
Design document

DaCoPAn2

Helsinki, 7th April 2005

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260-4 Software Engineering Project (6 cr)

Project Group
Mikko Airaksinen
Tomi Korkki
Pauli Miettinen
Timo Tuominen
Mikko Väänänen

Customer
Markku Kojo

Project Masters
Juha Taina (Supervisor)
Marianne Korpela (Instructor)

Homepage
http://www.cs.helsinki.fi/group/dacopan2

Change Log
Version Date Modifications
1.0 March 17th 2005 First version
2.0 March 29th 2005 Finished version

i

Contents

1 Introduction 1

2 Architecture 3

2.1 Data structure classes . 3

2.2 Main UI . 3

2.3 Animation panels . 4

2.4 Settings classes for animation . 4

2.5 Panels for changing settings . 4

2.6 Control Signals framework . 4

2.7 Buttons panel . 4

2.8 Animation Sequence framework . 5

2.9 Notes framework . 5

2.10 XML input/output . 5

2.11 Localization . 5

3 Data structures 5

3.1 Protocol data . 5

3.2 Host class . 7

3.3 Flow class . 7

3.4 Link class . 7

3.5 Protocol class . 7

3.6 Layer class . 8

3.7 VariableDefinition class . 8

3.8 StaticVariable class . 8

3.9 Notes . 8

3.10 DataView interface . 8

3.11 StepIterator interface . 10

4 Main User Interface design 10

4.1 General User Interface design . 10

4.2 The functionality of the main UI classes 11

4.3 User actions . 12

ii

5 Animation panels 14

5.1 Message Sequence Chart . 14

5.1.1 Columns . 15

5.1.2 Drawing area . 15

5.1.3 Notes . 16

5.1.4 Improving the readability of the MSC 16

5.1.5 The CalcYCoord class . 18

5.2 Encapsulation . 21

5.2.1 Note framework for ENC . 21

5.2.2 The ENC tree model . 21

5.2.3 General layout . 21

5.3 Unit Flow Orchestration . 23

5.4 Time Sequence Chart . 24

5.4.1 Drawing area . 25

5.4.2 Legend . 27

5.4.3 Notes . 27

5.4.4 Notices . 27

5.4.5 Unit Info panel . 28

6 Animation settings 28

6.1 Settings class structure . 28

6.2 General settings . 29

6.3 MSC settings . 29

6.3.1 SettingsMSC class . 32

6.4 TSC Settings . 33

7 Control Signal framework 34

7.1 AnimationTimeState class . 34

7.2 ControlSignalsListener interface . 35

8 Animation Sequence framework 36

8.1 AnimationSequence class . 36

8.2 ScenarioItem interface . 37

8.3 ScenarioItemMSC class . 37

iii

8.4 ScenarioItemTSC class . 37

8.5 ScenarioItemENC class . 37

8.6 ScenarioItemPause class . 38

8.7 Settings objects . 38

8.8 ScenarioEditorDialog and ScenarioEditorPanel classes 38

8.9 Recording an animation sequence . 38

9 Notes framework 39

9.1 MSC Notes . 40

9.2 ENC Notes . 40

9.3 TSC Notes . 41

10 Protocol Events File reader 41

10.1 ProtocolEventsReader interface . 42

10.2 ProgressIndicator interface . 43

10.3 XML protocol events reader . 43

10.3.1 XML support in Java 1.4 . 43

10.3.2 Implementation using the JAXP classes 44

10.4 PEF file enhancements . 44

10.4.1 SACK . 44

10.4.2 Transfer unit size display . 44

11 Scenario data 45

11.1 Scenario file and settings . 45

11.2 Saving and loading the scenario data objects 46

11.3 Putting it altogether . 46

12 Localization 46

12.1 The Localization class . 47

References 47

Appendices

A Glossary

iv

B Packet-level class diagrams

1

1 Introduction

The DaCoPAn Animator module enables the visualization of the packet trace in-
formation provided by the DaCoPAn Analyzer module through the Protocol Events
File (PEF). This DaCoPAn2 Animator Design Document is an updated document
based on the existing DaCoPAn implementation and the original DaCoPAn Anima-
tor Design Document [1]. It is a stand-alone document, which describes the entire
Animator software along with the changes that will be made to it by the DaCoPAn2
project.

Section 2 presents the general architecture of the Animator module. An overview
diagram will introduce us to the different elements of the Animator, explaining how
they are inter-related. A brief description of the elements can be found after the
diagram. However, more precision on the different components follows in the next
sections.

Section 3 contains a description of the different data structures that hold the packet
trace information given by the Analyzer module. These are accesible to the other
components in a suitable way. Data related to the scenario is also included in the
data structures (e.g. the Notes framework, see below).

Section 4 introduces the main user interface design. The different areas that the
DaCoPAn Animator main window shows, their different features and the toolbar
needed to control them are presented. Java Swing package javax.swing is used for
implementation.

Section 5 presents the four different animation panels that the Animator shows.
These are the Message Sequence Chart, Unit Flow Orchestration view, Encapsula-
tion view, and Time Sequence Chart. It contains both diagrams and text descrip-
tions on their disposition and behaviour.

Section 6 contains an explanation about the Animation setting classes.

Section 7 explains how the Control Signal framework is in charge of receiving com-
mands from the user and timing events, and calling consequently the appropriate
DaCoPAn Animator components, through its different classes and interfaces.

Section 8 contains the necessary information about the Animation Sequence frame-
work, which is how the DaCoPAn Animator manages to present different presenta-
tions sequentially.

Section 9 briefly presents how notes to be shown during different animation types
are handled by the Animator module. Notes are not a separate module, but are
included in the network data model package as a part of the core data structures.

Section 10 illustrates how the Animator parses the packet trace information present
in the PEF (Protocol Event File) using existing XML libraries. Still, the PEF reader
won’t be tied to XML format for further developments of the DaCoPAn software.

Section 11 presents a way to save and load scenario data to and from a file, by
representing different settings and configurations made by the user and related to a

2

specific set of packet trace data (to a PEF, basically).

Section 12 describes the localization architecture of the Animator.

3

2 Architecture

Figure 1: Architecture diagram

2.1 Data structure classes

Store all animation data internally and provide a convenient view to this data for
all other components. After the data has been read from the Protocol Events File,
the data does not change, so there is no need for update or delete operations, or
concurrency problems, at least for network data.

There is also a small amount of data specific to the animation, for example textual
notes. This data is mapped to the network data and is accessible also through the
view to the data.

2.2 Main UI

Means first of all the classes for the main application frame. The classes are re-
sponsible for the layout of the animation components and making most commands
available to the user, for example through a menu bar.

4

This set of classes need to provide methods for changing the view mode between the
ENC, MSC and TSC animation types.

The Main UI also provides signals about user actions (mode change, start, stop,
etc.) that are needed for recording animation sequence information.

2.3 Animation panels

Individual panels, derived from javax.swing.JPanel, for presenting different types
of animation. Each panel acts on signals from the Control Signals framework. Each
panel queries the necessary data from the data structures. Thus, these panels are
independent of each other, and rather passive in terms of user interaction. The
individual panels are the MSC, ENC, UFO and TSC. The NotePanel is also an
animation panel.

2.4 Settings classes for animation

The settings objects are mostly record-like collections of relevant settings for a par-
ticular animation type (or mode, e.g. MSC+UFO). The classes also provide methods
for validating user input. The objects are clonable to facilitate storing of an anima-
tion sequence.

2.5 Panels for changing settings

A set of JPanels that can be used by the user to change settings in the settings
objects for animation panels. There are individual classes for the MSC and TSC
animation types and for general program wide settings.

2.6 Control Signals framework

Provides a modular and uniform way to map control signals from the user (selecting
buttons like Play, Pause, To Beginning, To End) and from an animation timer to the
animation panels. One or many animation panels may be simultaneously controlled
by the framework.

2.7 Buttons panel

An instance of javax.swing.JToolBar, that contains the player control buttons for
(any) animation, and sends signals (method calls) about user actions to the Control
Signals framework.

5

2.8 Animation Sequence framework

Is able to record and store a sequence of different presentation types (e.g. MSC
animation, ENC animation, TSC animation). Recording is done by collecting rel-
evant user actions from the main UI and storing the necessary settings objects.
The Control Signals framework signals the end of one presentation type from the
AnimationTimeState class so that the Animation Sequence framework can make
actions to start the next presentation type. The format for storing the sequence is
a playlist-type list of different presentations, that can also be presented to the user
as a “playlist”. The user can jump to any item in the playlist and thus allow using
the list as a crude “table of contents” for a scenario.

2.9 Notes framework

The notes framework is part of the network data model classes. It includes the Note
and NoteManager classes, and is described in more detail in section 9.

2.10 XML input/output

Takes care of reading in the Protocol Events File from the Analyzer and populating
the data structures with network data as well as saving user edited scenarios. Con-
sists of the ProtocolEventsReader interface which handles the input from PEF
files, and the Scenario package which handles the serialization of the Scenario data.

2.11 Localization

Means a way storing all localizable resources (mostly strings) in one place where
they can all be edited in one place. The mechanism makes it possible to retrieve
localizable resources according to the locale in use. The mechanism also allows
placing placeholders (for variables) inside strings. The basic mechanism for this is
already provided by a standard Java class, java.util.ResourceBundle, which is
used by Localization, an intermediate class for accessing the localized texts.

3 Data structures

3.1 Protocol data

The central data structure class for the protocol data is called TransferUnit. A
transfer unit is a generalization of a unit transferred on any network layer: for ex-
ample, an IP packet, a TCP segment, or a HTTP request. An instance of this class
encapsulates all the essential data on a unit: source and destination hosts, times-
tamps (send/receive), variable data (protocol-specific header fields, host variables),

6

Figure 2: Class diagram for the data structures

etc. The units on different layers form a tree structure (parent-child relationship)
that’s used to represent the encapsulation that occurs between different layers. For
example, if the data of an HTTP response is contained in three separate TCP seg-
ments, the TransferUnit representing the HTTP response will have three children
(the TCP segments) and each of these children will have the HTTP response as
their parent (see Figure 3).

7

Figure 3: Encapsulation in TransferUnit objects

In general, the data structures used to represent the protocol data in the Animator
are immutable, that is they will not (or can’t) be modified after they have been
created. This in turn implies that they are thread-safe, and can be concurrently
accessed by multiple threads without using synchronized collection classes, for ex-
ample.

3.2 Host class

The Host class holds information about a single host, containing the hostname (for
instance, ”A”) and the IP number in String format. A host is the network entity
which interchanges packets (transfer units) with other hosts. References to hosts
are maintained from the TransferUnit and the Connection classes.

3.3 Flow class

The Flow class contains information about a protocol-specific connection between
two hosts, for example a TCP connection. Therefore an instance of it makes refer-
ences to both source and destination hosts, and as well stores information about the
port numbers used for this connection to be established.

3.4 Link class

The Link class models a physical link between two hosts. It can have constants
such as MTU (maximum transfer unit size) associated with it.

3.5 Protocol class

The Protocol class is intended for maintaining data about the name and the net-
work layer of a given protocol. One protocol can only belong to one layer. There

8

must be at least one TransferUnit for that protocol, and it can have none or many
StaticVariables and VariableDefinitions.

