Goldsmiths Computational
UNIVERSITY OF LONDON Creativity G roup

Computational Creativity Autumn School I

Some Guiding Principles

Simon Colton

Computational Creativity Group
Department of Computing
Goldsmiths College, University of London

ccg.doc.gold.ac.uk

Let’s Take a Crack at...

® The humanity gap

® Managing the perception that people have about the
creativity (or lack thereof) in software

® Assessing progress in Computational Creativity
research in terms of what software actually does

The Humanity Gap

Introduction

Mainstream poetry is a particularly human endeavour: writ-
ten by people, to be read by people, and often about people.
Therefore — while there are some exceptions — audiences
expect the opportunity to connect on an intellectual and/or
emotional level with a person, which is often the author.
Even when the connection is made with characters portrayed
in the poem, the expectation is that the characters have been
written from a human author’s perspective. In the absence of
information about an author, there is a default, often roman-
tic, impression of a poet which can be relied upon to pro-
vide sufficient context to appreciate the humanity behind a
poem. Using such an explicit, default or romantic context to
enhance one’s understanding of a poem is very much part of
the poetry reading experience, and should not be discounted.

—————

The

Software isn’t human

People often want the
human connection when
they consume creations

There is a default
assumption about non-
creativity in software and
a vicious circle

Humanity Gap

When people evaluate
artefacts, they are often
really evaluating the
creative act which
produced it, in particular
the processes involved

Created artefacts are
invitations to a dialogue

To add drama, creative

people often introduce

elements of fiction into
their explanations

Some mostly factual statements...

Filling the Humanity Gap #|
Showing Intelligence

The Humanity Gap

Software itself needs to Need first to show that
tell people about how/why software is intelligent, then
it has been creative. This wmsumsssdip Simulate other aspects:
can include elements of ” intentionality, motivation,

fiction cultural awareness

Framing information:

: . & Dialogue systems
titles, snippets

8. Commentaries s Stories

Filling the Humanity Gap #2

Admitting Differences

If we can admit that software and people are different creative
beings, and that how artefacts are produced and by whom/what are
integral part of the artefacts...

...then we should acknowledge computer generated artefacts as
being fundamentally different to those produced by people...

...and we should drop any pretence that it’s useful to compare
human and computer generated artefacts

...s0 that we can concentrate on assessing progress in our research
and exploring the possibilities for non-human creative behaviour

Filling the Humanity Gap #3

Adding Sophistication

® Appreciation

® Need to have much more sophisticated models of
how created artefacts might affect audiences
intellectually and emotionally

® |magination

® Need to move from rough approximations blurring
the lines of intentionality to full idea generation

® See the creativity spider later

Managing Perceptions

Avoiding the ‘Uncreative’ label

® ‘Creativity’ is an essentially contested, secondary concept which
confuses people, processes and artefacts.VWe won’t be agreeing about
what ‘creative software’ is any time soon

® PBut there is much more of a consensus about when software has
been uncreative in its actions or lack thereof

® 50,2 more practical approach to building software is to address as
many reasons as possible why people will call the software uncreative

® This has been the approach with The Painting Fool project

® “We hope that one day, people will call The Painting Fool ‘creative’
because they can no longer think of a good argument why it is
uncreative.’

The Creativity Spider

® Your software can’t be creative because...
® [t’s not particularly skilful
® |t has no appreciation
® |t has no imagination
® [t doesn’t exhibit any intentionality
® [t never learns for itself

® [t never reflects on what it has done and produced

® |t doesn’t come up with any ideas

® |[t's not particularly innovative

Write software which exhibits
behaviours that can be called

Skilful Appreciative Imaginative Intentional

Adaptive(?) Reflective Inventive Innovative

Skilful

Appreciative

Imaginative

Intentional

Adaptive(?)

Reflective

Inventive

Wwhim

Wkt Machine - -

Innovative

Assessing Progress

Computational Creativity Theory:
Ihe FACE and 1DEA Descriptive Models

Simon Colton ', Joha Charslicy and Alson Foas

latreduction

Computational Creativity Theory:
Inspirations behind the FACE and IDEA descriptive models

Alison Pease' and Simon Colton?

! School of Informatics, University of Edinburgh, UK.

