
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 2

Alignments

Global alignment
 Input: Two sequences A and B

 Output: Two aligned sequences A’ and B’ with max alignment
score S(A,B)

 Alignment means adding gaps ”-” to the input sequences to
make the output sequences of equal length

 Aligning ”-” with ”-” is not allowed

 S(A,B)= max
𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 𝐴′,𝐵′

σ
𝑖=1

𝐴′
𝑠 𝐴′ 𝑖 , 𝐵 𝑖′

 See the prerecorded video on rigorous ways to define

 substitution scores s(a,b) and

 gap penalties s(-,b) and s(-,b) equalling constant -d

Global alignment example

 A= AGCTGAT

 B =GCAGACT

 A’= AGCTGA-T

 B’= -GCAGACT

 Assume (A’,B’) is an optimal alignment of A and

B, s(a,a)=1,s(a,b)=0 for a≠b, and s(-,a)=s(-,b)=-1.

 S(A,B)=-1+1+1+0+1+1-1+1=3.

Global alignment through dynamic

programming
 S[i,j]=S(A[1..i],B[1..j])

 An optimal alignment of prefixes A[1..i] and B[1..j] can
end in three ways:
 A[i] is aligned with B[j]
 A[i] is aligned with a gap ”-”
 Gap ”-” is aligned with B[j]

 S[i,j]=max(
 S[i-1,j-1]+s(A[i],B[j]),
 S[i-1,j]+s(A[i],-),
 S[i,j-1]+s(-,B[j]))

 S[0,j]=-jd, S[i,0]=-id as initialization, S(A,B)=S[|A|,|B|]
as finalization

 See course book for an induction proof.

Global alignment traceback

 Once S[i,j] are computed for all i and j, we can

reverse the decisions starting from S[|A|,|B|]:

 If S[|A|-1,|B|-1]+s(A[i],B[j])=S[|A|,|B|], we know there is

an optimal alignment ending with aligning A[i] with B[j].

 If S[|A|-1,|B|]+s(A[i],-)=S[|A|,|B|], we know there is an

optimal alignment ending with aligning A[i] with a gap.

 If S[|A|,|B|-1]+s(-,B[j])=S[|A|,|B|], we know there is an

optimal alignment ending with aligning a gap with B[j].

 Continuing this way with one of the options above gives

us an optimal aligment backwards.

Local alignment

 Input: Two sequences A and B

 Output: Substrings C and D of A and B, respectively, with

maximum global alignment score S(C,D)

 Naive computation in time 𝑂 𝐴 3 𝐵 3 by extracting all

substring pairs and computing global alignment through

dynamic programming.

 Easy speed-up to 𝑂 𝐴 2 𝐵 2 by doing global alignment

computation on all suffix pairs and looking for maximum

S[i,j] value.

Local alignment with a twist
 Assume max local alignment score is non-negative.

 Let C and D be substrings yielding max score S(C,D)≥0.

 Let C’ and D’ be alignments of C and D with score S(C,D).

 Score s(C’[1],D’[1])≥0, as otherwise we could shorten C or D or both
and get an alignment with at least as good score.
 We can ignore alignments that start with negative score

 L[i,j]=max(0,
 L[i-1,j-1]+s(A[i],B[j]),
 L[i-1,j]+s(A[i],-),
 L[i,j-1]+s(-,B[j]))

 Max L[i,j] value reveal substrings ending at A[..i] and B[..j] with highest
non-negative alignment score.

 Traceback reveals the start of the substrings.

 Running time is O(|A||B|), that is, the same as for global alignment.

A

B
0

S

Global alignment

A

B

0

S

Local alignment

A

B

0

S

Semi-global alignment

Variations of the theme

A

B
0

S
Overlap alignment

Connection to edit distance
 An alignment can be interpreted as editing

instructions to convert A into B:

 A[i] is aligned with B[j] → Substitute A[i] with B[j]

 A[i] is aligned with a gap ”-” → Delete A[i]

 Gap ”-” is aligned with B[j] → Insert B[j]

 D[i,j]=min(

 D[i-1,j-1]+(A[i]=B[j]?0:1),

 D[i-1,j]+1,

 D[i,j-1]+1)

 D[0,j]=j, D[i,0]=i as initialization, D(A,B)=D[|A|,|B|] as
finalization

 Here D(A,B) is the unit cost edit distance.

A

B
0

D

Edit distance

Approximate string matching

More variations of the theme

A

B
0

D