3.6 Layer class

The Layer class represents a network stack layer. It is described by the name
commonly given to the layer. Many protocols can belong to a same layer.

3.7 VariableDefinition class

This class contains all useful information needed to describe a network variable,
meaning that it contains a variable’s id (for Animator and Analyzer internal rep-
resentation), the name of the variable, a short description and the variable scope.
Depending on the scope of a variable, this one will be shown in different places
during visualization. The name and description attributes are determined by the
Localization feature to adapt them to particular languages. A Protocol can have
many or no variables. The VariableDefinition class is be used for those variables
that can change throughout the interchange of transfer units between the hosts, for
instance representing the value of the congestion window. Those dynamic variables
must be mapped to TransferUnits as their value changes in relation to the packet
interchange. For static variables that are constant all through the packet interchange
sequence, the value is represented with a StaticVariable instance.

3.8 StaticVariable class

A StaticVariable is a particular kind of VariableDefinition that is specific to
a Host and a Protocol. This class contains a value attribute that will store the
actual value of the network static variable. It is called static as it doesn’t change
during the packet interchange. It extends from VariableDefinition.

3.9 Notes

Notes are separately discussed in, section 9, the Notes framework.

3.10 DataView interface

While a TransferUnit object contains all the necessary information that needs to be
visualized of a single protocol unit, different animation types need a way of accessing
the protocol data as a whole. The TransferUnit class has a way of representing the
encapsulation between units on different layers, but has no mechanism for returning
all the units on a specific layer in a sequential list, for example. This mechanism is
needed by the MSC animation type, for example, as it is only interested in units on

9

one specific layer at a time. Thus, there is a need for an interface that can provide
different views to the ”raw” unit data (TransferUnit objects) for the rest of the
system.

This interface is called DataView. While the actual TransferUnit objects are
created by the XML I/O classes when reading in the Protocol Events File, the
DataView interface processes the units further to provide meaningful and efficient
ways of viewing the data. For example, it indexes the units by their network layers
so that retrieving an ordered list of units on the transport layer is a constant-time
operation (see Figure 4). Furthermore, the DataView interface has methods that
provide a way of accessing only a subset of data on a certain layer by allowing a
time interval to be specified. For example, an MSC animation is not interested in
drawing any units that would not be visible on the user’s screen at a given moment,
so it can ask the DataView to return only the visible units (the visibility of a unit is
determined using its timestamps by the DataView).

Figure 4: An example view on protocol data provided by the DataView interface

10

3.11 StepIterator interface

For stepping thru the animations (MSC in particular) in a meaningful way, certain
steps need to be calculated from the protocol data. A special interface, StepIterator,
provides the animations with a means of stepping thru the events of a certain layer:
sending and receiving units as well as any notes on the layer.

4 Main User Interface design

status bar

main animation area secondary area

tool bar

menu bar

Figure 5: General UI layout for the Animator

4.1 General User Interface design

The main window of the DaCoPAn Animator, see Figure 5, is divided into the
following parts:

• main animation area: Basically contains one of the following panels: ENC,
MSC or TSC.

• menu bar: Contains the program specific menu items.

• secondary area:. In the MSC, the area is divided between a Unit Flow
Orchestration animation panel and a note area. In the TSC, it is occupied by
a unit info panel and a shared panel for notes and the chart legend.

• status bar: Shows information about the state of the Animator.

• tool bar: Enables the user to control the flow of animation.

Most of the animation occurs in the main animation area. This animation is a
sequence of Message Sequence Chart (MSC) type animation that is occasionally

11

interrupted with some Encapsulation (ENC) animation. Alternatively, the main
animation area shows a Time Sequence Chart (TSC) animation. The animation can
be watched in two modes: scenario mode and explore mode. In scenario mode the
animation follows a predefined script and in explore mode the user is in charge of
controlling the animation flow.

The main animation area takes up most of the screen width and is positioned on the
left side of the program frame. The right side is used by the secondary area and is
divided vertically in two parts. The areas are divided using Swing Splitpanes, so
that the user can easily drag them to a preferred size. The animation panels then
know how to draw themselves according to the space given to them.

When starting the Animator, no animation panels are shown as there is no file loaded
to the memory. Instead a welcome screen is shown in the main animation area.

4.2 The functionality of the main UI classes

The DaCoPAn animator is based on the Swing framework, which means that the
control over the software runs always through Swing, which in turn gives the control
over the other parts of the program to MainFrame (i.e. the main UI classes). When
the Animator is started, an instance of MainFrame is created. It then creates the user
interface using the class UserInterface and instances of all other classes needed by
the different animation modes: DataView for accessing the data structures, Note-
Manager for using notes, AnimationSequence for storing scenario information. An
instance of AnimationTimeState is created when the animation is started.

After this the Animator is in a state called DACOPAN STATE NO FILE and in a
mode DACOPAN NO MODE, which indicates that the animator doesn’t do any-
thing before the user uses the menu or tool bar to open a file.

MainFrame can be in the following modes:

• DACOPAN NO MODE: Used when no animation file has been loaded.

• DACOPAN EXPLORE MODE

• DACOPAN SCENARIO MODE

MainFrame also has three distinct states:

• DACOPAN STATE NO FILE: Used when no animation has been loaded.

• DACOPAN STATE PLAYING ENC: Used when the animator is showing En-
capsulation animation.

• DACOPAN STATE PLAYING MSC: Used when the animator is showing MSC
animation.

12

• DACOPAN STATE PLAYING TSC: Used when the animator is showing TSC
animation.

Distinction between play and pause mode is done by AnimationTimeState and
therefore those are not distinct states from the point of view of MainFrame.

To show the relations between MainFrame, other user interface classes and the rest
of the Animator, a class diagram is presented in Figure 6.

Figure 6: Main UI Class Diagram

4.3 User actions

The menu bar contains the following commands for letting the user control the
Animator. Most of them are also present in a tool bar on the top of the main frame.

Open file This command opens a dialog for selecting a Protocol Events File or a
Scenario file to be loaded to the Animator.

Save file Clicking on this button saves the file in memory along with any note and
scenario data included. If the file has not been previously saved as a Scenario
file, the user is prompted for the file to save.

Settings This command opens a settings dialog that is described in more depth in,
section 6, the Animation settings.

13

Save all settings This command is available in the Settings menu and saves all
user specific settings globally.

Rewind to the beginning This buttons rewinds the animation to the beginning
of the current AnimationTimeState. This command can only be called when
the animation is paused.

Play Calls the current AnimationTimeState to start playing the animation it is
assosiated with. If the current sequence is part of a bigger scenario, the Ani-

mationTimeState notifies the animation sequence about reaching the end of
the animation.

Pause Pressing this button changes the animation to paused mode.

Fast forward to the end This button steps to the end of the animation data as-
sosiated with the current AnimationTimeState.

Step forward When in stop/scroll mode, this button can be used to step forward
through events one by one in the animation.

Step backward When in stop/scroll mode, this button can be used to step back-
ward through events one by one in the animation.

Animator mode selection The Animator can be in either explore or scenario
mode. The user can do this selection in the menu. In the status bar the
currently selected mode is highlighted and in scenario mode a small window
for controlling the scenario and recording a play list is presented. When this
window is closed, MainFrame minimizes it to the status bar as a button for
restoring the window.

Layer selection The user can select the layer that is currently shown by clicking
the button of the layer he wants to see either in the menu or on the tool bar.
When such a button is pushed, all animation panels are recreated with correct
settings.

Language selection When the user selects a new language, the whole user inter-
face is recreated using the strings from the selected language. This is done by
calling UserInterface method recreateUI.

Help The help command opens a new window with an HTML help document shown
in it.

About The about command opens a window with tabs for general information,
licence information and information on the team behind the product.

14

5 Animation panels

All the animation panels that can be placed on the four animation panel spaces in the
Animator have to extend the abstract class AbstractAnimationPanel. This class
handles some aspects of the communication between the panels and the MainFrame.
It also implements the interface ControlSignalListener that allows the panels to
receive control signals from the Control Signal framework.

In this version of the Animator five animation panels are created:

• Message Sequence Chart

• Time Sequence Chart

• Encapsulation

• Unit Flow Orchestration

• Notes

The animation panels are described in more detail in the following subsections.

5.1 Message Sequence Chart

The Message Sequence Chart (MSC) animation type, see Figure 7, is one of the two
primary animation types for the DaCoPAn2 Animator. It shows unit transfers in
“text-book” style, that is, by drawing lines from one host to another. The y-axis
represents time and the gradient of a line is proportional to the transfer delay of a
unit. The central column is the drawing area, where the lines are drawn. On both
sides of the drawing area there are up to two optional columns, where timestamps
and other information is displayed. The third column, the notes column, is always
visible. Above the columns there is a host field, which lists the names for hosts A
and B.

The blue line is the progress line, which scrolls down the display area as the anima-
tion proceeds in play mode. The display area is vertically scrollable. Also, when the
progress line is moved away from the drawing area with the mouse, via click and
drag, past the top or bottom panel border, the MSC panel will scroll.

The MSC animation style is created by class MSCPanel, which implements the
interface AbstractAnimationPanel. Because of this MSCPanel also implements
those methods that are listed in section 7.2.

The properties and functionality of the MSC animation type are explained in the
further subsections.

15

0.056782

0.0867820.086782

0.096782

0.116782

0.126782

0.136782

0.166782

Host B 10.0.0.1Host A 10.0.0.2

Figure 7: General layout of the MSC animation type

5.1.1 Columns

The MSC presents symbolic information (text and numbers) in vertical columns.
The most important column is the timestamp column. That column shows the
animation time for the adjacent event (i.e. the sending or receival of a packet). The
user can also choose to view other data in columns. This is done by showing many
variables in different rows of one column and identifying those variables by a caption
at the beginning of the row. The selection and number of columns is configurable
through the MSC settings dialog. The order of columns is not configurable and the
timestamp column will always be drawn nearest to the center.

The columns are mirrored for both of the hosts, so that exactly the same columns and
variables are shown for both hosts. The showing order of columns is also mirrored,
so that the column nearest to the drawing area always presents values of the same
variables on both sides of the drawing area.

The columns are generated by the MSCColumnModel class, which is an inner
class of MSCPanel. The width of the columns is determined by the maximum length
(in characters) of the values in that column. This information is queried from the
DataView class using its method getValueMaxLength().

5.1.2 Drawing area

The drawing area column is created by the MSCDrawingPanel class, a private
innerclass of the MSCPanel. It is where the actual animation of the application,
network and transport layer message sequences is shown. This is accomplished by
drawing a straight arrow headed line from a point on one side of the drawing area
column to another point on the opposing side of the column, which represents the
unit being transmitted through the network from one host to another. The arrow
head distinguished the direction of transmission between the hosts. Dropped packets

16

are marked with a red cross, which is drawn close to the opposing end of the column
from the sending host’s side. In addition to this, via the settings, the user can select
the unit’s variables to be drawn above the line. The font size for this text can also
be chosen from the settings.

See subsection 5.1.4 for more detail on the implementation of the drawing area.

