
Computational 
Creativity Group

Computational Creativity Autumn School II 

Philosophical Issues

Simon Colton

Computational Creativity Group
Department of Computing

Goldsmiths College, University of London

ccg.doc.gold.ac.uk



Aims

• This morning:

• To raise and discuss some of the issues that affect us all in 
Computational Creativity research

• This afternoon:

• To address these philosophical issues with some practical 
guidance on how to build and assess creative systems



Creative 
responsibilities

Audience
participation

Also note the deliberate lack of mention of value of 
generated artefacts (poems, paintings, theorems, etc.) 
and the lack of mention of comparison with people

Computational Creativity...



Overview



Overview
Cognitive sciences, philosophy

AI and other computational sciences

Cultural domains

Cultural Outputs

art exhibitions + prints, scientific 
publications, concerts, books + 

anthologies, games, dinner parties

Industrial Involvement

video games companies, art galleries, 
advertisers (graphics + design firms, 

music software companies)

Music Art Design Maths Science Games Poetry Stories Recipes



Issues in the Field

• With the word ‘creative’

• With handing over creative responsibilities

• With evaluating software which creates

• With software not being human



Some Difficult 
Notions to Digest...



Some Difficult 
Notions to Digest...

There’s no such thing as creativity

We shouldn’t agree on how people perceive creativity

Psychology envy can be a bad thing

Output quality and autonomy of software 
can be inversely proportional

Levelling the playing field can go badly wrong

We don’t all agree in Computational Creativity!



1. Our issues with the 
word ‘creative’







Credit to Anna 
Jordanous for 

highlighting creativity in 
this context



That Word...
• ‘Creative’ is just a word that one person uses to describe another person, like ‘funny’.    

It’s a word to describe a perception people have, not an inherent property of someone

• If everyone agrees that they perceive someone as being creative, then it’s fair to call 
them creative, not just ‘perceived to be creative’

• It can also be used to describe a process/behaviour... often shorthand for the person

• Artefacts are generally not ‘creative’. In common parlance, a ‘creative building’ or a 
‘creative metaphor’ can mean one of a number of different things

• As scientists, we should be more precise in our usage of this word

• We might disagree between ourselves, but we should be internally coherent

• If we ask vague questions about the “creativity” of a person,  process, or worse, the 
“creativity” of a building or poem, we should expect to learn zero from the study, except 
(yet again) that people use the word in different ways

• We have plenty of other words we could use to help people assess quality of output, 
e.g., beautiful. And we have plenty of other words to use in domains, e.g., artistic



“Is this poem creative?”

• Would you call the person who wrote this ‘creative’?

• Do you think there was an innovative process used in 
producing this poem?

• Is it a good poem?

• Do you like the poem?

• Is it an unusual poem?

• Is it a complex poem?

In Computational Creativity research, when 
talking about software, we should only use the 

word ‘creative’ to describe how people 
perceive what our software actually does

And we shouldn’t ask that question directly



2. Our issues with 
handing over creative 

responsibilities



Weak and Strong Computational 
Creativity Subprojects

• Weak subprojects

• “I want software to create wonderful artefacts of type X”

• “I’m more interested in the domain of X, and how we can 
contribute to that culture than to simulating creativity”

• Strong subprojects

• “I want to build software which is one day taken seriously as 
being creative in generating wonderful artefacts of type X”

• “I’m more interested in the study of creativity in software, 
and I want to use domain X to further study that”



Some Painting Fool Subprojects
Weak Strong







Being Seen to Be AI
Automated Poetry Generation

• Strongly creative software cannot just produce valuable 
artefacts (poems, sonatas, theorems, paintings)

• It has to do so in intelligent and (relatively) difficult to 
follow ways (not necessarily randomly)

• And it needs to convince audiences that it has behaved in 
interesting and creative ways

• Will hopefully turn a vicious circle into a virtuous circle

• Practical implications:

• Software should produce commentaries, then stories and 
ultimately be able to answer questions...







