
Some Details of C and C Environment

Timo Karvi

October, 2013

Timo Karvi () Some Details of C and C Environment October, 2013 1 / 1

Some Details of C and C Environment

In this last lecture, we look at

Bit orders and storage alignment,

Advanced aspects of C operators, and

Some aspects of numerical calculations.

Timo Karvi () Some Details of C and C Environment October, 2013 2 / 1

Little and big endian systems I

Suppose we have the definition

unsigned int n = 257;

Normally n takes 4 bytes. In this case, two bytes contain the number 1 and
the other two only zero bits. Is the situation in these Linux machines

100 101 102 103

1 1 0 0
(little endian)

or

100 101 102 103

0 0 1 1
(big endian)?

We can test this by defining

Timo Karvi () Some Details of C and C Environment October, 2013 3 / 1

Little and big endian systems II

unsigned int n = 257;

uint8_t* u_ptr;

u_ptr = &n;

printf("Mem addr of n: %lu\n", u_ptr);

printf("First byte: %d ", *u_ptr);

printf("Second byte: %d \n ", *(u_ptr+1));

If 1 and 1 are printed, the system is little endian. If the system is big
endian, maybe zeros are printed or the system crashes (segmentation
fault).

Timo Karvi () Some Details of C and C Environment October, 2013 4 / 1

Bit order in a byte I

Assume the definitions

uint8_t byte = 1;

Is the byte now

1000 0000

or

0000 0001 ?

We can examine this with shift operations. If the first were the case, then

byte >> 1;

would produce the value 2. If the latter, then

byte << 1;

would produce 2. It turns out that the second alternative happens in Linux
machines.

Timo Karvi () Some Details of C and C Environment October, 2013 5 / 1

Storage alignment I

Consider the following structure definition:

typedef struct {

short Data1;

short Data2;

short Data3;

short Data4;

} Data;

Then sizeof(Data) = 8. Let’s consider another structure

typedef struct {

char Data1;

short Data2;

int Data3;

char Data4;

} MixedData;

Timo Karvi () Some Details of C and C Environment October, 2013 6 / 1

Storage alignment II

The size of MixedData is 8, but the actual size is 10. So padding bytes are
added by the compiler.

In Linux systems, malloc reserves memory blocks so that the number of
the first byte is divisible by four. However, it seems possible to store an
integer so that it starts from a byte not divisible by four. This kind of
integer position may, however, slow down an execution.

Timo Karvi () Some Details of C and C Environment October, 2013 7 / 1

Operators

We deal with the following:

Assignment combinations.

Lazy evaluation.

Evaluation order and side-effect operators.

Conditional operator.

Timo Karvi () Some Details of C and C Environment October, 2013 8 / 1

Operators: Assignment

All the assignment-combination operators have the same very low
precedence and associate from right to left. Consider for example the
expression

t /= n -= m *= k += 7;

The evaluation starts with k = k + 7 and continues from right to left. So
+ is made before ∗ even if in normal expressions the precedence of
multiplication is higher than the precedence of addition.

Timo Karvi () Some Details of C and C Environment October, 2013 9 / 1

Operators: Lazy evaluation I

With lazy evaluation, when we skip, we skip the right operand.

This is not confusing, when the right operand is only a simple variable.
However, sometimes it is an expression with several operators.

Consider an example:

y = a < 10 || a >= 2 * b && b != 1;

The left operand is a<10 and the right operand is
a>=2*b && b!=1.

If a = 7, we skip all after || and y get the value 1. If a = 17 and
b = 20 the expression after && is not evaluated and y becomes 0.

A usual assumption is that && is executed first, because it has higher
precedence. Although precedence controls the construction of the
parse tree, precedence simply is not considered when the tree is
evaluated.

Timo Karvi () Some Details of C and C Environment October, 2013 10 / 1

Operators: Lazy evaluation II

Sometimes lazy evaluation can substantially improve the efficiency of
a program. A much more important use of skipping is to avoid
evaluating parts of an expression that would cause machine crashes or
other kinds of troubles.

Assume that we want to divide a number x , compare the answer to a
minimum value, and do an error procedure if the answer is less than
the minimum. But it is possible for x to be 0 and that must be
checked. We can avoid a division-by-0 error and do the computation
and comparison in one expression by using a guard before the division:

if (x != 0) && total / x < minimum) do_error();

The skipping may happen in the middle of an expression. Consider

y = a < 0 || a > b && b > c || b > 10;

for a = 3 and b = 17. The subexpression b > c is not evaluated, all
the other are and y becomes 1.