5.1.3 Notes

The presence of a note is signaled by showing a small icon in a notes column that
is always present as the left-most column next to the left edge of the component.
(That column is never mirrored, as there is only one notes column.) The top edge of
the icon corresponds to the exact location of the note on the y-axis. The actual note
text is displayed in the Note panel, situated on the bottom half of the secondary
area of the main window.

See subsection 9.1 for more information about MSC notes.

5.1.4 Improving the readability of the MSC

One of the main problems with the previous DaCoPAn version was in representing
a “clear”visualization of data for the MSC animation type. The problem arises from
the fact that, usually, there are lots of packets sent within a very short period of time.
The scaling for the y-axis (time) would have to be in the order of microseconds (µs),
to distinguish separate events from each other in the drawing area. Additionally,
the separation of events ranges from atleast 2 µs to about 700 µs. This leads to
overlapping lines if the scale is too large, as seen in Figure 8, or in lines that have
nearly vertical gradients. In the latter case the scale is simply too small, which causes
a network transmission of 2 seconds to stretch over several hundred A4 lengths in
the drawing area. Clearly neither is acceptable.

The constraints imposed on the improvement of the MSC animation view are hence:

1) The scaling, separation of adjacent packets, for the vertical time coordinates for
the animation view is limited.

2) For packets with very lengthy transfer delays, the gradient for drawn lines is
excessively large (almost vertical), depending upon the scaling used.

As both constraints make it very difficult to read the MSC diagram and distinguish
separate events, the DaCoPAn2 projects version of the Animator allows the user to
force the program to leave some space between consecutive events. It also allows the
user to force a maximum length for the separation of both points of a single drawn
line. This, of course, removes the strict linearity of time for the y-axis. This modified
animation mode is referred to as the “non-linear time” mode, whereas the previous
version is called the “true time linear mode”. In Figure 9, a view of the non-linear
mode for the MSC animation type which distinguishes packets is presented.

As mentioned above, the DaCoPAn2 project must be able to improve the readability

17

Figure 8: MSC animation type with a “true” linear time scale

of MSC animation view. This is accomplished by adding a configurable minimum
stepping between any two events. That is, no two events can occur on the y-axis
within a space called “minimum stepping”.

Another improvement for readability is that packets that have excessively lengthy
transfer times are forced to arrive within a vertical length called “maximum step-
ping”. If the packet is received more than “maximum stepping” pixels after it was
sent, its receiving point is transfered to a “maximum stepping” distance from its
sending point. However, should this cause collision with the “minimum stepping”
then the receiving point is pushed further. In other words, “maximum stepping” is
always inferior to “minimum stepping”. All events happening before the packet was
originally received, but after its new receiving point, are transfered upwards so that
the order between events is preserved.

The third improvement to the readability of the MSC is so called“gap cutting”. That
is, if two following packets are sent too far from each other (measured in pixels),
the empty gap is cut away. Thus this cutting is done only for empty space (all sent
packets are either dropped or received) between two packets if this empty space is
larger than “maximum gap”. The empty space is calculated from events.

From the mentioned variables“minimum stepping”and“maximum stepping”are user
configurable, but “maximum gap” is not. There are also a few constraints for each.
“Minimum stepping” cannot be smaller than the font size multiplied by the number
of rows in the multi-row column (if it is chosen to be shown). This constraint is to
prevent the text of two packets to overlap each other and thus making it impossible
to read them. “Minimum stepping”cannot either be larger than“maximum stepping”
(and vice versa) for obvious reasons. “Maximum gap”, on the other hand, must be
greater than “maximum stepping”. This constraint is because of the implementation

18

Figure 9: MSC animation type with a non-linear time scale

of the algorithm. This is all facilitated by the CalcYCoord class described in the
next subsection (5.1.5).

Additionally, the progress line must progress with constant speed which the user can
configure. This is because when using a non-linear time scale, the progress line has
nothing to do with “real ” animation time and an alternative method is required to
control the progression of animation.

If the user wants to see the linear time scale, the “minimum stepping” can be set to
zero and “maximum stepping” (and thus also “maximum gap”) to infinity (which is
implemented as some number which is greater than any possible stepping).

5.1.5 The CalcYCoord class

The algorithm that calculates y-coordinates, which satisfy the requirements listed
in section 5.1.4, is implemented as class CalcYCoord. Events from one layer are
given to this class with a maximum and minimum stepping and it calculates new
y-coordinates for events.

In addition to the constructor, this class has few public methods:

CalcYCoord(units:List, settings:SettingsMSC) The constructor reads events
for a specific layer in units. It also queries settings for settings that are
important (i.e. maximum stepping, minumum stepping and visual scale). Calls
calculateYCoord() in order to actually calculate y-coordinates.

calculateYCoord() Calculates y-coordinates for events. The algorithm is shown
as a pseudo-code in Table ??. This method must be called every time when

19

something interacting with y-coordinate changes.

getYCoordForTime(time:float):int Returns the y-coordinate for given time.
If some event has the same time as the argument, it returns the exact y-
coordinate. Otherwise, it calculates linear interpolation based on y-coordinates
of the nearest events.

getLinearYCoordForTime(time:float):int Returns the y-coordinate, such that
the ratio between it and the last y-coordinate of events is equal to the ratio
between the given time and the time of the last event.

getTimeForYCoord(yCoord:int):float Returns the time for a given y-coordinate.
Acts as inverse function to getYCoordForTime, that is

t = getTimeForYCoord(getYCoordForTime(t)).

getLinearTimeForYCoord(yCoord:int):float As with getTimeForYCoord, but
for getLinearYCoordForTime.

20

calculateYCoord

Let L be a sorted (by time) list of events.
for each e ∈ L do

e.yCoord← e.time ∗ visualScale
done
for each e ∈ L do

if e.transferT ime > maxStepping then
e.transferT ime← maxStepping
for each event f that happens while e is transmitted do

if f.time > e.time then
f.time← e.time

end
done

end
done
for each e ∈ L do

f ← e.nextEvent
if |f.yCoord− e.yCoord| ≤ minStepping
and f and e are not events for same transfer unit then
f.yCoord← e.yCoord + minStepping

else if f.yCoord < e.yCoord and f and e are events for same transfer unit then
f.yCoord← e.yCoord

end
done
for each e ∈ L do

f ← e.next
if f.yCoord− e.yCoord > maxGap then

gap← f.yCoord− e.yCoord−maxGap
for each g ∈ L and g.yCoord > e.yCoord do

g.yCoord← g.yCoord− gap
done

end
done

Table 1: An algorithm to calculate proper y-coordinates for the MSC

21

5.2 Encapsulation

The Encapsulation animation occupies the main frame when it is activated. The
UFO panel is cleared and disabled, and the Note panel displays the note of the
specific ENC animation.

The ENC animation is a static diagram which shows a snapshot at a specific time.
The user actions for controlling the animation via the Animation menu and the tool
bar buttons are disabled.

5.2.1 Note framework for ENC

Each ENC animation can contain a single note. The note is bound to the Trans-

ferUnit from which the ENC diagram is constructed. The note can be retrieved
from NoteManager by calling the method getEncNote(TransferUnit) with the
active ENC unit as the parameter.

5.2.2 The ENC tree model

The generation of the encapsulation tree for an ENC animation is the responsibility
of a class called ENCTreeModel. This class contains all the logic needed to select
the most interesting units in the encapsulation tree of a selected unit for display in
the animation. By default the tree model produces ENC trees with a maximum of
three units on the same level.

5.2.3 General layout

The ENC panel consists of three areas, corresponding to the different layers in the
communication. The application layer can contain up to one unit, and the transport
and network layers can be populated with up to three units. If the application layer
contains no unit (this corresponds to showing protocol exchanges where the applica-
tion level protocol is not recognized/supported) then the transport layer, being the
highest layer, contains exactly one unit. However, the design of the encapsulation
animation is flexible enough to support layers other than the three usually present
in scenarios.

As an example of a three-layer encapsulation diagram, see figure 10.

A unit contains a fixed width field variable area for displaying unit variable values.
The rest of the available width is used for a payload area. The physical widths of
the areas are not in relative proportion. On lower layers lines are drawn to the right
side of the encapsulating unit on the next layer to designate the composition of the
unit.

At the bottom of the ENC panel there is a Quit encapsulation button for returning
to the MSC mode and continuing with the scenario.

22

Figure 10: The Encapsulation diagram

23

5.3 Unit Flow Orchestration

The UFO panel is designed to visualize the message sequence data as a continuous
animated flow of units moving between hosts. It has two channel areas for animating
the movement of the units and two unit variable fields for showing the data that is
contained by the selected transfered units, one for each direction. See figure 11, for
the main layout of the UFO panel.

Show encapsulation Show encapsulation

A B[layer_name]:[protocol_name]

Figure 11: Empty UFO panel displayed in the ENC view

The UFO panel is a subclass of AbstractAnimationPanel which in turn imple-
ments the ControlSignalListener interface. This means that it has the method
stepTo() in which it is asked to update to a new animation state. When the UFO
panel is drawn, it calculates the position for each unit and draws them to the correct
place on the appropriate channel. To synchronize the UFO animation with the MSC
animation, the UFO uses the CalcYCoord class to get the Y coordinates of the send
and receive events of units in the MSC panels, and uses them to calculate the units’
X coordinate on the channel. Because the UFO panel is synchronised with the MSC
panel, the amount of units drawn on top of each other is minimized, but when unit
lines intersect in the MSC animation, the corresponding units are also drawn on the
exact same place in the UFO animation.

The data of the active units is shown in the data areas. When a new unit appears
to the visible area, it is selected as the active unit. The selected unit stays selected
until it is received. Units are activated automatically when they are created, so that
the latest unit is always the default active unit.

Another important use for the UFO panel is that it can be used to move into
encapsulation mode. There are two buttons under the data fields that can be used
to show the encapsulation for the selected unit. When a unit is active, this button

24

can be clicked. The main frame switches to showing encapsulation instead of MSC
animation.

The two channels (pipes) contain only one color of units each, which have a darker
border when they are active. Dropped packets are marked with a red cross, and
disappear when they arrive at the center of the channel.

Show encapsulation Show encapsulation

A B[layer_name]:[protocol_name]

Header_field1 = Value1
Header_field2 = Value2
Header_field3 = Value3
Header_field4 = Value4
Header_field5 = Value5
Header_field6 = Value6

Header_field1 = Value1
Header_field2 = Value2
Header_field3 = Value3

Header_field5 = Value5
Header_field6 = Value6

Figure 12: UFO panel in play mode

5.4 Time Sequence Chart

The Time Sequence Chart (TSC) is an animation type, which shows detailed in-
formation about the status of transport layer communication between two hosts.
Its main function is to illustrate TCP layer communication. The TSC animation
doesn’t use the same Control Signal framework (ControlSignalsListener inter-
face) that the other animation panels use, since the other animation types are time
based, which the TSC is not. The TSC component has its own thread to ani-
mate the display. The animation is “user friendly”, which means that the Animator
draws graphical elements using delays between draws. For example, when a no-
tice is attached to a drawn transfer unit, the delay amount is determined from a
“event/second” slider in the TSC settings.

In Figure 13, a sketch of the animation panel is presented. The animation panel is
divided into four components: the drawing area and tool bar, tabbed notes and leg-
end panel, notice bar, and unit info panel. The animation panel and its components
are explained in the further subsections.