Frequency

Stemming

Sentiment

Metre

Rhyme

Advertising

Non-rhyming

Repetition



Frequency

Stemming

Repetition

Sentiment

Metre

Rhyme

Advertising

Non-rhyming



Frequency

Repetition

Sentiment

Metre

Rhyme

Advertising

Non-rhyming

Stemming



Frequency

Stemming

Repetition

Sentiment

Rhyme

Advertising

Non-rhyming

da da da da di di da da

da da da da di di daaa

Metre



Frequency

Stemming

Repetition

Sentiment

Metre

Advertising

Non-rhyming

Rhyme



Frequency

Stemming

Repetition

Sentiment

Metre

Rhyme

Advertising

Non-rhyming



Frequency

Stemming

Repetition

Metre

Rhyme

Advertising

Non-rhyming✘

✔

✘

✔

✔

Sentiment



Frequency

Stemming

Repetition

Sentiment

Metre

Rhyme

Non-rhyming

Advertising



Searching Questions #1
• Did you notice all of these lingustic/semantic 

constraints being satisfied?

Frequency StemmingRepetition

Sentiment

Metre

Rhyme Non-rhyming Advertising

• Did your impression of the value of the poem increase 
or decrease after I explained the constraints?

• Do you think any member of the general poetry loving 
public will ever read the ICCC technical paper?

• Wouldn’t it be better if the software could tell you 
about these constraints, and throw in some more stuff?

My point is:

There are possibly benefits (in terms of increased value 
projected onto the artefacts) to be gained by presenting 

explicit information about the process behind the 
generation of an artefact 

We can provide this information through technical papers, 
talks and notes, but it would be better for the software to 

do this itself, because it simulates appreciation and/or 
reflection, which we value in creative people



Searching Questions #2

• Did you believe 
my lie about the 
advertising angle 
to the poetry 
generation?

My point is:

There may be a virtuous circle (rather than the usual 
vicious circle) we can get into, if we know that the 

software has done something difficult and intelligent. 
People will always read/see/hear things that aren’t in 

artefacts by design. If those people know a little about the 
intelligence of the system, then they might be prepared to 

give software the benefit of the doubt

Software could make stuff up (tell a story...)



Searching Questions #3

• Would you call this a “computer generated poem”?

• Would you call this a “computer created poem”?

• Would software like this ever be called “creative”?

My point is:

This is a clearly a Simon-generated poem

This doesn’t feel like Computational Creativity research yet

The software needs to take on more creative responsibility 
in the production of the poems...



Handing over Creative Responsibility 

The FACE Model
• We can judge progress in terms of the types of 

generative acts that software undertakes 
(regardless of the value of its output)

• Examples - simile multiplication, phrase overlapping

• Concepts - generating templates

• Aesthetics - inventing measures of value

• Framing - producing a commentary



Handing over Creative Responsibility 

Poetry Generation Pipeline
All Guardian 

newspaper articles 
for the day assessed 

for sentiment

Good or bad mood 
day determined

Specific article chosen

Appropriateness

Relevance

Flourishes

Database of similes

Variations of similes

Lyricism

Aesthetic 
measure for 

the day

Keyphrases extracted

Phrases overlapped

Template 
Generated

Example 
poems 

produced

Final poem 
selected

Content Value

Form



New Poems...



Discussion...
• Taken out of context, e.g., in an evaluation test or a 

Turing-style test, poem #1 would probably score 
higher as a “poem shaped object” than poem #2

• But, when we read about how the software produced 
the poems, it’s likely that people will project more 
creativity onto the software producing poem #2

• So, the more sophisticated software represents a 
backward step in automated poetry generation, but 
an advance in computational creativity

• The Latent Heat effect in Computational Creativity



The Latent Heat Effect
in Computational Creativity

Va
lu

e 
of

 a
rt

ef
ac

ts

Creative responsibility

E

User designs templates and 
has curatorial control

C

Software designs templates

A F

Software chooses output and 
reasons for the choices

Software adds value to 
its work



3. Our issues with 
evaluating software 

which creates







Hmmmmm.

