
Computational
Creativity Group

Computational Creativity Autumn School II

Some Guiding Principles

Simon Colton

Computational Creativity Group
Department of Computing

Goldsmiths College, University of London

ccg.doc.gold.ac.uk

Let’s Take a Crack at...

• The humanity gap

• Managing the perception that people have about the
creativity (or lack thereof) in software

• Assessing progress in Computational Creativity
research in terms of what software actually does

The Humanity Gap

The Humanity Gap

Software isn’t human

When people evaluate
artefacts, they are often

really evaluating the
creative act which

produced it, in particular
the processes involved

There is a default
assumption about non-

creativity in software and
a vicious circle

To add drama, creative
people often introduce
elements of fiction into

their explanations

People often want the
human connection when
they consume creations

Some mostly factual statements...

Created artefacts are
invitations to a dialogue

Filling the Humanity Gap #1

Showing Intelligence
Software isn’t human

Creativity is absolutely as
much about process as it is

about product

There is a default
assumption about non-

creativity in software and
a vicious circle

To add drama, creative
people often introduce
elements of fiction into

their explanations

People often want the
human connection when
they consume creations

Created artefacts are
invitations to a dialogue

The Humanity Gap

Commentaries Dialogue systems

Need first to show that
software is intelligent, then

simulate other aspects:
intentionality, motivation,

cultural awareness

Software itself needs to
tell people about how/why
it has been creative. This
can include elements of

fiction

Framing information:
titles, snippets

Stories

Filling the Humanity Gap #2

Admitting Differences

• If we can admit that software and people are different creative
beings, and that how artefacts are produced and by whom/what are
integral part of the artefacts...

• ...then we should acknowledge computer generated artefacts as
being fundamentally different to those produced by people...

• ...and we should drop any pretence that it’s useful to compare
human and computer generated artefacts

• ...so that we can concentrate on assessing progress in our research
and exploring the possibilities for non-human creative behaviour

Filling the Humanity Gap #3

Adding Sophistication
• Appreciation

• Need to have much more sophisticated models of
how created artefacts might affect audiences
intellectually and emotionally

• Imagination

• Need to move from rough approximations blurring
the lines of intentionality to full idea generation

• See the creativity spider later

Managing Perceptions

Avoiding the ‘Uncreative’ label

• ‘Creativity’ is an essentially contested, secondary concept which
confuses people, processes and artefacts. We won’t be agreeing about
what ‘creative software’ is any time soon

• But there is much more of a consensus about when software has
been uncreative in its actions or lack thereof

• So, a more practical approach to building software is to address as
many reasons as possible why people will call the software uncreative

• This has been the approach with The Painting Fool project

• “We hope that one day, people will call The Painting Fool ‘creative’
because they can no longer think of a good argument why it is
uncreative.”

The Creativity Spider
• Your software can’t be creative because...

• It’s not particularly skilful

• It has no appreciation

• It has no imagination

• It doesn’t exhibit any intentionality

• It never learns for itself

• It never reflects on what it has done and produced

• It doesn’t come up with any ideas

• It’s not particularly innovative

Skilful Appreciative Imaginative Intentional

Adaptive(?) Reflective Inventive Innovative

Write software which exhibits
behaviours that can be called

Skilful

Appreciative

Imaginative

Intentional

Adaptive(?)

Reflective

Inventive

Innovative

Assessing Progress

Computational
Creativity Theory

Aspirations for

Computational Creativity Theory

• Aim for computational learning theory:

• “To give a rigorous, computationally detailed and
plausible account of how learning can be done”

(Dana Angluin)

Not aiming to capture
all senses in which

software can create,
but be a rallying point

Ground the theory in
reality with respect to the
amount of resources, user

interaction, etc.

Aim is to prove theorems
about the nature of software,

to enable comparisons

Aspirations for

Computational Creativity Theory

• Aim for computational creativity theory:

• “To give a rigorous, computationally detailed and
plausible account of how creativity can be done”

Tiers of
words

Descriptive Models
Should Provide...