The horizontal dimension in the figure is the time axis, with the positive direcction
being from left to right. The vertical dimension is the sequence number of the packet,
which increases from bottom to top.

25

Figure 13: User interface of the TSC animation type

A class diagram is presented in figure 14. The MainPanel class is the main TSC
component, which extends javax.swing.JPanel. It contains the public methods
to control the TSC animation thread. The DrawingArea class is responsible for
drawing the transfer units and other graphical elements. It also has references to
PacketInfoPanel and NoteBar, for updating them as the animation proceeds. The
classes Xaxis and Yaxis draw the axis labels to positions given by DrawingArea.
All data is read from the DataView object.

5.4.1 Drawing area

The drawing area component, class DrawingArea, is where all the actual drawing
of animation data from the PEF takes place. The drawing area is scrollable. The
horizontal dimension (x-axis) is time, with the positive direction being from left to
right. The vertical dimension (y-axis) is the sequence number of the packet, which
increases from bottom to top. The scaling for the axes is adjusted using scale sliders.
The scale sliders are located in a separate toolbar area, which can be minimized to
give more space for the drawing area.

The toolbar is part of the main animation area, which is split by a Swing SplitPane.
It contains two sliders and a host chooser radio button. The sliders adjust the x-
and y-axis scales. The host chooser button determines the direction of data flow
between the hosts, which is then animated in the drawing area.

When using scale 100% the drawing area contains all events of the data file (PEF/SCE),

26

Figure 14: TSC class diagram

for the given axis. With the smallest possible scale, 0%, only a few elements (events)
are displayed. Additionally, the time scale is automatically adjusted as follows. If
the window’s size for the DrawingArea is more than one second, a seconds scale (s)
is used. If time scale is below one second, a millisecond scale (ms) is used. Below
one millisecond a microsecond scale (µs) is used.

The drawing area contains the following elements:

• Transfer units: The TCP transfer units are symbolized by filled-in blue
squares and dropped packets are marked by crossing over the unit in question
with a red cross (“x”)..

• Connecting lines of units: Consecutive units are connected together by
a straight blue line, which is drawn from the upper left vertice of the unit
(rectangle) to adjacent units.

• Unit transfer delay line: The transfer delay of each unit is visualized by
a dark horizontal line, which is drawn from the middle of the corresponding
unit to the point in time where it has been fully transmitted.

• ACK: ACK packets are shown as empty squares. For ACK packets, the
transfer delay line starts when the ACK is sent from the remote host and ends
in the middle of the ACK unit rectangle which depicts the receival of the ACK.

27

• SACK: The SACK blocks are drawn as vertical violet lines directly above
the corresponding ACK packet. The lines’ vertical coordinates represent the
sequence numbers of the SACK blocks.

• SYN: The packets with SYN flags are highlighted using a diffrent color from
other units, chosen by the user from the settings. The default color of the
units is yellow.

• Window size: The window size of the receiver is represented by a continuous
green line which grows in discrete (ladder-like) steps. The distance from the
ACK packet to the horizontal level of the line directly above it represents the
actual window size.

• Grid: The grid is drawn using horizontal and vertical lines drawn at regular
intervals, which are dependent on the scaling used for the axes.

• Crosshair: The crosshair consists of a dashed horizontal and vertical line,
which intersects over the highlighted unit. During animation, the latest drawn
packet is highlighted. The user can also choose the highlighted packet with
the mouse, by clicking on it.

5.4.2 Legend

The Legend panel is located in the same tabbed panel as the Notes panel. It contains
the description for the used graphical symbols. The legend contains only those
symbols, which are selected for display from the settings.

5.4.3 Notes

The Notes panel is located in the same tabbed panel as the Legend panel. Notes
use the same Notes framework as in the MSC view. The text in the Notes panel,
if any, is specific to the active unit. TSC notes are independent from MSC/ENC
notes, meaning that separate texts are shown in each view.

See subsection 9.3 for more information about TSC notes.

5.4.4 Notices

The notice bar component, generated by class NoteBar, displays the automatically
generated or user added notices. Notice bar is scrollable, since it may contain more
notice elements than fits into the area. The notice bar only contains notice elements
corresponding to current events, which are visible in the drawing area.

Below the drawing area is a notice bar component (NoteBar class), which displays
the automatically generated or user added notices.

28

Notices are attached to transfer units using connecting lines. Since the notice bar
and drawing area are separate Swing components, the line drawing is done in the
parent component MainPanel.

Notices (aka. the balloons) are clearly distinguishable from notes, which are in the
same tabbed panel with the legend table. The active unit’s notice text, if any, is
duplicated in the Notes panel. Notices are edited through the Notes panel in the
tabbed panel.

See subsection 9.3 for more information about TSC notes/notices.

5.4.5 Unit Info panel

The Unit Info panel, generated by the UnitInfoPanel class, contains the variables
of the active transfer unit. In addition to transport layer data, it can display network
layer data. The displayed data variables are configured from the TSC settings. The
user may select the unit to be displayed by clicking on it in the drawing area.
Additionally, the active unit changes during animation by using the step-forwards
and step-backwards buttons. The active unit is highlighted in the drawing area
using a red border.

6 Animation settings

The animator has to keep track of the settings that the user has chosen to be
used to visualize the different events contained in the Protocol Events File. In this
section, the classes implementing the settings are described, and an explanation of
the settings user interface panels is given.

6.1 Settings class structure

The user can access the settings using the dialog SettingsPanel in which the other
settings panel classes are embedded. All the settings panels are javax.swing.JPanels.

The settings are stored in the settings data classes. See Figure 15, for a class diagram
of all the relevant classes. In the diagram, the classes above the dashed line are part
of the user interface, and the classes below it are the settings data classes.

The settings dialog is implemented as the class SettingsPanel, which is respon-
sible for setting up all the other settings panels, where the actual settings are
made. It includes a selector where the user can browse between settings for the
Message Sequence Chart and the Time Sequence Chart animation types and gen-
eral settings. It also includes an Apply-button, which immediately saves all settings
made in the currently open settings panel, and updates the animation settings using
MainFrame.refreshSettings().

The settings dialog sets and queries the fields of the settings data classes through

29

SettingsPanel

Settings Data Classes

SettingsPanelPerformance SettingsPanelTSCElementsSettingsPanelScale SettingsPanelTSC SettingsPanelTSCNotices

SettingsTSC

NoticeTrigger

SettingsMSCGeneralSettings

Settings User Interface

SettingsPanelGeneral

SettingsPanelLayer

Figure 15: Settings class diagram

their public methods. The actual animations use the getter methods to query the
settings. These methods are visible in Figure 16, which illustrates the data classes
in more detail. Notice that GeneralSettings implements the interface Saveable,
which allows the Animator to save the settings in a file using the ScenarioFile
class. (See Section 11.)

6.2 General settings

There are some generic animation settings that are not related to any individual
animation type. These values are related to general appearence of DaCoPAn2
animator. General settings include language selection and the possibility to save
all settings and restore default settings. These settings are made in the panel
SettingsPanelGeneral. Language settings, see section 12, are not saved in the
settings data classes.

The feature to save all settings is implemented by serializing the settings objects
into a global settings ScenarioFile.

6.3 MSC settings

When viewing the MSC settings, the settings panel is separated into the following
tabbed panels:

• Host variables settings. (SettingsPanelLayer) These include choosing both
host and protocol variables which are shown in columns and along the packet
lines in the drawing area, respectively. Currently possible layers are ARP,
Network, Transport and Application.

• Scale-specific settings. (SettingsPanelScale) These include the choice be-
tween linear and non-linear time scale and their respective settings.

• Performace settings. (SettingsPanelPerformance) These include settings
for anti-aliasing and refresh rate.

30

SettingsTSC

+SettingsTSC()

+settingsTSC(settingsTSC)

+getAnimationSpeed(): float

+getDisplayedElements(): int []

+getDisplayedData(): String []

+getNoticeTriggers(): NoticeTrigger []

+getColor(element:int): Color

+isRelativeSEQ(): boolean

+switchDisplayedElement(int): boolean

+addTrigger(NoticeTrigger): boolean

+addDisplayedElement(int): boolean

+setAnimationSpeed(float): boolean

+setColor(color:Color,int:element): boolean

+setRelativeSEQ(boolean): void

NoticeTrigger

+NoticeTrigger(variable:String,value:String,
 test:int)

+triggered(TransferUnit): boolean

+getNotice(): String

+setVariable(String)

+setValue(String)

+setTest(int)

+setNotice(String)

0...*

SettingsMSC

+SettingsMSC(Host,Host,Layer,VariableDefinition [],
 VariableDefinition [])

+SettingsMSC(SettingsMSC)

+setAllFields(SettingsMSC)

+getEndTime()

+getLayer()

+getLeftHost()

+getRightHost()

+getScaleMode()

+getScaleMultiplier()

+getScaleMultiplierUnit()

+getScenarioAutoPlay()

+getStartTime()

+getTimeScale()

+getVariablesCenter()

+getVariablesCenter()

+getVariablesColumns()

+getVisualScale()

+getVisualScale()

+getMinStepping(): int

+getMaxStepping(): int

+getFontSize(): int

+isLinearTimeScale(): boolean

+showTimeStamps(): boolean

+setEndTime(float)()

+setScaleMode(int)()

+setScenarioAutoPlay(boolean)

+setStartTime(float)()

+setTimeScale(float)()

+setVariablesCenter(VariableDefinition[])

+setVariablesColumns(VariableDefinition[])

+setVisualScale(int)

+setMaxStepping(int): boolean

+setMinStepping(int): boolean

+setFontSize(int): boolean

+setLinearTimeScale(): boolean

+switchShowTimeStamps(): boolean

*

GeneralSettings

+GeneralSettings()

+GeneralSettings(GeneralSettings)

+getAntiAliasing()

+getListSettingsMSC()

+getDefaultLayer()

+getRefreshRate()

+getRefreshDelay()

+getSettingsMSC(Layer): SettingsMSC

+getSettingsTSC(): SettingsTSC

+addSettingsMSC(SettingsMSC)

+addSettingsTSC(SettingsTSC)

+setAntiAliasing(boolean)

+setDefaultLayer(Layer)

+setRefreshDelay(int)

+setRefreshRate(int)

Saveable

+setData(Object)

+getData(): Object

Figure 16: Settings class diagram

31

In the host variables settings the user can choose whether or not the time stamp
column is shown and which host variables are shown in the variables column. The
user can also choose which protocol variables are drawn along the packet line in the
drawing area. These settings are stored in SettingsMSC objects.

In scale-specific settings the user can choose between a linear and non-linear time
scale. If the user chooses the linear time scale, he can adjust the following settings:

• Scale mode: Defines a factor of scale to draw the MSC animation. (e.g.
Seconds to seconds: one second of network time is animated in one second).

• Visual Scale: Adjusts the number of pixels used in the MSC animation to
draw one unit of network time.

• Time Scale: Number of seconds that it takes for the animation to show one
unit of network time. Higher values mean that the animation will move slower.

If the user, on the other hand, chooses the non-linear time scale he can adjust the
following settings:

• Minimum stepping: The user can adjust the minimum space left between
any consecutive events. However, the user cannot adjust the minimum step-
ping to be smaller than the current font size multiplied by the number of rows
in the multi-row column. When the minumum stepping is set smaller, the font
size is scaled proportionally to be smaller.