If ever there was a 

Turing test for pastiche 

generation, that 

had to be it



A Turing Test for Being Creative

• Probably because of our longing for objectivity, it’s easy to mix up the 
process of generating high quality artefacts, with being creative

• Pastiches can be high quality, yet it’s unlikely that you would call the artist/
writer/musician particularly creative, as there’s no new dialogue arising 
from it

• You might argue: “What does it matter, as long as high quality output is 
produced?”

• Until you realise that as a society, we really value our creative individuals - 
perhaps more than what they produce

• And that when we celebrate an artefact (poem/picture/sonata), we are 
actually (also) celebrating the creative act that led to it

• And for strong Computational Creativity, creative behaviour is paramount



Turing-style Tests



Turing-Style Tests

• Style 1:  A dialogue where the point of the exercise is to prove that 
it would be fair to call your software intelligent

• Closest to what Turing had in mind

• Style 2:  A dialogue where the point of the exercise is to prove that 
people can’t tell the difference to talking to a person and talking to 
your software

• So, we implement software which often says unintelligent things

• Style 3:  A comparison test with no dialogue, where the point of the 
exercise is to prove that the output of your software is of a similar 
(or higher) value to that produced by people 

• This has often been applied in Computational Creativity research



Comparison Tests

• It is certainly a milestone in the development of generative 
software (and for the field as a whole) if the output can be easily 
confused with that of people. This is because we can refer to the 
default position that people act creatively when they produce, and 
hence it is only fair to describe software similarly

• And it allows objective comparison, enabling us to show progress 
in implementations. Importantly, we can be seen to be scientific in 
our evaluation methodology

• And journalists love setting up Turing-style tests, as it both informs 
and worries the general public, which helps to sell newspapers...

• New Scientist and BBC Horizon



However...

• Imagine a comparison test where the tester performs 
the reveal: 

• “So, these paintings were painted by recent Royal 
College of Art graduates”

• “And these ones were painted by..... 

• Wouldn’t your value judgements change?

a mass murderer!”



Problems 1 and 2
• Turing-style comparison tests set the computer up for a fall

• The implicit assumption is that software should be very 
grateful if it is mistaken occasionally for a human

• So, human level output becomes seen as the only goal of 
Computational Creativity research

• Software is NOT human!

• So, we end up missing out on possibilities where the software 
creates valuable, interesting artefacts in non-human ways

• We should instead be loud and proud about the generative 
system being computer based, and help people to 
appreciate the value of computer generated creative acts



Problems 3 and 4

• Turing-style comparison tests massively underestimate the 
importance of process in certain domains

• This can lead to alienation of people, certainly in the visual art 
world, where art theory is all about process

• Turing-style comparison tests answer the wrong question, e.g., 
which would you prefer, if you had to make up your mind without 
knowing fully how they were produced

• Whereas in (commercial/artistic/scientific) reality, we will have 
full/partial disclosure of practice as well as product

• Or should we go through this charade with our software for the 
rest of our lives?



• There are no right or wrongs in the visual arts. However, critics 
can severely inflict pain by saying that your work is “naive” and/or 
a “pastiche”

• Turing-style comparison tests might encourage software to act 
unintelligently, to make it seem more human, hence it could be 
criticised as naive

• Turing-style comparison tests definitely encourage the generation 
of pastiche pieces, as the measure of success is whether you have 
successfully imitated something which isn’t you

• Would art graduates be happy if you said their pieces all looked 
like Monet pictures? 

Problems 5 and 6



Well put by Alison...

• Turing-style comparison tests are inappropriate for 
testing aspects of creative intelligence in software

• See paper for other arguments



Boden’s

“A Turing Test for Artistic Creativity”



Boden and Edmund’s

“Turing Test for Artistic Creativity”

• Richard Brown’s Starfish

• Harold Cohen’s AARON

• Art by Boden and Edmunds

• David Cope’s EMI



Boden’s

“Turing Test for Artistic Creativity”



Our Objections...

