# Algorithms in Genome Analysis, Spring 2023

Veli Mäkinen

#### Week 3

Alignments – some more advanced topics

#### Connection to edit distance

- An alignment can be interpreted as editing instructions to convert A into B:
  - A[i] is aligned with B[j]  $\rightarrow$  Substitute A[i] with B[j]
  - A[i] is aligned with a gap "-"  $\rightarrow$  Delete A[i]
  - Gap "-" is aligned with  $B[j] \rightarrow Insert B[j]$
- D[i,j]=min(
  - D[i-1,j-1]+(A[i]=B[j]?0:1),
  - D[i-1,j]+1,
  - D[i,j-1]+1 )
- D[0,j]=j, D[i,0]=i as initialization, D(A,B)=D[|A|,|B|] as finalization
- Here D(A,B) is the unit cost edit distance.

#### More variations of the theme





Approximate string matching

#### Shortest detour

Speeding-up edit distance computation

## O(kn) time, where k is a threshold

- Assume |A|=|B|=n for simplicity of exposition.
- Consider a diagonal zone  $i j \in [-\frac{k}{2}, -\frac{k}{2} + 1, ..., 0, 1, 2, ..., \frac{k}{2}].$
- If traceback to D[n,n] uses a cell outside the diagonal zone, it corresponds to an alignment with at least k/2+1 deletions and k/2+1 insertions, and the total cost is at least k+2.
- To decide if D(A,B)≤k, it is thus sufficient to do computation inside the diagonal zone: O(kn) time.



## O(dn) time, where d is D(A,B)

- We can use doubling: Run computation with k=1, k=2, k=4, ...
- As soon as D[n,n]≤k, we know that any traceback path that goes outside the diagonal zone will have cost greater than D[n,n]. That is, d=D(A,B)=D[n,n].
- As we didn't stop earlier, k/2<d.
- The running time is
  - $\sum_{x=0}^{1+\log_2 d} 2^x n < 2^{2+\log_2 d} n$
  - = O(dn)
- Algorithm and its analysis extend to the general case, where |A|≠|B|.



# Longest Common Subsequence

Sparse dynamic programming

#### Longest Common Subsequence (LCS)

- LCS(A,B) is a longest sequence that can be obtained both by deleting characters from A and by deleting characters from B
- E.g. LCS("<u>A</u>G<u>C</u>T<u>A</u>G","<u>AC</u>C<u>A</u>CC")="ACA"
- Consider edit distance D<sub>id</sub>(A,B) with insertions and deletions only
- D<sub>id</sub>[i,j]=min(
  - D<sub>id</sub>[i-1,j-1]+(A[i]=B[j]?0:∞),
  - D<sub>id</sub>[i-1,j]+1,
  - D<sub>id</sub>[i,j-1]+1 )
- D<sub>id</sub>[0,j]=j, D<sub>id</sub>[i,0]=i as initialization, D<sub>id</sub>(A,B)= D<sub>id</sub>[|A|,|B|] as finalization
- |LCS(A,B)|=(|A|+|B|-D<sub>id</sub>(A,B))/2 (proof as exercise)

#### Sparse dynamic programming for LCS



- Compute L(i,j)=
- |LCS(A[1..i],B[1..j])| for  $(i,j) \in M$ ,  $M = \{(0,0)\} \cup \{(i,j)|A[i] = B[j]\}$
- $L(i,j) = 1 + \max_{\substack{(i',j') \in M, \\ i' < i, j' < j}} L(i',j')$
- We compute the values in reverse column order and add (key,value) pairs (i,L(i,j)) into a search tree T.
- L(i,j)=1+T.rangemax(0,i-1)
- A standard balanced binary search tree can be used for supporting the operations in O(log |A|) time.
- Running time O(|M|log |A|), assuming M given.

# **Co-linear chaining**

Like LCS computation but the set of matches replaced by a set of alignment anchors



# Co-linear chaining (CLC)

- Alignment anchors = e.g., set of N minimizer matches or MEMs between read R and reference T
- **Chain** = Subset of anchors forming a linear order in both R and T
- **Objective**: Score of chain, e.g, coverage of R
- Key facts:
  - Many variants: different ways of handling overlaps of anchors, assigning penalties to gaps
  - Many algorithms: Most variants can be solved in O(N log N) time or slightly worse running time
  - Can be applied to the alignment of both DNA (variant calling) and RNA long-reads (spliced alignment, transcript prediction)
- Course book gives an O(N log N) algorithm for allowing overlaps and for optimizing coverage of R
- Next slide illustrates a simplication of it: no overlaps allowed
  - It uses the same search tree as in the sparse dynamic programming LCS solution
  - In fact, if alignment anchors = set of matches, this algorithm solves LCS



## Affine gap penalties

Sparse dynamic programming --> Gotoh's algorithm

## Global alignment with affine gaps

• Consider global alignment where a run of gaps of length g is penalized with  $-\alpha + (g-1)\beta$ , rather than with -gd.

ACA-GA-T-AA ACAG--G-GAA g = 6

• This looks like LCS computation...



## Global alignment with affine gaps



- One can proceed as in the LCS algorithm adding (key,value) pairs  $(i', S[i', j'] + \beta(i' + j'))$  to a search tree, and querying the tree for max value in a range adding  $-\alpha - \beta(i + j - 3)$
- This yields an O(|A||B|log |A|) time algorithm.
- Now that we are not storing a sparse set, search tree becomes obsolete.
- Instead, we can keep some simple row and column maxima values to obtain O(|A||B|) time (see course book).

## Gotoh's algorithm

- Even simpler than the one derived through LCS connection.
- Idea: Compute two tables, one storing optimal score for alignments ending with a match and the other for alignments ending with a gap.
- M[i,j]=S(A[1..i],B[i..j] | match)
- G[i,j]=S(A[1..i],B[i..j] | gap)
- M[i,j]=s(A[i],B[j])+max(M[i-1,j-1],G[i-1,j-1])
- G[i,j]=max  $M[i 1, j] \alpha, M[i, j 1] \alpha,$  $G[i - 1, j] - \beta, G[i, j - 1] - \beta)$
- These can be evaluated in synchronization in O(|A||B|) time.