2Computational Creativity Group, Department of Computing,
Imperial College, London, UK. ccg.doc.ic.ac.uk

Abstract

We introduce two descriptive models for evaluating cre-
ative software; the FACE model, which describes cre-
ative acts performed by software in terms of tuples of
generative acts, and the IDEA model, which describes
how such creative acts can have an impact upon an au-
dience, given information about background knowledge
and the software development process. We show how
these models have been inspired both by ideas in the psy-
chology of creativity and by an analysis of acts of human
creativity.

Introduction

To enable the Computational Creativity (CC) community to
make objective, falsifiable claims about progress made from
one version of a program to another, or for comparing and
contrasting different software systems for the same creative
task, we need concrete measures of evaluation. There are two
notions of evaluation in CC: (i) judgements which determine

a method for generating framing information

an item of framing information

a method for generating aesthetic measures

an aesthetic measure

a method for generating concepts

a concept

a method for generating expressions of a concept
an expression of a concept

Any particular creative episode can be expressed in terms
of at least one of these components (it may well be the case
that not all of the components will be present). Note that
items of framing information, F?, may refer to any combina-
tion of A7, A9,CP,C9, E”, and E?. In order to cover as many
creative acts as possible, we assume only that there must be
something new created for the question of creativity to arise.
This could be very small, a brush stroke of an artist, an infer-
ence step by a mathematician, a single note in a piece of mu-
sic. Our model, then, covers “merely generative” acts as well
as “fundamentally generative” acts. By drawing our baseline
at “merely generative”, our model can be used to describe the
most basic “creative act” possible, we avoid the thorny issue

Aspirations for

Computational Creativity Theory

® Aim for computational learning theory:

® “To give a rigorous, computationally detailed and
plausible account of how learning can be done”

(Dana Angluin)

Aspirations for

Computational Creativity Theory

Aim is to prove theorems
about the nature of software,
to enable comparisons

® Aim for computational creativity theory:

® “To give a rigorous, computationally detailed and
plausible account of how creativity can be done”

Not aiming to capture
all senses in which
software can create,
but be a rallying point

Ground the theory in
reality with respect to the
amount of resources, user

interaction, etc.

The theory will be underpinned by the foundational notions

([
I I e rs Of of a creative act and its impact, as described in the FACE{

and IDEA models above. These will be expanded to allude ;
to the tier 2 aspects, and we will add a model of poten-
tial personality traits in software, as creative behaviour in

WO rd S software can be influenced by simulation of such traits.

ve will expaia tne nouen of creative act by looking In ue
ail at process, i.e., by formalising aspects of how individ

gﬁ:ﬁ:&a&‘l’ﬁ ;‘:os rz:‘r;:kzetrrizr?%ed ;‘t;'g dcéﬁ‘?:g’rz fgst'eTT('f ects of ine programming pecple undertake 1o build theu
;nsnnce capturing the notion t:z?t certain rocess:s r'na {feaiive system, ‘and sepects’ of- how peopie Mgt oy
" o g T o x : in interpretation of a creative act. To address this, w 4

be perceived as mere intelligent (e.g., generalisation, de

. = 8 will formalise aspects of how software can have a mode

duction) than others (e.qg., random selection, exhaustive ok sidiencs. b bartiiilar the knowledos shared bs:
earch). In this tier, we will look specifically at problem} y pﬂ oo g b {
solving processes, as this will enable us to encompass rwe16n srogramm:r. “SOI’ war'e. us(,jer agh |au oxgn'ce mem‘”ers.
many traditional Al approaches, and appeal to formalisms o further expand all three foundational models, we will ex-
plore the noticn of framing already sketched in the FACE

arising from their study. As most creative programs work ; _
in collaboration with people, we need to capture notions model, by formalising how software, its programmers and
its ysers can add value 10 the artefacts ther ~~~orate

of interaction in a formal setting, so that attribution of cre-
ativity and suggestions for more creative collaborations can

he mada. In narticular, it will be imperative *~ ~antyre ne

ARTmn=t m TA 1m~ank tha © e

e LASE .« wdelS Wil provide more acute formainsiine - f ~ e probiei Lol . ¢
« Jecific aspects of intermediate models. In particular, wr Il derive formalisms of search, including the notion of ex
vill unpack the notions of interpretation and interaction b g | ’0'3'1‘0" a:nd transkr)]rmaltlonf of search spaces, the “f
»oking in detail at affect and surprise, which will furthe “.ge of analogy and the role of metaphor in creative re:i