• Maximum stepping: The user can adjust the maximum distance a line can
traverse in the drawing area. This maximum stepping cannot, however, be
smaller than minimum stepping. If the maximum stepping is set to minimum
stepping, the user will lose all time information on the y-axis.

• Font size: The user can freely choose the font size to be whatever available
value he wants. When the font size multiplied by the rows in the multi-
row column is bigger than the minimum stepping, the minimum stepping is
enlarged.

• Progress bar speed: User can set progress line speed on a pixels per second
basis.

All the scale-specific settings listed above are stored in SettingsMSC objects.

In the performance settings, stored in GeneralSettings, the user can adjust the
following elements:

• Refresh delay: Sets the number of milliseconds between two refreshes of the
animation. Increasing its value means that the screen will be refreshed fewer
times in a second. The perception of the user is that the animations are less
smooth in their movement, but the performance of the animation is increased.
If the values are decreased the performance is worsened but the element in the
animation move more softly.

32

• Anti-Alias: Sets the smoothness of the elements drawn in the different screens.
If the checkbox is selected the elements in the animations are drawn smoother,
but on the other hand the performance of the animator is worsened. De-
selecting it we get the inverse results, poor graphics but better performance.

In the MSC view, the settings dialog is adapted to the different animation modes,
allowing changes only in the setting classes values specific to the active working
mode.

• Explore mode: the user is able to modify the performance settings, scale set-
tings for all the layers in the animation and the variables and header fields to
include in the animation for every existing layer in the animation.

• Scenario mode: due to the purpose of creating an item for the scenario playlist,
a few settings can be tuned. These are the scale settings, and the header fields
and variables. All of these can only be modified in the active layer.

There is a a separate SettingsMSC object for each layer. In explore mode, the
settings dialog applies the chosen settings for all of them. In th scenario mode only
the settings for the SettingsMSC object of the current layer is modified.

6.3.1 SettingsMSC class

To fulfill the needs for the MSC settings a class SettingsMSC is implemented
containing:

• List for the variables and header fields selected.

• Attributes to adjust the scale settings and the panels, i.e. scale mode, visual
scale, time scale, max stepping, min stepping and font size.

• Variables that are needed for scenario files, i.e. start and end time from sce-
nario playlist and whether or not we are going to start playing scenario items
in play or pause mode.

• Host information, i.e. who are the left and right hosts.

The class diagram of SettingsMSC can be seen in Figure 16.

The progress line speed is determined using class CalcYCoord (see section 5.1.5).
The only adjusted variable is time scale, which is calculated as follows: Let sr be
real (wall-clock time) seconds and sa be animation time seconds. Define

last y-coordinate in layer = y pixels,

length of animation = l sa,

wanted progress line speed = v pixels/sr and

time scale = x sa/sr.

33

In order to have correct line speed we need to set time scale be

x =
lv

y
.

6.4 TSC Settings

The Time Sequence Chart animation type has a number of settings the user can
change. They are changed using the following tabbed panels:

• General TSC settings, implemented as SettingsPanelTSC. Includes the
following settings:

– Display variables; The user can choose from a list which packet variables
are shown on the packet information panel while the packet is selected.

– Relative sequence number; The user can choose via a checkbox whether
the sequence numbers on the y-axis are relative (starts from 0) or absolute
(reflect the actual sequence numbers of the packets).

– Pause to display notice; When a new notice comes visible during anima-
tion, the user can choose how long the animation is paused. The time is
in seconds, entered in a text input field.

– Animation speed; The user can control the speed of the animation with
a slider. The slider values represent “events per second”.

• Graphical Elements, implemented as SettingsPanelTSCElements. The
user can choose which of the different graphical elements possible in the TSC
animation are shown and their colors.

– Displayed units; The user can choose from a list which graphical elements
are shown. These elements are also visible on the legend panel.

– Color of display units; The user can choose the colors used to display
different elements. This is chosen using javax.swing.JColorChooser in
a separate dialog window.

• Notice settings, implemented as SettingsPanelTSCNotices. Allows the
user to add variable-value pairs that trigger automatic notices to be displayed
on the notice bar of the animation panel. The panel includes a list where the
user can add, delete and modify trigger events and set their variable name,
value, trigger test, and notice text.

For storing the above settings the class SettingsTSC is implemented. In addi-
tion to the normal settings data it contains a list of all configured NoticeTriggers,
and has setter and getter methods for accessing the data. The classes can be
seen in Figure 16.

34

7 Control Signal framework

ENC

UFO

MSC DataView AnimationSequence

AnimationTimeState

−endTime: float

−nowTime: float

−listeners: ControlSignalListener[]

+getNowTime(): float

+addControlSignalListener(listener: ControlSignalListener): void

+removeControlSignalListener(listener: ControlSignalListener): void

+actionPerformed(event: jawa.awt.event.ActionEvent): void

+setStepMode(type: int): void

+setStepInterval(interval: float): void

+setTimeScale(scale: float): void

+play(): void

+pause(): void

+stepForward(): void

+stepBackward()()

+toBeginning()(): void

+toEnd(): void

ControlSignalsListener
<<interface>>

+advance(step: float, nowTime: float): void

+stepTo(nowTime: float): void

+toPlayMode(): void

+toPauseMode(): void

javax.swing.JPanel ControlButtonsPanel javax.swing.JButton

for encapsulation: in that case the ’time’
An instance may be used to represent time

means some arbitrary unit.

notifies

implemets java.awt.event.ActionListener

javax.swing.Timer1 1start/stop

<<call>>

<<call>> Play, Pause, Stop
Step forward, Step backward

has listeners

Figure 17: Control Signals framework

7.1 AnimationTimeState class

The central class of the Control Signals framework. The main functionalities are:

• Receive user signals as method calls (play(), pause(), etc.). The calls are
made by the buttons panel component.

• Make calls to all registered ControlSignalListeners according to either user
signals (in pause mode) or timer events (in play mode).

Methods play(), pause(), stepForward(), stepBackward(), toBeginning(),
toEnd(): These methods are called by the toolbar buttons. AnimationTimeS-
tate reacts to these calls by making necessary state changes and necessary calls to
ControlSignalListeners.

Methods addControlSignalListener, removeControlSignalListener: Add or
removes a ControlSignalListener. Control signal listeners receive coordinated
events for the animation, like animation ’ticks’.

Method setStepMode: Used to select the desired step mode from possibilities
’time slice’, ’host A events’, ’host B events’, ’send events’, ’receive events’ and ’all
events’.

35

Method setStepInterval: The desired step interval in physical computer clock
milliseconds for the ’ticks’ in play mode.

Method setTimeScale: Sets the time scale of the animation. Scale of 1.000 means
presenting one second of network exchange takes ONE second of real time and scale
10.000 means presenting one second of network exchange takes TEN seconds of real
time.

Other things to note:

• An AnimationTimeState object contains a javax.swing.Timer instance, which
is used to get timed animation ’ticks’ to run the animation in play mode. For
each timer event the AnimationTimeState object gets a call on its own ac-

tionPerformed method, does the required accounting and makes subsequent
calls to all listeners.

• For all other step modes than the ’time slice’, the DataView is queried for the
size of the next tick.

• When run in Scenario mode (for presenting an animation sequence, as op-
posed to Explore mode) the AnimationTimeState needs to contain an end-

Time. When the endTime is reached, the AnimatioTimeState puts itself in
pause mode and calls the showNext method of the AnimationSequence object.
This is a signal for the AnimationSequence to start presenting the next item
in the animation sequence.

• AnimationTimeState takes into account the actual processing rate of the timer
events. In times when the CPU load reaches 100%, it is not possible to process
the animation ticks at the target rate. In these cases the AnimationTimeState
adjusts the logical step size to reflect the actual processing speed. The logi-
cal step size means the step expressed as network time in the advance(step,

nowTime) method). Because of this mechanism, the actual time spent in play-
ing an animation from beginning to end depends ONLY on the length of the
protocol event data and the time scale, NOT on computer speed (within rea-
sonable accuracy). However, the number of animation frames drawn during
the presentation of the animation MAY depend on computer speed.

7.2 ControlSignalsListener interface

All animation panels need to implement the ControlSignalsListener interface.
The main UI needs to register all visible animation panels as ControlSignalsLis-
teners for the current AnimationTimeState object.

Method advance(step, nowTime): tells the animation panel to make an in-
cremental advance from previous state to nowTime. The difference between previ-
ously shown time state and nowTime is given in parameter step. If the animation
panel doesn’t need to make difference between advance operations and stepTo op-
erations, this method can be implemented as just ”public void advance(float

36

step, float nowTime) stepTo(nowTime); ”. It is the responsibility of the ani-
mation panel to call repaint() on itself after it has updated its state.

Method stepTo(nowTime): tells the animation panel to show the animation
time given in parameter nowTime, regardless of the previously shown state.

Method toPlayMode(): tells the animation panel that a continuing sequence
of advance(step, nowTime) calls will probably follow. (Some panels may wish to
disable scrolling mode as result of this call.)

toPauseMode(): tells the animation panel that the following stepTo-calls will be
results of direct user input. (Some panels may wish to enable scrolling mode as
result of this call.)

8 Animation Sequence framework

Figure 18: Animation sequence framework

Animation Sequence framework provides a way for storing a sequence of individ-
ual presentation types, and ways for creating such sequences. The main idea is a
”playlist” type of list of individual presentations. These presentations may currently
be TSC or MSC animations (with or without auxiliary animation types), Encapsu-
lation animations, or pauses.

8.1 AnimationSequence class

The AnimationSequence class actually contains the list of presentations. For each
item in the list it:

37

• Creates an instance of AnimationTimeState according to the requirements of
the item to be presented. (e.g. sets a suitable endTime)

• Calls the main UI to set the desired view mode. Gives the newly created
AnimationTimeState instance as parameter to main UI, so that it can be
registered as listener for control button signals.

• Receives a call from the AnimationTimeState instance when the endTime is
reached, and initiates the presentation of the next item in the list.

8.2 ScenarioItem interface

An interface that all the items in the animation sequence need to implement. The
interface functionality is related to providing a way to call for the item to carry
out its ’action’ and to have it give the necessary information about itself for e.g.
presentation in the scenario play list.

8.3 ScenarioItemMSC class

Initiates showing an MSC animation. Contains a reference to SettingsMSC object
which contains settings specific to the MSC animation panel.

Any settings in SettingMSC or other settings objects are created and edited through
specific editing dialogs invoked through the main UI.

The semantics for the start time and end time for an MSC scenario item are as
follows: when the item is selected from the scenario play list, the current Anima-

tionTimeState instance is set to point to the start time of the item. When the
animation is played past the end time of the item, the AnimationTimeState will
call the AnimationSequence to select the next item in the play list, and thus end
the presentation for the previous item.

8.4 ScenarioItemTSC class

Starts the playing of a TSC animation. The implementation is essentially the same
as with the corresponding ScenarioItemMSC, described above.

8.5 ScenarioItemENC class

Instructs the MainFrame to show the encapsulation for the designated Transfer-

Unit.

