Algorithms in Genome Analysis,

Spring 2023

Veli Makinen

Week 2

Alignments

Global alighment

Input: Two sequences A and B

Output: Two aligned sequences A’ and B’ with max alignment
score S(A,B)

Alignment means adding gaps - to the input sequences to
make the output sequences of equal length

Aligning ”_” with ”-” is not allowed
|A'| e .
S(A,B)= max . S(A'[i],B]i
(4,5) {alignments A’,B'} Zl_l (A'li], BL'])
See the prerecorded video on rigorous ways to define
® substitution scores s(a,b) and

® gap penalties s(-,b) and s(-,b) equalling constant -d

Global alignment example

o A=AGCTGAT
e B =GCAGACT
* A’=AGCTGA-T
e B= -GCAGACT

* Assume (A',B’) is an optimal alignment of A and
B, s(a,a)=1,s(a,b)=0 for a#b, and s(-,a)=s(-,b)=-1.
e S(A,B)=-1+1+1+0+1+1-1+1=3.

Global alignment through dynamic
programming

e S[i,]]=S(A[L..1],B[1..]])
e An optimal alignment of prefixes A[1..1]] and B[1..j] can
end in three ways:
e A[i] is aligned with BJ[j]
e AJi] is aligned with a gap -’
e Gap ’-" is aligned with B[j]
o SJ[i,j]l=max(
o S[i-1,-1]+s(Ali],B[]),
o S[i-1,)]+s(All].-),
* S[iJ-1]+s(-,Bl]))
e 5[0,j]]=-d, S[i,0]=-id as initialization, S(A,B)=S[|A|,|B|]
as finalization
e See course book for an induction proof.

Global alignment traceback

e Once SJi,j] are computed for all i and |, we can

reverse the decisions starting from S[|A|,|B|]:

o If S[|AJ-1,|B|-1]+s(A[i],B[j)=SI|Al,|B]|], we know there is
an optimal alignment ending with aligning AJi] with BJ[j].

o If S[|A|-1,|B|]+s(A[i],-)=S[|A],|B]|], we know there is an
optimal alignment ending with aligning A[i] with a gap.

e If S[|A],|B|-1]+s(-,B[j])=S[|Al,|B|], we know there is an
optimal alignment ending with aligning a gap with BJ[j].

e Continuing this way with one of the options above gives
us an optimal aligment backwards.

Local alignment

® Input:' Two sequences A and B

® Qutput: Substrings C and D of A and B, respectively, with
maximum global alignment score S(C,D)

* Naive computation in time O (|A] 3 |B| 3) by extracting all
substring pairs and computing global alignment through
dynamic programming,

* Easy speed-up to 0(|A|2 |B |2) by doing global alignment
computation on all suftix pairs and looking for maximum

S[i,j] value.

Local alignment with a twist

Assume max local alignment score is non-negative.
Let C and D be substrings yielding max score S(C,D)=0.
Let C’ and D’ be alignments of C and D with score S(C,D).

Score s(C’[1],D’[1])20, as otherwise we could shorten C or D or both
and get an alighment with at least as good score.

® We can ignore alignments that start with negative score

L[i,j]=max(0,

e L[I-1,)-1]+s(A[I],B[1]),

o L[I-1,j]+s(All].-),

* L[i,-1]+s(-,B[]))

Max L[i,j] value reveal substrings ending at A[..i] and BJ..j] with highest
non-negative alignment score.

Traceback reveals the start of the substrings.

Running time is O(| A | | B|), that is, the same as for global alignment.

e

-

B B
0
0
A A
S
S
B
B
A A S
0
S

Variations of the theme

Semi—global alignment

Connection to edit distance

* An alignment can be interpreted as editing
Instructions to convert A into B:

e A[i] is aligned with B[j] = Substitute A[i] with BJj]
e AJi] is aligned with a gap "-" = Delete A[l]
e Gap ’-" is aligned with B[j] = Insert BJj]
e DIi,jJ=min(
e D[i-1,j-1]+(A[i]=BJj]?0:1),
o D[i-1,j]+1,
e D[i,j-1]+1)
e DJ[O,j]=j, D[1,0]=I as initialization, D(A,B)=D[|A|,|B]] as
finalization
 Here D(A,B) is the unit cost edit distance.

e

More variations of the theme

B

B

A—

Approximate string matching