nvolve addressing formal notions of context, novelty ar 4 :;’;Zgéﬁl;gh‘l’giﬁ:;?’i:::j?ydz!:;?:r?“&?w?;‘ggf‘i'\:’:
fwmvour in reiation to the audience af"’ knowledgle inte formalism of notions of idea formation, including specifi
mediate models. To add further precision to the interac § aspects of imagination and the blending of concepts. W
on moc_iel. we vyrll. look at commuplty issues that arise 1 ill unpack the intermediate framing model by formalising !

nd derive simplistic but formal notions of humanlly‘ an ow software can add value to its creations by providing
its role in Computational Creativity. These notions will in discursive material. This will involve a model of how soft
volve aspects of trust and physicality, both of which car ware can demenstrate an appreciation of the creative acts
have an impact on the nature and interpretation of creative it and others perform, and how it can form and express cer-
acts. To add further precision to the interpretation model tain intentionality, and demonstrate its autonomy. It will
we will look at ways in which software can try to control also involve models of how software can express curios-
qow people assess generated artefacts, for instance via ity and playfulness, and use these to increase the cultural
shfuer*iap Tn 1innack the problem o~ codal ahie 2L caations

JT——T——

Descriptive Models
Should Provide...

® Some simplifying assumptions related to programming/
running software and the appreciation by an audience of its
behaviour and its output

® A set of conceptual definitions which can be used to
describe behaviour in software/programmers/audiences
associated with acts of creation

® A set of concrete calculations based on the definitions,
which can be used to compare and contrast different
software systems

® Some suggesions for how the calculations could be applied
in different application domains

The FACE model

To describe creative acts performed by software

® Simplifying assumptions:

® Even the smallest generative act can be described as a creative
act (e.g., multiplying two numbers together)

® [ndependently of the amount of impact the act might have

® We can effectively restrict ourselves to discussing how
software can produce eight types of output

® Both the processes performed by software and the results of
the processing need to be covered

® The quality and quantity of creative acts can be used to
compare creative software

The FACE model

To describe creative acts performed by software

acts are invented. We define a creative act as a non-empty
tuple of generative acts. Each tuple contains exactly zero or
one instance of eight types of individual generative act. The |
different types of generative act are denoted by the follow- |
ing letters with g or p superscripts, representing generative |

acts which produce: ,
EY: an expression of a concept

EP: amethod for generating expressions of a concept #'

C9: aconcept

C?: amethod for generating concepts]
A9: an aesthetic measure §
AP: amethod for generating aesthetic measures

F9: anitem of framing information

FP: amethod for generating framing information

® We use lower case to denote the output from the individual
generative acts in the creative act tuples, and a bar notation to
indicate constituent generative acts performed by a third party

The FACE model

To describe creative acts performed by software

® Comparison methods:
® Volume of creative acts
® Ordering of creative acts, e.g., <AS8, C&, E8> deemed more creative than <Cg, E&>
® By the nature of the processes, e.g., random deemed less creative than inductive

® By using the aesthetic function (given or invented) in a domain

average(S) = + Z

best_ever(S) = max! 1 ((I_‘J((

wor st (zcr(S') = mzn (a‘f((‘
precision(S) = +|{(c?,e?) : 1 5 i <1 z/\a‘*(
7elzabzlztz/ (S) = best_ever r(S) — worst_ever

The IDEA model

To describe the impact that creative acts may have

® Motivations

® Creative software can invent its own aesthetics, so we need to generalise past value
judgements

® The influence of the programmer/user has to be assessed to evaluate the impact
caused by the behaviour of the software

® Simplifying assumptions
® An ideal software development process described by FACE-tuples

® Full knowledge of the creative acts that went into the production of all the relevant
background knowledge

® An ideal audience of members, m, able to perfectly assess their appreciation of
creative acts, A, along two axes:

® Well being: wbim(A) and cognitive effort: cem(A) [Note not creativity directly]

The IDEA model

To describe the impact that creative acts may have

O Vel - \‘...\-r -

. I)m elopnwntal stage: W erL all thc. creative acts undcr
taken by S are based on inspiring examples (c.f. (Ritchie
2007)),1e, VK e k, (2B € 8st. d(K,B) =0).