Timo Karvi () Some Details of C and C Environment October, 2013 11 / 1

Operators: Evaluation Order and Side Effects I

When used in isolation, the increment and decrement operators are
convenient and relatively free of complication. When side-effect
operators are used in long, complex expressions, they create the kind
of complexity that fosters errors. If such an operator is used in the
middle of a logical expression, it may be executed sometimes but
skipped at other times.

A second problem with side-effect operators relates to the order in
which the parts of an expression are evaluated. Recall that the
evaluation order has nothing to do with precedence order. We have
stated that logical operators are executed left to right. This is also
true of two other kinds of sequencing operators: the conditional
operator ?...: and the comma (for example, for (i = 1, j = 1; ...)).
Most other operators can be evaluated right-side first or left-side first.

Timo Karvi () Some Details of C and C Environment October, 2013 12 / 1

Operators: Evaluation Order and Side Effects II

This leads to one important warning: If an expression contains a
side-effect operator that changes the value of a variable V , do not use
V anywhere else in the expression. The side-effect could happen
either before or after the value of V is used elsewhere in the
expression and the outcome is unpredictable.

Timo Karvi () Some Details of C and C Environment October, 2013 13 / 1

Operators: Conditional Operator I

Even if the evaluation in an expression with the conditional operator
starts by calculating true or false value, the value of the entire
conditional operator, in general, will not be true or false.

If the condition contains any postincrement operators, the increments
must be done before evaluating the true clause or the false clause.
Therefore, it is ”safe”to use postincrement in the condition.

Timo Karvi () Some Details of C and C Environment October, 2013 14 / 1

I Numerical Calculations I

Choosing the proper data type.

Representational properties.

Computational issues.

Casts and mixed-type operations.

Sticky points and common errors.

Representation error.

Timo Karvi () Some Details of C and C Environment October, 2013 15 / 1

Numeric: Choosing the proper data type I

Integer or real? For most problems obvious.

Float vs. double. Because a programmer can combine types float and
double freely in expressions, most of the time, it does not matter
which real type is used. Sometimes the degree of precision required
for the data dictates the use of double. Since all the functions in the
math library expect double arguments and return double results, most
programmers just find it easier to declare all real variables as double.

However, if you are processing large amount of data and precision is
not important, then float variables use only half as much space as
doubles and an int even less in some cases. Integer calculations are
faster than real calculations and float values are faster than double
values.

Timo Karvi () Some Details of C and C Environment October, 2013 16 / 1

Numeric: Representational properties I

For integers: signed, unsigned, short and long.

Max short signed: 32767

Max long signed: 2 147 483 647

Max long unsigned: 4 294 967 295

For float the minimum value range is

1.175E − 38...3.402E + 38.

For double:

2.225E − 308...1.797E + 308.

Timo Karvi () Some Details of C and C Environment October, 2013 17 / 1

Numeric: Computational issues I

Integer division is not the same as division using real numbers; any
remainder from an integer division is forgotten. The remainder must
be computed by using a modulus operator(%).

Sometimes the underlying computer hardware does not support
floating-point arithmetic, in which case floating point representation
and computation must be emulated by software. This is slow.

Timo Karvi () Some Details of C and C Environment October, 2013 18 / 1

Numeric: Casts I

C supports mixed-type arithmetic. When two values of differing types
are used with an operator, the value with less precision automatically
is coerced to the more precise representation.

If an integer is combined with float or a double in an expression, the
integer operand always is converted to the type of the floating-point
operand before the operation is performed. The result is a
floating-point value.

A type conversion may be safe, in that it will cause no loss of
information, or it may be unsafe. Knowing when a type conversion
can be used safely is important. However, sometimes an unsafe
conversion is exactly what the programmer needs.

An explicit type cast must be used to perform real division with
integer operands.

Timo Karvi () Some Details of C and C Environment October, 2013 19 / 1

Numeric: Sticky points and common errors I

Using the wrong conversion specifier in a format can cause input or
output to appear as garbage. Default length, short, and long integers
have different conversion codes, as do signed and unsigned integers.

When using reals, there is no way to tell from the printed output
whether a value came from a double or a float variable. If you specify
a format such as %.10f, you might see 10 nonzero digits printed, but
that does not mean that all are accurate. If the number came from
float variable, the eighth through tenth digits usually will be garbage.

Some systems use 2 bytes to represent int, others use 4 bytes. This
makes the portability of code a nightmare. Errors due to integer sizes
are among the hardest to find because of the ever-present automatic
size conversions all C translators perform.