38

8.6 ScenarioItemPause class

An item in the playlist that can be used to wait for user input before continuing.

8.7 Settings objects

The settings objects for animation panels, edited through specific editing dialogs and
used by their respective animation panels. Currently the only two actual settings
objects are SettingsMSC and SettingsTSC.

8.8 ScenarioEditorDialog and ScenarioEditorPanel classes

The ScenarioEditorDialog class is related only to presenting the editing widgets
inside a dialog, and how the dialog itself behaves with the MainFrame. The actual
editing functionality is implemented as a separate panel to make it general so it can
be used in the UI in other ways than in its own dialog. For all editing functionality,
the panel class and the AnimationSequence class communicate directly with each
other.

The ScenarioEditorPanel presents the scenario play list in an interactive list
component. All changes from editing will be instantly visible in the list. At all times
the list can be used to select the desired item from the list for playing or editing. The
ScenarioEditorPanel also contains the necessary buttons for inserting, deleting
and editing scenario items.

8.9 Recording an animation sequence

Recording an animation sequence happens as an interaction between an Anima-

tionSequence object and the main UI. When the user wants to start recording a
new animation sequence, he selects ’Scenario mode’ command from the ’Animation’
menu. At that time the ScenarioEditorDialog is shown, with the ScenarioEdi-

torPanel as its contents. The dialog is non-modal, so that it is possible to operate
all UI widgets while it is visible. The recording mode is toggled on and off by using
the ’Recording mode’ toggle button in the ScenarioEditorPanel.

When the recording mode is on, whenever the user presses play, the main UI makes
a method call to the recordStart method of AnimationSequence. That causes
the AnimationSequence to create a new ScenarioItem object. The exact type and
settings correspond to the active mode and settings in the main UI. The created
AnimationAction object is otherwise complete, but (in case of actions that do have
a duration) it lacks the endtime.

Whenever the user changes animation settings, layer or view mode, the main UI
makes method call recordEnd to the AnimationSequence. The next recordEnd

after a recordStart call is considered the end of the item being recorded. When the

39

recordStop is called, the AnimationSequence is able to complete the ScenarioItem
with the endTime information, and insert the complete object in the animation
sequence list.

A summary of responsibilities for different classes regarding recording an animation
sequence:

Main UI:

• Receive user input events about starting the recording, play events, mode
switches etc.

• Keep track of recording mode (on/off).

• Signal play events to AnimationSequence (params: start time, settings).

• Signal mode switch to AnimationSequence (params: end time).

AnimationSequence:

• Receive ’play’ and ’mode switch’ events from main UI.

• Create ScenarioItem objects.

• Insert ScenarioItem objects in the list that makes up the animation sequence.

• Update information in ScenarioEditorPanel.

9 Notes framework

In this section we will present a framework to work with the notes that will be
shown in the different types of animation to increase the educational abilities of the
software.

There is only one Note class, which is used for the MSC, TSC, and ENC animation
types. The NoteManager class acts as a container for all notes in the animations,
and contains separate methods for handling the notes in the ENC, TSC, and MSC
animations.

The classes for both types of notes are included into the data structures due to some
associations that need these classes with other ones present in the data structures to
make easier the access to all this data to the Control Signals framework through the
NoteManager (see Figure 19). Any notes added to the NoteManager (see Figure 19)
are stored along with other animation scenario data, so they’re persistent.

40

Figure 19: Interface to access notes in the data structures

9.1 MSC Notes

These notes represent an action that happens in a specific layer in a specific moment
in time. Then we only need to map this information into the class that will represent
the MSC notes, but this class also aims to serve as note for any other Time-Layer
event in an animation. An identifier will also be added into it to make easier referring
to the notes to edit and modify them and locating them more efficiently.

In the NoteManager that is used to access to the data contained in the data structures
has to contain the following methods to manage the adding, editing and deleting of
the notes, and fetching them as well.

addNoteTimeLayer (note:Note):void
Add a note for a specific layer in a specific moment of time. In case that the note
already exists in that layer and time the note should be edited and the text replaced
with the new value.

deleteNote(note:Note)
- Deletes the given note from the manager.

getNotesTimeLayerPrev (layer:Layer, time:float, inclusive:boolean): Note
- Returns the note on the given layer that’s located before the given time.

getNotesTimeLayerNext (layer:Layer, time:float, inclusive:boolean): Note
- Returns the note on the given layer that’s located after the given time.

getNotesForLayer (layer:Layer): List
- Returns a list with all the notes present in the specified layer passed as parameter.
This has a similar function as getUnits has with TransferUnit

getNotesInTimeRange(layer:Layer, start:float, end:float): Collection
- Returns a list with all the notes present in the specified layer passed as parameter
in an interval between the start and end times.

9.2 ENC Notes

The notes for encapsulation have to be represented in a different manner than the
notes for MSC due to the different purpose of the representation that will have in
the animation. Thus, the encapsulation notes can have one note per encapsulation

41

tree and this note is shown at the end or during the ENC animation.

This note for encapsulation should be in a different class as is information contained
in the data structures, but represents a different concept than the information com-
ing from the protocol events and must be separated from them.

The methods to use the Encapsulation notes that are added to the NoteManager

are:

addNoteENC (note:Note)
- Adds the note (that’s specific to a TransferUnit) to the manager. - If already
exists a note in the specified unit the existing text will be replaced with the one
provided as parameter. (edit function).

getNoteEnc(transferUnit:TransferUnit):Note
- Returns any encapsulation -specific note of the given unit.

9.3 TSC Notes

The notes used in the TSC view are similar to encapsulation notes. The notes are
linked to individual transfer units using the unique id of the transfer unit. TSC
notes also contain a shorter notice-text that the TSC view can display separately
from the regular note in the notice bar. The notices are generated automatically
as the DataView is scanned for instances of the NoticeTriggers that trigger them.
These variables are chosen by the user in the TSC Settings (see Section 6.4).

Methods to use TSC notes through the NoteManager are:

addNoteTSC (note:Note)
- Adds the note (that’s specific to a TransferUnit) to the manager. - If there
already exists a note in the specified unit the existing text will be replaced with the
one provided as parameter. (edit function).

getNoteTSC(transferUnit:TransferUnit):Note
- Returns any TSC -specific note of the given unit.

Also, a new method is added to the Note class to support getting and setting the
notice-text:

setNotice (text:String)
- Sets a notice-text for the Note.

getNotice ():String
- Gets the notice-text for the Note.

10 Protocol Events File reader

The Protocol Events File (PEF) is the interface between the Analyzer and the
Animator components. The Animator contains a customized reader whose purpose

42

is to read in the protocol events data and create a corresponding presentation of the
data as instances of the Animator’s internal data structure classes.

Even though the format of choice for the PEF is XML (eXtensible Markup Lan-
guage) at the moment, the functionality of the PEF reader is abstracted to an inter-
face called ProtocolEventsReader, of which the XMLProtocolEventsReader
is only one possible implementation: future versions may provide other implemen-
tations, should more suitable options be found

10.1 ProtocolEventsReader interface

Figure 20: Class diagram for the protocol events reader

The ProtocolEventsReader interface specifies a single method read() that is used
to process a PEF. It accepts three parameters, a Reader that the PEF will be
read from, a DataView object that the data in the PEF will be passed to and
a ProgressIndicator for indicating progress to the user interface. That is, the
ProtocolEventsReader uses a callback mechanism: whenever it encounters a piece
of data in the PEF, it constructs the Java object that corresponds to the data. For
example, if the reader reads in an XML element containing information on a host,
it constructs the corresponding Host object and calls the addHost(host) -method
on the DataView instance.

Using a callback mechanism instead of reading all the data in first and then providing
getter methods for it (e.g. getHosts(), getFlows()) in the ProtocolEventsReader
interface has many advantages: firstly, the data doesn’t need to be stored in the
reader itself, instead it can be passed to the DataView instantaneously. Secondly,
having addXXX() -methods in the DataView interface makes writing unit tests easier,
as the view can be easily populated with test data.

See figure 21 for an example where the reader first encounters a host, then a transfer
unit and adds them to the DataView instance.

43

Figure 21: Sequence diagram for PEF reader

10.2 ProgressIndicator interface

As loading a large PEF file can easily take a long while, it’s preferable to indicate the
progress of loading to the user. A special interface, ProgressIndicator, is defined
for this purpose. The PEF reader can signal any classes implementing this interface
when any progress is made, and these classes can in turn update a progress monitor
in the user interface, for example.

10.3 XML protocol events reader

10.3.1 XML support in Java 1.4

The Java 2 platform versions 1.4 and up (which is required by the Animator) pro-
vide good facilities for processing XML without the need for any external libraries:
namely, the JAXP (Java Api for XML Processing). An XML parser is included in
the standard libraries along with support for the two most common XML parsing
APIs: DOM (Document Object Model) and SAX (Simple API for XML). The main
difference between the two APIs is that DOM creates an in-memory object presen-
tation of the XML tree while SAX simply produces events for any XML elements
it encounters. Thus DOM uses more memory while SAX is more gentle on system
resources: on the other hand, using the DOM API requires less effort. As the per-
formance of reading in the protocol events data is not an issue for the Animator (it
is only done once for every scenario), DOM is currently used to make the code for
the reader as clear and concise as possible.

44

10.3.2 Implementation using the JAXP classes

The XML-based events reader can obtain a DOM parser using the class
javax.xml.parsers.DocumentBuilderFactory. The parser can then be used to
parse the PEF to an in-memory XML tree, which can then be processed to create
instances of the internal data structures of the Animator.

Classes for accessing the actual DOM XML tree are located in a package called
org.w3c.dom. For example, each element (tag) in the document is represented as
a org.w3c.dom.Element in the object tree.

10.4 PEF file enhancements

The new TSC component requires some more information, which is currently not
available from PEF files. Since this project does not include extending the Analyzer
program, required information must be added into PEF files by hand.

10.4.1 SACK

The Selective Acknowledgment (SACK) information is not present in current Analyzator-
generated PEF files. The Animator will assume that the sack information can be
read from TCP layer unit_sent -event from a sack variable. The variable value
format will be as follows: seqnoi − seqnoj, seqnok − seqnol, . . .

For example: 100-105,340-350,360-363 (white space doesn’t matter). More informa-
tion on how SACK works can be found from http://rfc.net/rfc2018.html.

10.4.2 Transfer unit size display

The vertical axis of TSC view shows TCP sequence numbers, but also represents
the amount of data sent in bytes. This does not include header size information but
only payload data size. Since the TransferUnit objects created from TCP protocol
events do not contain data size information, size must be calculated using the IP
layer TransferUnit objects referenced by TCP transfer units.

The IP layer unit_sent -events of current PEF files contain a tot_len variable,
which represents the total length of a single IP packet. Also the TCP layer events
contain a data_offset variable, which represents the length of a TCP header in
32-bit words. To be able to calculate the TCP transfer unit data length, the PEF
files should contain also an IP packet header length information. This information
is currently missing from Analyzator-generated PEF files.

The TSC component will query the TPC segment’s payload size from TransferUnit

using method getPayloadSize. This method, however, assumes that the IP layer
events contain an ihl variable, which is a standard IP header field representing the
length of a IP header in 32-bit words. Since the current PEF files do not contain

45

this variable, the TSC view will not be correct until ihl variable is added into PEF
files by hand or until Analyzer program is fixed by some future DaCoPAn project.

