Algorithms in Genome Analysis, Spring 2023

Veli Mäkinen

Lecture 1: Minimizers

Min-hashing based routine to speed-up alignments

Alignments

- Sequence alignment is the core routine in bioinformatics to estimate how one sequence has evolved from another:
- It gives a similarity measure $\mathrm{S}(\mathrm{A}, \mathrm{B})$ for two sequences A and B , with high value meaning that A and B are likely to be closely related
- Next week video lecture "Alignment scores" introduces how this similarity measure $S(A, B)$ is derived
- Later we learn that it takes quadratic time to compute $\mathrm{S}(\mathrm{A}, \mathrm{B})$
- With high-throughput sequencing data, such quadratic computations are usually impossible, so in practice, heuristics like BLAST are used instead.

BLAST main idea

See also "dot-plot"

Alignment-free

- An alternative to heuristically computing $\mathrm{S}(\mathrm{A}, \mathrm{B})$, is to look at other similarity measures, and compute those exactly
- Such methods are typically categorized as alignment-free measures

Jaccard similarity

- Can be used as alignment-free similarity measure between two sequences S and T.
- Let X and Y be the sets of k-mers of S and T, respectively.
- $\mathrm{J}(\mathrm{S}, \mathrm{T})=\frac{|X \cap Y|}{|X \cup Y|}$
- Can be computed using bidirectional BWT, see course book.
- Consider we want to compute the similarity between all pairs of sequences from a large collection.
- Approximating $J(S, T)$ is fine, we just want to find all S that are candidates of being close to T , then align them.

Approximating Jaccard similarity

- Consider a random perfect hash function h() applied to all elements of X and Y , sorting the elements to sequences of k -mers X ' and Y^{\prime}.
- Value $J^{p}(X, Y)=\frac{\left|M \cap X^{\prime}[1 . . p] \cap Y^{\prime}[1 . . p]\right|}{|M|}$ approximates Jaccard similarity, where M is the set of p smallest elements of $X^{\prime}[1 . . p] \cup Y^{\prime}[1 . . p]$.
- The length p of the min-sketch or fingerprint (set of p minimum elements) determines how good the approximation is.
- Instead of single $h()$ with extracted p-sketch, one can use p independent hash functions and take the minimum element from each as the p sketch.
- (For probabilistic analysis of the approximation, see A. Z. Broder. On the resemblance and containment of documents. Proceedings. Compression and Complexity of SEQUENCES 1997.)

Example

- $\mathrm{S}=$ CAGCTAGCTAC, $\mathrm{T}=$ TAGGCTAGCTA, $\mathrm{k}=3$
- $\mathrm{X}=\{\mathrm{CAG}, \mathrm{AGC}, \mathrm{GCT}, \mathrm{CTA}, \mathrm{TAG}, \mathrm{TAC}\}$
- $\mathrm{Y}=\{\mathrm{TAG}, \mathrm{AGG}, \mathrm{GGC}, \mathrm{GCT}, \mathrm{CTA}, \mathrm{AGC}\}$
- $\mathrm{J}(\mathrm{X}, \mathrm{Y})=4 / 8=50 \%$
- $h(X)=\{35,24,62,5,12,41\}, X^{\prime}=\{5,12,24,35,41,62\}$
- $\mathrm{h}(\mathrm{Y})=\{12,8,19,62,5,24\}, \mathrm{Y}^{\prime}=\{5,8,12,19,24,62\}$
- $\mathrm{p}=4, \mathrm{M}=\{5,8,12,19\}$
- $J^{4}(X, Y)=\frac{2}{4}=50 \%, J^{3}(X, Y)=\frac{2}{3}=66.6 \%$
- $J^{2}(X, Y)=\frac{1}{2}=50 \%, J^{1}(X, Y)=\frac{1}{1}=100 \%$

Minimizers

- Consider sliding a window of length w over a sequence S.
- For each window, find the minimum k-mer.
- The set of these over all windows form the set of minimizers of S.
- Typically adjacent windows have the same minimizer.
- Positions of the minimizers can be associated with the set.
- What is minimum k-mer?
- One with minimum hash value
- Or simply the lexicographically smallest
- How to use them?
- Pair-up identical minimizers from two sequences to form alignment anchors
- (For more applications, see papers citing Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M. \& Yorke, J.A. Reducing storage requirements for biological sequence comparison. Bioinformatics, 20:3363-3369 (2004).)

Example of minimizers

$$
\mathrm{k}=3
$$

ACTATCATCAGCTAGCGATCTAGCTACGT

ACTATCATCAGCTAGCGATCTAGCTACGT

Minimizer alignment idea

Minimizers in linear time

- Assume your hash function $\mathrm{h}(\mathrm{X})$ is string $\mathrm{X}=x_{1} x_{2} \ldots x_{k}$ interpreted as a k -digit integer in base c , where $\{0,1,2, . ., \mathrm{c}-1\}$ is the alphabet of X
- DNA k-mer X can be interpreted with, e.g., $0=\mathrm{A}, 1=\mathrm{C}, 2=\mathrm{G}, 3=\mathrm{T}$.
- $\mathrm{h}(\mathrm{X})=x_{1} c^{k-1}+x_{2} c^{k-2}+\cdots+x_{k}$
- Taking $\mathrm{h}(\mathrm{X})$ mod N limits the domain to [0..N-1] and one can add randomness to create a family of universal hash functions (details omitted here, see Karp-Rabin fingerprints)
- $\mathrm{h}\left(x_{2} x_{3} \ldots x_{k} a\right)=h(X) c-x_{1} c^{k}+a$, thus each k-mer value can be computed in constant time.
- Exercise: How to get all the minimizers in linear time?