Timo Karvi () Some Details of C and C Environment October, 2013 20 / 1

Numeric: Representation error I

Types float and double are approximate representations for real numbers,
but with differing precision. Consider the code below:

float w = 4.4; double x = 4.4;

printf(" Is x == (double) w? %i \n", (x == (double)w));

printf(" Is (float)x == w? %i \n", ((float)x == w));

The output may be unexpected, if you forgot that the two numbers are
represented with limited, and different, precision and that the == operator
tests for exact bit-by-bit equality:

Is x == (double)w? 0

Is (float)x == w? 1

Timo Karvi () Some Details of C and C Environment October, 2013 21 / 1

Numeric: Representation error II

When a more-precise value is cast to the less-precise type, the extra bits
are truncated and the numbers are exactly equal. When a shorter value is
cast to the longer type, it is lengthened by adding zero bits at the end of
the mantissa, not by recomputing the additional bit values. In general,
these zeros are not equal to the meaningful bits in the double value.

Computation also can introduce representational error, as shown by the
next code fragment:

float w;

double x, y = 11.0, z = 9.0;

x = z * (y / z);

w = y-x;

Timo Karvi () Some Details of C and C Environment October, 2013 22 / 1

Numeric: Representation error III

The result is as expected, w = 0, x = 11.000. But change the starting
values y = 15.0 and z = 11.0, and the result is

w = 1.77635e − 15, x = 15.000.

Why does this happen? The answer to a floating-point division has a
fractional part that is represented with as much precision as the hardware
will allow. However, the precision is not infinite and there is a tiny amount
of truncation error after most calculations. Therefore, the answer to y/z
may have error in it, and that error is increased when we multiply by z .

Timo Karvi () Some Details of C and C Environment October, 2013 23 / 1

Numeric: Making meaningful comparisons I

When are two floating-point numbers equal? The answer is that they
should be called equal if both are approximations for the same real
number, even if one approximation has more precision than the other.

Practical problems often require comparing a calculated value to a
specific constant or setpoint or comparing two calculated values that
should be equal. Such a comparison is not as simple as it seems,
because even simple computations with small floating-point values
can have results that differ from the mathematically correct versions.

We can get around this comparison problem by comparing the
difference of the two numbers to a preset epsilon value. For any given
application, we can choose a value of epsilon that is slightly smaller
than the smallest measurable difference in the data.

This kind of comparison can be made with a single if commmand, if
we use fabs() function from the math library:

Timo Karvi () Some Details of C and C Environment October, 2013 24 / 1

Numeric: Making meaningful comparisons II

double epsilon = 1.0e-3;

double number, target;

if (fabs(number -target) < epsilon)

/* then we consider that number == target */

else

/* we consider the values different; */

Timo Karvi () Some Details of C and C Environment October, 2013 25 / 1

Numeric: Overflow I

Integer overflow and wrap. Suppose that the 2-byte integer variable
k contains the number 32300 and you enter a loop that adds 100 to
k seven times. The value stored in k would be, in turn, 32400, ...,
32700, −32736, ..., −32536. The value has wrapped around and
become negative, but that does not stop the computer. This can be a
potential security hole allowing buffer overflow attacks.

Floating-point overflow and infinity. The phenomenon of wrap is
unique to integers; floating-point overflow is handled differently. The
IEEE floating-point standard defines a special bit pattern, called
infinity, that will result if overflow occurs during a computation. The
constant HUGE VAL, defined in math.h, is set to be the infinity value
on each local system. Therefore, one way an overflow can be detected
is by comparing a result to HUGE VAL or -HUGE VAL.

Timo Karvi () Some Details of C and C Environment October, 2013 26 / 1

Numeric: Overflow II

Underflow. Underflow occurs, when the magnitude of the number
falls below the smallest number in the representable range. This can,
of course, happen only for real numbers. For real numbers, underflow
happens when a value is generated that has a 0 exponent and a
nonzero mantissa. Such a number is referred to as denormalized,
which means that all significant bits have been shifted to the right and
the number is less than the lowest number specified by the standard.
Some systems will generate the 0 value when the lower bound has
been reached. Others still use the denormalized values. Underflow can
result from several kinds of computations:

Dividing a number by a very large number or repeated division.
Multiplying a small number by a near-zero number, which has the same
effect as dividing by a very large number.
Subtracting two values that are near the smallest representable float
and ought to be equal but are not quite equal because of round-off
error.

Timo Karvi () Some Details of C and C Environment October, 2013 27 / 1

Numeric: Orders of Magnitude and Other Problems I

If you add a small float number to a large one, and their exponents
differ by more than 107, the addition likely will have no effect. The
answer will be the same large number that you started with.

