);

return;

}

struct car read_it(void)

{

struct car temp;

fread(&temp, sizeof(temp), 1, fp);

return(temp);

}

Timo Karvi () Reading from and writing into files September, 2012 22 / 32

Command line arguments I

The next example shows how to use command line arguments.
Similarity with Java is clear.

We read the file from the end to the beginning and for this we need
new file functions.

int fseek(FILE *stream, long offset, int origin) sets
the file position data for the given stream. The origin variable can
have one of the following values:

SEEK_SET: Seek from the start of the file.
SEEK_CUR: Seek from the current location.
SEEK_END: Seek from the end of the file.

long ftell(FILE *stream) returns the current file position for
stream, or -1 if an error occurs.

Timo Karvi () Reading from and writing into files September, 2012 23 / 32

Command line arguments II

/* This program accepts command-line arguments and displays the

file in reverse order. In our example, this file is called

reverse.fil, and contains the gibberish sequence of chracters

follows:

.C gninihs ot C morF

*/

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[])

{

Timo Karvi () Reading from and writing into files September, 2012 24 / 32

Command line arguments III

FILE * fpt;

FILE * open_it(char * filename, char * filemode);

void reverse(FILE * filename);

if (argc < 2)

{

fprintf(stdout, "You forgot the filename!\n");

exit(1);

}

fpt = open_it(argv[1], "r");

fprintf(stdout, "Contents of the %s file reversed:\n",

argv[1]);

reverse(fpt);

Timo Karvi () Reading from and writing into files September, 2012 25 / 32

Command line arguments IV

fclose(fpt);

printf("\n");

}

FILE * open_it(char * filename, char * filemode)

{

FILE *fp;

if ((fp=fopen(filename, filemode)) == NULL)

{

fprintf(stderr, "Failed to open file: %s\n", filename);

exit(1);

}

return(fp);

}

Timo Karvi () Reading from and writing into files September, 2012 26 / 32

Command line arguments V

void reverse(FILE * filename)

{

long last, count;

char ch;

/* move the file position indicator

to the end of the file */

fseek(filename, 0L, SEEK_END);

/* store the value of the file position indicator

in the variable last */

last = ftell(filename);

Timo Karvi () Reading from and writing into files September, 2012 27 / 32

Command line arguments VI

for (count = 1L; count <= last; ++count)

{

fseek(filename, -count, SEEK_END);

ch = getc(filename);

putc(ch,stdout);

}

return;

}

Timo Karvi () Reading from and writing into files September, 2012 28 / 32