• It’s an interpretation of Turing’s test which bears little 
resemblance to the original idea

• There is no dialogue or interaction of any kind with the 
system as part of the test

• The test can be passed without comparison to human 
intelligence, or even human output

• So, it’s possible to pass the originally conceived Turing test 
(testably achieving human-level intelligence), yet not pass 
Boden’s test

• Yet - as evidenced by the Starfish and by Boden and 
Edmunds’ art - it’s possible to pass Boden’s test without 
exhibiting any higher level cognitive functions



The Starfish...



4. Our issues with 
software not being human



Human Level Creativity
• There are four main reasons to study human creativity 

with Computational Creativity research:

• Because the artefacts produced are for human 
consumption (product)

• It’s ultimately human recognition of our software being 
creative that we seek (process)

• People take computationally created artefacts and are 
creative with them (interpretation, etc)

• We can program software to be (perceived to be) more 
creative by understanding well human creative processes

✓

✓
✖

✓



Psychology Envy

• Psychology research is great! And we should rightly be envious of their achievements

• But its value to Computational Creativity research is not as high as you might 
imagine, and it’s not a problem to realise this

• Problem 1: the results are often too vague to be turned into computational approaches, 
although we might get some general motivation or ideas

• Problem 2: because of the volume of knowledge about human creativity, it’s too tempting 
to apply it to computational approaches to creativity

• Software isn’t human, e.g., it doesn’t store and process information in the same way 

• It’s often wholly inappropriate to analyse software in psychological terms, or pretend 
that software can be compared to people in meaningful ways

• Problem 3: there are some psychology experiments with methodologies that involve 
vaguely defined concepts. Our envy might lead us to overlook this and copy their flawed 
methodologies



Humanity Envy

• Treating our software as human blinds us to the fact that people’s perception 
of software in society is hugely different to their perception of other people

• Me: “Should my software explain how it has produced a poem?”

• Tony: “...but people don’t do that when they write poems!”

• Me: “But my software isn’t a person”

• Tony: “It’ll be seen as juvenile”

• Me: “But my software is juvenile!”... 

• Me later: “Hmmm. What does juvenile even mean when we are talking about 
software?”



On Tear Drops and Acid Drops

• Why should we treat software generated poems in 
the same way that we treat human produced ones?

• Software has a much harder sell

• It is never going to be a level playing field

I believe that, even if they have exactly the same words in exactly the same 
order, a computer generated poem should be seen as a fundamentally 

different type of artefact to a poem penned by a person

This is because the effect that each poem has on a reader is fundamentally 
different, due to the differences in how they were produced and what/who 

produced them



What do People Know 
about Human Poets?

They’re like us 
in many ways

They think hard 
about their 

poems

They’re 
motivated to tell 

their story

They want to 
express their 

emotions

They stay up all 
night writing and 
drinking coffee

They live in Paris 
and sell poems 

for meals

They became a 
poet after a bad 

break up

They’re writing 
about their dead 

father



They’re writing 
about their dead 

father

They became a 
poet after a bad 

break up

What do People Know 
about Human Poets?

They’re like us 
in many waysThey think hard 
about their 

poems

They’re 
motivated to tell 

their story
They want to 
express their 

emotions

They live in Paris 
and sell poems 

for mealsThey stay up all 
night writing and 
drinking coffee

They’re creative individuals

They write high quality poems



What do People Know 
about Human Poets?

They’re like us 
in many ways

They think hard 
about their 

poems

They’re 
motivated to tell 

their story

They want to 
express their 

emotions

Computer
They’re dislike 

us in sooo many 
ways

They perform 
trivial random 

processing

They have no 
story to tell

They are devoid 
of personality







Some Difficult 
Notions to Digest...



Some Difficult 
Notions to Digest...

There’s no such thing as creativity

We shouldn’t agree on how people perceive creativity

Psychology envy can be a bad thing

Output quality and autonomy of software 
can be inversely proportional

Levelling the playing field can go badly wrong

We still don’t all agree in Computational Creativity!



It’s not all Bad!

• In this afternoon’s lecture...

• Filling the humanity gap

• Managing people’s perception of creativity with 
the creativity tripod (now spider!)

• Formalising progress in terms of the processes 
that software undertakes



Was there anything 
right about your talk..?