A special value called NAN, which stands for ”not a number”, can be
generated through operations such as 0/0. This is another special bit
pattern that does not correspond to a real value. The IEEE standard
defines that any further operation attempted using a NaN or Infinity
as an operand will return the same value.

Timo Karvi () Some Details of C and C Environment October, 2013 28 / 1

Programming in C, course exam October 20, 2011 I

1 Analyse the following pieces of code where pointers are used. Explain
verbally and with the help of diagrams, what happens and if the code
is working properly or not. If it is not working, explain the error and
correct the code. Diagrams should show the memory locations of the
variables, the contents of those locations, and to what locations
pointers refer in every phase.

a)

double * p1;

double * p2;

p1 = malloc(sizeof(double));

*p1 = 3.112;

p2 = p1;

printf("%f",*p2);

Timo Karvi () Some Details of C and C Environment October, 2013 29 / 1

Programming in C, course exam October 20, 2011 II

b)

char * s1 = "abcdefghijklm";

char * s2;

s2 = s1;

printf("%s",s2);

c)

char * s1 = "abcdefghijklmn";

char * s2;

strcpy(s2,s1);

printf("%s",s2);

d) Consider the following structure:

Timo Karvi () Some Details of C and C Environment October, 2013 30 / 1

Programming in C, course exam October 20, 2011 III

struct person{

char * name;

int age;

};

The following piece of code reads n names and ages
from the keyboard, creates a structure for every name
and places the names and ages into the corresponding
structures.

struct person * ptr;

int i;

char name[50];

int age;

ptr = malloc(n*sizeof(struct person));

/* n defined earlier */

Timo Karvi () Some Details of C and C Environment October, 2013 31 / 1

Programming in C, course exam October 20, 2011 IV

for (i=0; i < n; i++)

{

fgets(name,50,stdin);

scanf("%d", &age);

(ptr+i)->name = name;

(ptr+i)->age = age;

}

Is the code working properly?

2 Write a function

int read_data(char * filename, int * max_line);

that opens the file given as a a parameter and calculates the number
of lines in the file. Empty lines are counted, too. In addition, the
function calculates the length of the longest line and returns it with
the help of the other parameter. Lines may be arbitrary long.

Timo Karvi () Some Details of C and C Environment October, 2013 32 / 1

Programming in C, course exam October 20, 2011 V

3 Write a function

uint16_t make_16bit(uint8_t least_significant,

uint8_t most_significant);

that combines the given bytes into one 16-bit integer and returns the
result.
Example:

print_bin(1) => 00000000.00000000.00000000.00000001

print_bin(7) => 00000000.00000000.00000000.00000111

print_bin(make_16bit(7, 1)) =>

00000000.00000000.00000001.00000111

4 a) Let p be a pointer i a variable of integer type. What
does p + i mean?

b) Let p and q be pointers. How do you intepret p − q?
When is the expression erroneous?

Timo Karvi () Some Details of C and C Environment October, 2013 33 / 1

Programming in C, course exam October 20, 2011 VI

c) Let p be a pointer and a an array. Where does p refer to
after p = a and after p = &a[0]?

d) Let a be an array. What does ∗(a + i) mean?

e) Suppose that sizeof(short) == 2 and
sizeof(int) == 4. Consider an array
int arr[5] = { 0, 0, 0, 0, 0 }; Explain where
the following statement stores values (both the location
and the amount of bytes written).

((short*)arr)[7] = 128;

ATTACHMENT:

The definitions of some C functions:

Timo Karvi () Some Details of C and C Environment October, 2013 34 / 1

Programming in C, course exam October 20, 2011 VII

int scanf (const char * format, ...);

int fgetc (FILE * stream);

int fscanf (FILE * stream, const char * format, ...);

char * fgets (char * str, int num, FILE * stream);

FILE * fopen (const char * filename, const char * mode);

int fclose (FILE * stream);

char * strcpy (char * destination, const char * source);

size_t strlen (const char * str);

void * malloc (size_t size);

void * calloc (size_t num, size_t size);

OBS: Give some feedback of the course, either anonymously using the
www feedback system of the department or manually on a separate paper
when your return yourn programming work.