• Some simplifying assumptions related to programming/
running software and the appreciation by an audience of its
behaviour and its output

• A set of conceptual definitions which can be used to
describe behaviour in software/programmers/audiences
associated with acts of creation

• A set of concrete calculations based on the definitions,
which can be used to compare and contrast different
software systems

• Some suggesions for how the calculations could be applied
in different application domains

The FACE model
To describe creative acts performed by software

• Simplifying assumptions:

• Even the smallest generative act can be described as a creative
act (e.g., multiplying two numbers together)

• Independently of the amount of impact the act might have

• We can effectively restrict ourselves to discussing how
software can produce eight types of output

• Both the processes performed by software and the results of
the processing need to be covered

• The quality and quantity of creative acts can be used to
compare creative software

The FACE model
To describe creative acts performed by software

• We use lower case to denote the output from the individual
generative acts in the creative act tuples, and a bar notation to
indicate constituent generative acts performed by a third party

The FACE model
To describe creative acts performed by software

• Comparison methods:

• Volume of creative acts

• Ordering of creative acts, e.g., <Ag, Cg, Eg> deemed more creative than <Cg, Eg>

• By the nature of the processes, e.g., random deemed less creative than inductive

• By using the aesthetic function (given or invented) in a domain

The IDEA model
To describe the impact that creative acts may have

• Motivations

• Creative software can invent its own aesthetics, so we need to generalise past value
judgements

• The influence of the programmer/user has to be assessed to evaluate the impact
caused by the behaviour of the software

• Simplifying assumptions

• An ideal software development process described by FACE-tuples

• Full knowledge of the creative acts that went into the production of all the relevant
background knowledge

• An ideal audience of members, m, able to perfectly assess their appreciation of
creative acts, A, along two axes:

• Well being: wbm(A) and cognitive effort: cem(A) [Note not creativity directly]

The IDEA model
To describe the impact that creative acts may have

• Need a distance function, d, to tell how
close two creative acts are

• Formalism for the development of
creative software with respect to the
programmer/user’s influence

• Compare software in terms of its
autonomy from the programmer and
from the cultural context it was
programmed within

The IDEA model
To describe the impact that creative acts may have

• Formalism attempting
to capture some
common notions of
impact, using the well-
being and cognitive
effort measures of the
ideal audience

• m(A) is the mean well
being amongst the
ideal audience

Comparison Study
Mathematical Discovery Software

• Comparison of types of creative act

• AM and HR: <Ag,Cg, Eg>

• But HR has more types of Cg and Eg generative acts

• Meta-HR: <Cp, Cg, Eg> and <Ag, Cg, Eg>

• TM took Model Generation from <Eg> to <Cg, Eg>

• In terms of precision, AM outperforms HR, but AM
never left the fine-tuned stage of development, whereas
we argue that HR is in the discovery stage, hence has
had more impact

Comparison Study
Art Generation Software

• Comparison of types of creative act

• AARON and The Painting Fool: <Cg, Eg>

• But The Painting Fool has more types of Cg

• The Painting Fool collage generation: <Ag, Cg, Eg>

• TPF + HR fitness function invention:

• <Ag, Cg, Eg> = <fitness function, scene, rendering>

• Most evolutionary art systems: <Ag, Cg, Eg>, but NEvAr
performs creative acts of the form: <Fg, Ag, Cg, Eg>
because it uses mathematical fitness functions

See Alison’s Paper for...
• Motivations for the FACE and IDEA models coming

from cognitive science, psychology and philosophy

• Some links to existing Computational Creativity
formalisms, such as from Ritchie, Wiggins, etc.

• Case studies from the history of mathematics and
the visual arts

The Next Steps

• We’re concentrating on formally capturing notions of progress in our field

• And writing up the next version of Computational Creativity Theory

• Diagrammatic model, where each diagram represents aspects of

• How the software/user work together at runtime in terms of FACE

• How the software was developed by a programmer

• The results of evaluating the artefacts produced

• Certain changes in the diagram will map onto our intuitions of progress in
Computational Creativity, e.g., the removal of a bar, increase in evaluation

• This will enable mapping onto categories such as “definite progress”,
“definite regress”, “possible progress”, etc.