On the other hand, MSC should view only variables from TransferUnit, i.e. it does
not use any special methods to find out some variable-like information. This means
that future Analyzers should also include the information from TCP pseudo header
to PEF files in order to get this information available to MSC.

11 Scenario data

In addition to the protocol events data, each networking scenario that’s visual-
ized using the Animator can contain additional data that’s used to set the scenario
presentation up: this data includes animation panel settings, notes and animation
sequence data. This additional information needs to be saved along with the proto-
col events data so that a scenario doesn’t need to be set up every time it is opened
using the Animator.

11.1 Scenario file and settings

All the information is contained in a single file (the scenario file) so that viewing a
scenario doesn’t require the user to download multiple files from the course homepage
(for example). The scenario file is implemented as a Jar archive that allows multiple
files to be stored within one file (the Java platform has built-in support for both Zip
and Jar archives). See figure 22 for an example.

The settings objects which contain the settings made by the user are saved in scenario
files along with other scenario data, but can also be saved in a default global settings
file SettingsFile which is implemented as a separate jar archive using the same
ScenarioFile class as the scenario files. Settings objects loaded from scenario files
always override those loaded from the global settings file.

scenario.jar

Protocol events file Notes

MSC animation settings

Animation sequence data

TSC animation settings General settings

Figure 22: Scenario archive file contents

The Animator will be able to read both plain protocol events files and scenario
files. When the animation sequence is altered, the user has the option of saving the
protocol events (that remain unchanged) along with the settings data to a separate
Scenario file.

46

11.2 Saving and loading the scenario data objects

Scenario data (notes, settings etc.) is only of interest to the Animator itself, i.e.
it is not necessary for any other party (such as the Analyzer) to read it. Thus the
format in which the data is stored is not as important as with the protocol events
data. This in turn allows the Animator to take advantage of existing persistence
mechanisms for objects: for example, instead of specifying a XML format for notes
and writing special classes for saving and loading them, the Animator could simply
use standard Java serialization facilities to save and load the data.

However, the standard Java serialization procedure is prone to class format incom-
pability errors: if a settings class is modified, for example, older serialized instances
of that class might not be readable anymore. Also, serialized objects are stored in a
binary format, so they are not human-readable (let alone editable) in any easy way.

The scenario data is made persistent using a better and less error-prone alternative:
an open-source Java library called XStream (available at
http://xstream.codehaus.org), which is able to serialize Java objects to and from
a proprietary XML format that is also human-readable.

11.3 Putting it altogether

The object persistence features required by the scenario file are specified in the
interface ObjectSerializer. Instances of this interface should be able to save ob-
jects to the specified target and load them from the specified source. The default
implementation uses XStream, as discussed in the previous chapter.

The Scenario file is accessible for the rest of the system via the class ScenarioFile.
This class is basically a front-end to the Jar archive that contains the scenario data.
It provides methods for saving and loading scenario data objects, such as notes and
settings. Each of the methods for saving delegates the actual serialization of objects
to ObjectSerializer, and stores the serialized object is as an entry in the Jar archive.
The same applies to loading, vice versa (see figure 23). Each class wishing to save its
state to the scenario file needs to implement the interface Saveable, which defines
two methods: getData(), that allows the ScenarioFile to query the object for the
data it wishes to save in the Scenario file, and setData(Object), which is used to
pass loaded data back to an object instance.

The loading and saving of scenario data is coordinated by MainFrame, which keeps
track of all the Saveable objects in the Animator.

12 Localization

In order to make the Animator universally available as a teaching tool, its user
interface was designed to support many languages, i.e. to be easily localized.

47

Figure 23: Scenario file class diagram

12.1 The Localization class

The localization functionality of the Animator is centralized in one central class, Lo-
calization. At startup, the Localization class loads the property file locales.properties
from the classpath. This file contains a list of all the available translations for the
Animator. For each available language, the localized strings are stored in a file
called dacopanxx.properties, where xx is a two-digit language code recognized
by the java.util.Locale class. As English is the default language of the Animator,
strings localized to English are stored in the file dacopan.properties. The standard
Java class ResourceBundle takes care of resolving take localized strings from the
property files.

The Localization class provides the method getString(String key) for retrieving
the localized strings from the property files. A localized string is not restricted to
static text only. It can contain placeholders for variables in the format supported by
the class java.text.MessageFormat. To populate a string with variables, the method
getString(String key, Object[] params) can be used.

For the purposes of listing the available languages in the user interface, the method
getAvailableLanguages() can be used. To change the active language, use the
method setCurrentLanguage(Localization.Language). Localization.Language
is a simple inner class that wraps the name of a language and the Locale it represents.
The selection of a language is persistent: it is saved using the Java preferences
framework (see package java.util.prefs).

References

1 DaCoPAn Software Engineering project, Design: Animator. Re-
lease 1.0. Universities of Helsinki and Petrozavodsk, 2004.

Appendix A. Glossary

The following are definitions, acronyms and abbreviations used in this document.

ACK packet: ACK packets are used to acknowledge the receipt of a packet in
the Transmission Control Protocol (TCP). They are used by both ends of the
connection to move in between states, and are the basis of TCP’s reliability.

Analyzer: A module of the DaCoPAn project. It reads and analyzes packet trace
files and produces a protocol events file (PEF) as its output.

Animator: A module of the DaCoPAn project. It reads protocol events files (PEF)
and scenario files (SCE files), and animates the protocol exchanges using var-
ious parameters. Its main use is as a teaching tool to instruct students on
protocol basics found in the protocol event file.

balloon: See notices.

DaCoPAn: DaCoPAn stands for visualization of Data Communication Protocol
through Animation.

disappearing unit: See dropped packet.

dropped packet: A unit which has vanished during the course of network trans-
mission.

drawing area: The section of the MSC and TSC animation views where the actual
network data is visualized and animated.

ENC: An abbreviation for the Encapsulation view. The Encapsulation (ENC)
panel is one of four animation views which the software can display.

event: The occurance of a protocol exchange. For example, an event can be the
sending or receiving of a unit.

header variable: Various TCP or other network layer variables which are con-
tained in the transfer unit header fields.

MSC: An abbreviation for the Message Sequence Chart view. The Message Se-
quence Chart (MSC) panel is one of four animation views which the software
can display.

notices: Notices are automatically generated by the TSC view based on various
events in the PEF file and displayed inside small rectangles in the notice bar.

notes: Notes are free format textual information that can be added, edited and
removed freely by the user. Both the MSC and TSC animation views contain
a separate notes panel.

PEF: The abbreviation stands for Protocol Events File, and is synonymous with
the term PEF file and PEF files, as used throughout the document. It is an
output file generated by the Analyzer and read by the Animator. It contains
data about the network traffic that will be animated by the Animator.

progress line: The blue horizontal line in the MSC panel, which scrolls down the
view as the animation proceeds and reveals transpiring events as they unfold.

SACK: Selective Acknowledgment. An optional TCP feature which allows the
receiver to specify which segments it has received and which ones require re-
transmission.

scenario file: A native file written and read by the Animator. It contains all the
data from a protocol events file and additional data related to how the scenario
can be presented to the user, including notes and breakpoints.

SCE file(s): See scenario file.

sequence number: Every segment of data sent over a TCP connection has a se-
quence number. The sequence number is the number of the first data byte in
the segment.

SEQNO: See sequence number.

TSC: An abbreviation for the Time Sequence Chart animation view. The Time
Sequence Chart (TSC) panel is one of four animation views which the software
can display.

UFO: An abbreviation for the Unit Flow Orchestration view. The Unit Flow Or-
chestration (UFO) panel is one of four animation views which the software can
display.

unit: A transfer unit, which refers to all logical units that are transferred regardless
of network layer. Thus, a unit can be an IP packet, a TCP segment or an
application layer message.

Appendix B. Packet-level class diagrams

The following are packet-level class diagrams for each individual packet.

Generalization link

Association link

Implementation link

Legend

classes

DrawingArea

MainPanel

NoteBar

LegendPanel

PacketInfoPanel

Xaxis

Yaxis

ui.tsc

classes

SettingsPanel

SettingsPanelLayer

SettingsPanelPerformance

SettingsPanelScale

SettingsPanelTSC

SettingsPanelTSCNotices

SettingsPanelTSCElements

ui.settings

animseq

contsig

model

pef

scenario

settings

ui

packages classes

AnimationSequence

ScenarioEditorDialog

ScenarioEditorPanel

classes

AnimationTimeState

classes

classes

ProtocolEventsDataException

classes packages

tsc

classes

dacopan animseq contsig model pef

uisettingsscenario

ScenarioItemENC

ScenarioItemEndMarker

ScenarioItemMSC

ScenarioItemPause

DefaultDataView

ENCTreeModel

Flow

Host

Layer

Link

Note

NoteManager

Protocol

ScenarioStepIterator

StaticVariable

TransferUnit

VariableDefinition

XMLProtocolEventsReader

ScenarioFile

InvalidScenarioFileException

XStreamObjectSerializer CalcYCoord

ChannelPanel

DaCoPAnFileFilter

DialogProgressIndicator

EditNoteDialog

ENCPanel

FileInformation

MainFrame

MSCPanel

NotePanel

classes

Localization ScenarioItem

interfaces

ControlSignalsListener

interfaces

Saveable

ObjectSerializer

interfaces

classes

GeneralSettings

StepIterator

Identifiable

DataView

interfaces

ProtocolEventsReader

interfaces

SettingsMSC

NoticeTrigger

SettingsTSC

StatusBar

TimePanel

TitlePanel

UFOPanel

UserInterface

interfaces

AbstractAnimationPanel

ProgressIndicator

SwingWorker

Localization

getAvailableLanguages()

getCurrentLanguage()

getCurrentLocale()

getString()

getString()

getString()

getString()

localizeMenuItem()

setCurrentLanguage()

Language

equals()

getLocale()

getName()

toString()

dacopan

animseq contsig

model pef

scenario settings

ui

AnimationTimeState

AnimationTimeState()

AnimationTimeState()

actionPerformed()

addControlSignalsListener()

discard()

getNowTime()

getStepInterval()

getTimeScale()

advance()

stepTo()

toPauseMode()

toPlayMode()

isPaused()

pause()

play()

removeControlSignalsListener()

setNowTime()

setStepInterval()

setTimeScale()

stepBackward()

stepForward()

toBeginning()

toEnd()

toEndOfScenarioItem()

<<interface>>

contsig

ControlSignalsListener

Identifiable
<<interface>>

getId()

Layer

Layer()

Layer()

compareTo()

equals()

getId()

getName()

getProtocols()

hashCode()

setProtocols()

toString()

Link

Link()

Link()

equals()

getFirst()

getId()

getSecond()

getStaticVariables()

setStaticVariables()

toString()

addFlow()

addHost()

addLayer()

addLink()

addProtocol()

addTransferUnit()

equals()