® Fine tuned stage: where the creative acts performed by
S are abstracted away from inspiring examples, but are still
too close to have an impact as novel inventions, i.e., VK €
k. (3B € 8s.t. d(K, B) < 1).

® Re-invention stage: where S performs creative acts sim-
ilar to ones which are known, but which were not explic-
itly provided by the programmer, 1.e., Z K € xks.l. (JA €
ost (dK AV < IANA & Z) -

® Discovery stage: where S performs creative acts suffi-

ciently dissimilar to known ones to have an impact due to

novelty, but sufficiently similar to be assessed within cur-

rcm contexts, i.c., 2K € kst ((FA € ast d(K, A) <)
1A' e ast. d(K,A') < u)).

. I)nmnunn stave: where S nerforms some creative acts

which are too dissimilar to those known to the world to be
assessed in current contexts, hence new contexts have to be
invented, i.e., K € ks.t. (A € as.t. d(K,A) < u).

® Disor:’em‘ation stage: Wwhere all e creauve acrs ‘per—f

formed by S are too dissimilar to known ones that there is
no context within which to judge any of its activities, 1.e.,
VK ek, (JA€ast dK,A) < u).

Need a distance function, d, to tell how
close two creative acts are

Formalism for the development of
creative software with respect to the
programmer/user’s influence

Compare software in terms of its
autonomy from the programmer and
from the cultural context it was
programmed within

The IDEA model

To describe the impact that creative acts may have

dis(A) = disgust(A) = 5~ >, (1 — wb (4))
div(A) = divisiveness(): ,1 L: ub —m(A)|

ind(A) = zn(hff(r(n((() : ‘"]ub(A)\ . Formalism attempting

pop(A) = popularity(A) = Z_M 1 + w b (1)) to capture some
prov(A) = provoc atzon = ~ Y common notions of
‘ - impact, using the well-
being and cognitive
effort measures of the
acquired taste(A) = (pop(A) 4 prov(A)) /2 ideal audience
instant _appeal(A) = (1 + pop(A) — prov(A))
opinion _splitting(A) = (1 + div(A) — prov(. 1)) ® m(A) is the mean well
opinion._forming(A) = (div(A) + prov (A)) /2 1§ being amongst the
S))O(/\l ‘) = fl + dls_ 1] — Pprov l_ 1]) 2 ideal audience
subversion(A) = (dis(A) 4+ prov(A)) /2
triviality(A) = (1 + ind(a) — prov(A)) /2

¢

Comparison Study

Mathematical Discovery Software

® Comparison of types of creative act
® AM and HR: <Ag,Ce, E&>
® But HR has more types of Céand E8 generative acts
® Meta-HR: <CP, Cg E8> and <AS, C8, Eg>
® TM took Model Generation from <E&> to <Cs, Eg>

® |n terms of precision,AM outperforms HR, but AM
never left the fine-tuned stage of development, whereas
we argue that HR is in the discovery stage, hence has
had more impact

Comparison Study

Art Generation Software

® Comparison of types of creative act
® AARON and The Painting Fool: <Cs, E&>
® But T'he Painting Fool has more types of C8
® The Painting Fool collage generation: <Aé, Cé, Es>
® TPF + HR fitness function invention:
o <A Cg E&> = <fitness function, scene, rendering>

® Most evolutionary art systems: <Ag, Cg, E8>, but NEvAr
performs creative acts of the form: <Fg, Ag, Cs, E&>
because it uses mathematical fitness functions

See Alison’s Paper for...

® Motivations for the FACE and IDEA models coming
from cognitive science, psychology and philosophy

® Some links to existing Computational Creativity
formalisms, such as from Ritchie, Wiggins, etc.

® (Case studies from the history of mathematics and
the visual arts

The Next Steps

® We're concentrating on formally capturing notions of progress in our field
® And writing up the next version of Computational Creativity Theory
® Diagrammatic model, where each diagram represents aspects of
® How the software/user work together at runtime in terms of FACE
® How the software was developed by a programmer
® The results of evaluating the artefacts produced

® Certain changes in the diagram will map onto our intuitions of progress in
Computational Creativity, e.g., the removal of a bar; increase in evaluation

® This will enable mapping onto categories such as “definite progress”,
“definite regress”, “possible progress”, etc.