Timo Karvi () Some Details of C and C Environment October, 2013 35 / 1

Programming in C, course/separate exam, January 17,

2012 I

1 Consider the following code fragments, where pointers are used.
Explain with the help of words and drawings, what happens in various
phases. The drawings should show the contents of the memory
locations of variables and pointers after commands. Moreover, if there
are print commands, what are printed?

a)

int a;

int *aPtr;

a = 7;

aPtr = &a;

printf("%d\n", &a);

printf("%d\n", aPtr);

Timo Karvi () Some Details of C and C Environment October, 2013 36 / 1

Programming in C, course/separate exam, January 17,

2012 II

printf("%d\n", a);

printf("%d\n", *aPtr);

printf("%d\n", &*aPtr);

printf("%d\n", *&aPtr);

b)

char * s1 = "abcdefghijklm";

char * s2;

s2 = s1;

printf("%s",s2);

Timo Karvi () Some Details of C and C Environment October, 2013 37 / 1

Programming in C, course/separate exam, January 17,

2012 III

c) void cubeCalculation(int *ptr)

{

*ptr = *ptr * *ptr * *ptr;

}

In the main program:

int number = 5;

cubeCalculation(&number);

printf("%d", number);

Timo Karvi () Some Details of C and C Environment October, 2013 38 / 1

Programming in C, course/separate exam, January 17,

2012 IV

2 Consider the data structure in the appendix representing an
automaton:
Write a function int unreachable(Automaton * A) which
examines, if there are from the initial state unreachable states. The
function returns 0, if there are no unreachable states, otherwise 1.

3 Write a function

int read_data(char * filename);

that open the file given as a a parameter and calculates the number
of lines in the file. Empty lines are counted, too. Lines may be
arbitrary long.

4 Explain how function parameters are used. Give a simple example.

Timo Karvi () Some Details of C and C Environment October, 2013 39 / 1

Separate exam, June 7, 2013 I

1 Tulkitaan tavu polynomiksi, kun kertoimet ovat modulo 2 lukuja (siis
0 tai 1). Oletetaan, että vähiten merkitsevä bitti on tavussa oikealla.
Siten esimerkiksi 01100111 tarkoittaa polynomia
x6 + x5 + x2 + x + 1. Kahden tällaisen polynomin summa on
yksinkertaisesti tavujen xor-operaatio. Tavun muodostaman
polynomin kertominen x:llä modulo f (x) = x8 + x4 + x3 + x + 1
tapahtuu siten, että ensin shift-operaatiolla siirretään tavua yksi askel
vasemmalle. Jos tavun vasemmanpuoleisin bitti oli ykkösbitti, se
vuotaa siirrossa tavusta ulos. Tällöin on vielä tehtävä tavuun
xor-operaatio tavun 00011011 kanssa. Muutoin pelkkä shift riittää.

Esimerkki. Tarkastellaan tavua 01100111. Se edustaa polynomia
x6 + x5 + x2 + x + 1. Kun tämä kerrotaan x2:lla, jaetaan tehtävä
kahteen osaan. Kerrotaan ensin x :llä. Siis tehdään sivuttaissiirto,
jolloin saadaan 11001110. Kerrotaan tämä vielä x :llä. Tehdään
sivuttaisiirto ja saadaan 10011100. Nyt yksi ykkönen on vuotanut yli,

Timo Karvi () Some Details of C and C Environment October, 2013 40 / 1

Separate exam, June 7, 2013 II

joten tarvitaan vielä xor-operaatio tavun 00011011 kanssa. Saadaan
lopputulos 10000111. Tämä edustaa polynomia x7 + x2 + x + 1, joka
on tulon x2 × (x6 + x5 + x2 + x + 1) lopputulos modulo f (x).

Laadi funktio uint8_t mul1(uint8_t byte, int n), joka kertoo
(modulo f (x)) tavun byte muodostaman polynomin polynomilla xn,
0 < n < 8.
(xor-operaatio on ^ ja shift-operaatio <<.)

2 Tarkastellaan yksisuuntaisia linkitettyjä listoja, joissa solmun tietona
on kokonaisluku. Kirjoita tällaisen listan tyyppimäärittelyt.
Oletetaan, että listat on järjestetty suuruusjärjestykseen pienimmästä
suurempaan. Kirjoita funktio

slist* merge(slist* L1, slist* L2),

joka lomittaa kaksi suuruusjärjestyksessä olevaa listaan kolmanneksi
listaksi, joka on myös suuruusjärjestyksessä. (Edellä on oletettu, että
solmun ja siis myös listan tyyppi on slist.)

Timo Karvi () Some Details of C and C Environment October, 2013 41 / 1

Separate exam, June 7, 2013 III

3 Esittele, miten funktio voidaan antaa parametrina toiselle funktiolle.
Anna myös esimerkki.

Timo Karvi () Some Details of C and C Environment October, 2013 42 / 1