Final Guidelines

• The idea is to possibly appeal to these guidelines
during the engineering, testing and engagement
parts of your project

• But also, they’re here to get you thinking about
some more of the philosophical aspects of
Computational Creativity research

1. Ever decreasing circles
• It’s important to recognise that we have the potential

to contribute as much to the understanding of human
creativity as psychological studies do

• We don’t necessarily have to wait for discoveries
about the nature of human creativity to add creative
behaviour to our software

• AI researchers are the best people to implement creative
behaviours in software

• We can imagine mutual benefits where all fields learn
from each other - spiralling down to the truth

2. Paradigms lost

• As AI researchers and practitioners, you don’t
necessarily have to see every intelligent task as a
problem solving exercise

• If you do apply a reductionist approach, remember to
put the pieces back together again

• The artefact generation paradigm has been
rediscovered: intelligent tasks are framed as
opportunities to generate something of cultural value

3. The whole is more than a
sum of the parts

• It is often more difficult to get your software to talk
to other software than to implement a pale version
of the software you want

• However, it’s likely that your software will be more
powerful if you join forces with others

• And it helps to attract people to Computational
Creativity if we use their software

4. Climbing the meta-mountain

• We need to constantly ask ourselves how we can
hand over creative responsibilities to the software

• Plan in advance to one day get the software to
take over what you are doing in projects

• In particular, think about how the software can
take on aethetic responsibilities, and possibly show
intentionality in its work

• Try and hand over meta-level control and climb
the mountain to the top

5. The creativity tripod
• People often take details of a generative process into account

when they valuate output artefacts

• The default position in public perception is that software cannot
be creative, which can lead to a vicious circle where output is
never seen as valuable

• Hence, we need to manage this public perception

• People will generally not ascribe creativity to software if it is
lacking skill, appreciation or imagination. So, we can be proactive
and aim to implement behaviours which tick these boxes

• Remember that tripods have three legs, with three sections to
each leg: (programmer,/user software, audience)

6. Beauty is in the
mind of the beholder

• Value is not just skin-deep

• If you aim for pastiche, you might get useful software, but it’s
unlikely to ever be taken seriously as creative in its own right

• And this may well impact how people evaluate the output

• Think about the process/output of/from your software having
an impact on people, rather than the imitation game

• Ask yourself: “Is a Turing-style test the right way to assess your
software?” - people may to know about the entire creative act
if they are to assess the output

7. Good art makes you think
• The output of creative software should really be seen

as an invitation to start a dialogue

• Decorative art has value, but it is unlikely to be seen
as great art, because it doesn’t give people an
opportunity to have a dialogue with the artwork

• Dialogues can be audience-centric, or involve
cultural aspects of the day, historical concepts, etc.

• Our flavour of AI makes people think more rather than less

The Take Home...

• The discussions you’ve seen between the lecturers
here (in public and in the pub) highlight that this is
a great time to get involved in helping us to define
aspects of our field through formalisations of
notions of creativity in software

• “We can only see a short way ahead, but we can
see plenty there that needs to be done”

Alan Turing

Here’s how to get
Involved Next

Paper Types
• Technical papers: these will be papers posing and addressing hypotheses about aspects

of creative behaviour in computational systems

• System description papers: these will be papers describing the building and deployment
of a creative system to produce artefacts of potential cultural value in one or more
domains

• Study papers: these will be papers which draw on allied fields such as psychology,
philosophy, cognitive science or mathematics; or which appeal to broader areas of
Artificial Intelligence and Computer Science in general; or which appeal to studies of
the field of Computational Creativity as a whole

• Cultural application papers: these will be papers presenting the usage of creative
software in a cultural setting, e.g., art exhibitions/books; concerts/recordings/scores;
poetry or story readings/anthologies; cookery nights/books; results for scientific
journals or scientific practice; released games/game jam entries

• Position papers: these will be papers presenting an opinion on some aspect of the
culture of Computational Creativity research, including discussions of future
directions, past triumphs or mistakes and issues of the day

And think about a late
breaking paper!

www.computationalcreativity.net

www.prosecco-network.eu

ccg.doc.ic.ac.uk

Thanks to EPSRC grant EP/J004049, EU projects PROSECCO and WHIM