Final Guidelines

® The idea is to possibly appeal to these guidelines
during the engineering, testing and engagement
parts of your project

® But also, they're here to get you thinking about
some more of the philosophical aspects of
Computational Creativity research

|. Ever decreasing circles

® |t's important to recognise that we have the potential
to contribute as much to the understanding of human
creativity as psychological studies do

® We don’t necessarily have to wait for discoveries
about the nature of human creativity to add creative
behaviour to our software

® Al researchers are the best people to implement creative
behaviours in software

® We can imagine mutual benefits where all fields learn
from each other - spiralling down to the truth

2. Paradigms lost

® As Al researchers and practitioners, you don’t
necessarily have to see every intelligent task as a
problem solving exercise

® |f you do apply a reductionist approach, remember to
put the pieces back together again

® The artefact generation paradigm has been
rediscovered: intelligent tasks are framed as
opportunities to generate something of cultural value

3. The whole is more than a
sum of the parts

® |t is often more difficult to get your software to talk
to other software than to implement a pale version
of the software you want

® However, it’s likely that your software will be more
powerful if you join forces with others

® And it helps to attract people to Computational
Creativity if we use their software

4. Climbing the meta-mountain

® We need to constantly ask ourselves how we can
hand over creative responsibilities to the software

® Plan in advance to one day get the software to
take over what you are doing in projects

® |n particular, think about how the software can
take on aethetic responsibilities, and possibly show
intentionality in its work

® Try and hand over meta-level control and climb
the mountain to the top

® People often take details of a generative process into account
when they valuate output artefacts

® The default position in public perception is that software cannot
be creative, which can lead to a vicious circle where output is
never seen as valuable

® Hence, we need to manage this public perception

® People will generally not ascribe creativity to software if it is
lacking skill, appreciation or imagination. So, we can be proactive
and aim to implement behaviours which tick these boxes

® Remember that tripods have three legs, with three sections to
each leg: (programmer,/user software, audience)

6. Beauty is in the
mind of the beholder

® Value is not just skin-deep

® |[f you aim for pastiche, you might get useful software, but it’s
unlikely to ever be taken seriously as creative in its own right

® And this may well impact how people evaluate the output

® Think about the process/output of/from your software having
an impact on people, rather than the imitation game

® Ask yourself:“ls a Turing-style test the right way to assess your
software?!” - people may to know about the entire creative act
if they are to assess the output

/. Good art makes you think

® The output of creative software should really be seen
as an invitation to start a dialogue

® Decorative art has value, but it is unlikely to be seen
as great art, because it doesn’t give people an
opportunity to have a dialogue with the artwork

® Dialogues can be audience-centric, or involve
cultural aspects of the day, historical concepts, etc.

® Qur flavour of Al makes people think more rather than less

The Take Home...

® The discussions you’ve seen between the lecturers
here (in public and in the pub) highlight that this is
a great time to get involved in helping us to define
aspects of our field through formalisations of
notions of creativity in software

® “We can only see a short way ahead, but we can

see plenty there that needs to be done”
Alan Turing

Here’s how to get
Involved Next

th inter al Conferences or

Computattomal Creastivity
LI AL"g—‘l 3, Slovenia, Jurne 1013 atiE

wmm
C

Creatl\/ltg " i & hto//computationaicreativity net

Paper lTypes

® Jechnical papers: these will be papers posing and addressing hypotheses about aspects
of creative behaviour in computational systems

® System description papers: these will be papers describing the building and deployment

of a creative system value in one or more
domains

® Study papers: these w ich as psychology,
philosophy, cognitive And think about 1 Iate to broader areas of
Artificial Intelligence : -h appeal to studies of
the field of Comput: bl"eaklng Papel‘!

® Cultural application p« Isage of creative
software in a cultura ~ts/recordings/scores;
poetry or story reac sults for scientific

journals or scientific practice; released games/game jam entries

® Position papers: these will be papers presenting an opinion on some aspect of the
culture of Computational Creativity research, including discussions of future
directions, past triumphs or mistakes and issues of the day

www.computationalcreativity.net

WWww.prosecco-network.eu

ccg.doc.ic.ac.uk

Thanks to EPSRC grant EP/]J004049, EU projects PROSECCO and WHIM