ENCTreeModel()

getLayeredEncTree()

getLayeredEncTreeToDraw()

getRootUnit()

getSelectedUnit()

getAvailableVariables()

getEndTime()

getEndTimeForLayer()

getFlowById()

getFlows()

getHostById()

getLayerById()

getHosts()

getLayers()

getLinkById()

getLinks()

getValueMaxLength()

getUnitsForLayer()

getUnitsForLayer()

getUnitById()

getStepIterator()

getProtocols()

getProtocolById()

DrawableEncLayer

DrawableEncLayer()

getDrawableUnits()

DrawableEncLayer()

getFirstUnit()

getLastUnit()

hasSiblingsToTheLeft()

hasSiblingsToTheRight()

setSiblingsToTheLeft()

setSiblingsToTheRight()

DrawableTransferUnit()

equals()

getTransferUnit()

getVisibleChildIds()

hasMoreToTheLeft()

hasMoreToTheRight()

setMoreToTheLeft()

setMoreToTheRight()

setVisibleChildIds()

DrawableTransferUnit

Flow

Flow()

equals()

getFirst()

getFirstPort()

getId()

getSecond()

getSecondPort()

toString()

Host()

Host()

equals()

getId()

getHostname()

toString()

setStaticVariables()

hashCode()

getStaticVariables()

getIp()

model

addFlow()

addHost()

addLayer()

addLink()

addProtocol()

addTransferUnit()

getAvailableVariables()

getEndTime()

getEndTimeForLayer()

getFlowById()

getFlows()

getHostById()

getHosts()

getLayerById()

getLayers()

getLinkById()

getLinks()

getProtocolById()

getProtocols()

getStepIterator()

getUnitById()

getUnitsForLayer()

getUnitsForLayer()

getValueMaxLength()

DataView
<<interface>>

DefaultDataView ENCTreeModel Host

TransferUnit

TransferUnit()

TransferUnit()

addVariableValue()

addVariableValue()

compareTo()

equals()

getChildren()

getDestination()

getFlow()

getId()

getParent()

getProtocol()

getReceiveEnd()

getReceiveStart()

getRoot()

getSendEnd()

getSendStart()

getSource()

getValue()

getValue()

getValueReceive()

getValueSend()

isDropped()

isOneUnit()

setParent()

toString()

VariableDefinition

VariableDefinition()

equals()

getFullName()

getName()

getProtocol()

getRawName()

getScope()

hashCode()

isFlowVariable()

isProtocolField()

isUnitVariable()

toString()

Scope

equals()

forName()

getName()

hashCode()

toString()

StaticVariable

StaticVariable()

equals()

getFullName()

getHost()

getLink()

getName()

getProtocol()

getValue()

toString()

model

NoteManager Protocol ScenarioStepIterator

NoteManager()

addNoteEnc()

addNoteTimeLayer()

deleteNote()

getData()

getNoteEnc()

getNoteTimeLayeNext()

getNoteTimeLayePrev()

getNotesEnc()

getNotesForLayer()

getNotesInTimeRange()

getNotesMsc()

setData()

Protocol()

Protocol()

equals()

getId()

getLayer()

getName()

getStaticVariables()

getVariables()

setStaticVariables()

setVariables()

toString()

ScenarioStepIterator()

current()

first()

getNextForTime()

getPreviousForTime()

hasNext()

hasPrevious()

last()

next()

previous()

Note

Note()

Note()

compareTo()

equals()

getLayer()

getText()

getTime()

getTransferUnit()

setText()

toString()

StepIterator
<<interface>>

current()

first()

getNextForTime()

getPreviousForTime()

hasNext()

hasPrevious()

last()

next()

previous()

Host Link LayerFlow

Identifiable
<<interface>>

ScenarioStepIterator

StepIterator
<<interface>>

TransferUnit Protocol

StaticVariable

NoteManager

ENCTreeModel VariableDefinition

DataView
<<interface>>

DefaultDataView

model

Note

pef

<<interface>>

ProtocolEventsReader ProtocolEventsDataException

read()

XMLProtocolEventsReader

resolveEntity()

read()

read()

ProtocolEventsDataException()

ProtocolEventsDataException()

<<interface>>

Saveable

getData()

setData()

ScenarioFile

ScenarioFile()

getArchiveFile()

load()

load()

populateView()

populateView()

save()

setObjectSerialize()

ScenarioFile()

InvalidScenarioFileException

InvalidScenarioFileException()

InvalidScenarioFileException()

scenario

ObjectSerializer
<<interface>>

setDataView()

saveObject()

loadObject()

XStreamObjectSerializer

loadObject()

saveObject()

setDataView()

settings

GeneralSettings

GeneralSettings()

addSettingsMSC()

getAntiAliasing()

getData()

getDefaultLayer()

getListSettingsMSC()

getRefreshDelay()

getRefreshRate()

getSettingsMSC()

setAntiAliasing()

setData()

setDefaultLayer()

setRefreshDelay()

setRefreshRate()

toString()

GeneralSettings()

SettingsMSC

SettingsMSC()

SettingsMSC()

clone()

getEndTime()

getLayer()

getLeftHost()

getRightHost()

getScaleModel()

getScaleMultiplier()

getScaleMultiplier()

getScaleMultiplierUnit()

getScaleMultiplierUnit()

getScenarioAutoPlay()

getStartTime()

getTimeScale()

getVariablesCenter()

getVariablesColumns()

getVisualScale()

setAllFields()

setEndTime()

setScaleModel()

setScenarioAutoPlay()

setStartTime()

setTimeScale()

setVariablesCenter()

setVariablesColumns()

setVisualScale()

SettingsTSC NoticeTrigger

DaCoPAnFileFilter

DaCoPAnFileFilter()

accept()

addExtension()

getDescription()

ChannelPanel

ChannelPanel()

drawUnits()

getCurrentlyActive()

paintComponent()

CalcYCoord()

calculateYCoord()

getFirstYCoord()

getLastYCoord()

getLinearTimeForYCoord()

getLinearYCoordForTime()

getTimeForYCoord()

getYCoordForTime()

setMaxGap()

setMaxStepping()

setMinStepping()

CalcYCoordAbstractAnimationPanel
<<interface>>

AbstractAnimationPanel()

advance()

stepTo()

toPauseMode()

toPlayMode()

ui

EditNoteDialog

EditNoteDialog()

ENCPanel

ENCPanel()

stepTo()

EncDrawingPanel

NotePanel

NotePanel()

NotePanel()

addNoteToCurrentPosition()

stepTo()

MSCPanel()

advance()

getColumnModel()

stepTo()

toPauseMode()

toPlayMode()

MSCPanel

MSCColumnModel

MSCColumnModel()

getDrawingArea()

getLeftCols()

getNotesCol()

getRightCols()

getTotalWidth()

toString()

MSCColumn

MSCColumn()

getLeftEdge()

getRightEdge()

getVariable()

getWidth()

toString()

ProgressIndicator
<<interface>>

close()

setMessage()

setProgress()

setStep()

step()

NoopIndicator

close()

setMessage()

setProgress()

setStep()

step()

DialogProgressIndicator

DialogProgressIndicator()

close()

setMessage()

setProgress()

setStep()

show()

step()

FileInformation

FileInformation()

closeFile()

getFile()

isLoaded()

isModified()

isScenarioFile()

setFile()

setModified()

useGeneratedTestData()

MainFrame()

MainFrame()

advance()

changeLayer()

closeAnimation()

continueAnimationModeMSC()

fastForwardAnimation()

getAnimationTimeState()

getCurrentLayer()

getCurrentENCUnit()

getCurrentMSCSettings()

getDataView()

getFileChooser()

getFileInformation()

getMode()

getNoteManager()

getSettings()

invokeChangeSettings()

isAnimationSequenceDialogActive()

MainFrame

isInENCMode()

isInExploreMode()

isInMSCMode()

isInScenarioMode()

isInTSCMode()

isPaused()

loadAnimationFile()

main()

pauseAnimation()

playAnimation()

refreshScenarioSettings()

refreshSettings()

refreshUI()

rewindAnimation()

saveAnimationFile()

setAnimationMode()

setFileModified()

setSettings()

setupAnimationModeENC()

setupAnimationModeMSC()

setupAnimationModeTSC()

showScenarioDialog()

stepInAnimation()

stepTo()

toPauseMode()

toPlayMode()

<<interface>>
SwingWorker

SwingWorker()

construct()

finished()

get()

interrupt()

start()

StatusBar

StatusBar()

setRestoreScenarioDialogButton()

setStateMode()

setStatusText()

setTimePanel()

stepTo()

TimePanel()

TimePanel

TitlePanel()

paintComponent()

setActive()

TitlePanel

UserInterface()

refresh()

setAnimatorModeInfo()

setControlsEnabledAnimationControl()

setControlsEnabledAnimatorMode()

setControlsEnabledFastForward()

setControlsEnabledLayerSelection()

setControlsEnabledMSC()

setControlsEnabledPause()

setControlsEnabledPlay()

setControlsEnabledPlayAndPause()

setControlsEnabledRewind()

setControlsEnabledSave()

setControlsEnabledSaveAs()

setControlsEnabledSettings()

setControlsEnabledStepBack()

setControlsEnabledStepForward()

setControlsEnabledTSC()

setDefaultButtonFont()

setMainPanel()

setNotePanel()

setTimePanel()

setUfoPanel()

UserInterface

UFOPanel()

UFOPanel()

stepTo()

updateButtons()

UFOPanel

ui

CalcYCoord

DaCoPAnFileFilter

EditNoteDialog

tsc

MainFrame

AbstractAnimationPanel
<<interface>>

TimePanel NotePanel MSCPanelUFOPanelENCPanel

TitlePanelChannelPanel

StatusBar UserInterface

FileInformation

SwingWorker

ProgressIndicator
<<interface>>

DialogProgressIndicator

<<interface>>

ui

GeneralSettings

tsc

LegendPanel

LegendPanel()

MainPanel

MainPanel()

actionPerformed()

isRunning()

paint()

stepBackward()

stepForward()

toEnd()

toPauseMode()

toPlayMode()

toStart()

NoteBar

NoteBar()

NoteBar()

stepTo()

Xaxis

Xaxis()

getMinimumSize()

getPreferredSize()

paintComponent()

setExtent()

setLabels()

Label

getPos()

Label()

getTime()

Yaxis

getMinimumSize()

getPreferredSize()

paintComponent()

setLabels()

Label

Label()

getPos()

getSEQNO()

PacketInfoPanel

PacketInfoPanel()

displayPacketInfo()

DrawingArea

DrawingArea()

mouseClicked()

mouseDragged()

mouseEntered()

mouseExited()

mouseMoved()

mousePressed()

mouseReleased()

paintComponent()

setViewport()

setXScale()

setYScale()

stepBackward()

stepForward()

toEnd()

toStart()

tsc

DrawingArea

MainPanel

Xaxis Yaxis

PacketInfoPanel

LegendPanel NoteBar

SettingsPanelCellRenderer()

getListCellRendererComponent()

SettingsPanelCellRenderer

SettingsPanelLayer()

SettingsPanelLayer SettingsPanelPerformance

SettingsPanelPerformance()

SettingsPanelScale

SettingsPanelScale()

SettingsPanelScale()

SettingsPanelScale()

ui.settings

SettingsPanel SettingsPanelTSC

SettingsPanelTSCElements SettingsPanelTSCNotices

SettingsPanel()

SettingsPanel()

SettingsPanel()

