
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 3

Alignments – some more advanced topics

Connection to edit distance
 An alignment can be interpreted as editing

instructions to convert A into B:

 A[i] is aligned with B[j] → Substitute A[i] with B[j]

 A[i] is aligned with a gap ”-” → Delete A[i]

 Gap ”-” is aligned with B[j] → Insert B[j]

 D[i,j]=min(

 D[i-1,j-1]+(A[i]=B[j]?0:1),

 D[i-1,j]+1,

 D[i,j-1]+1)

 D[0,j]=j, D[i,0]=i as initialization, D(A,B)=D[|A|,|B|] as
finalization

 Here D(A,B) is the unit cost edit distance.

A

B
0

D

Edit distance

Approximate string matching

More variations of the theme

A

B
0

D

Shortest detour

Speeding-up edit distance computation

A

B

0

D

O(kn) time, where k is a threshold

 Assume |A|=|B|=n for simplicity of exposition.

 Consider a diagonal zone 𝑖 − 𝑗 ∈ [−
𝑘

2
, −

𝑘

2
+ 1,… , 0,1,2, … ,

𝑘

2
].

 If traceback to D[n,n] uses a cell

outside the diagonal zone, it corresponds to an alignment with at

least k/2+1 deletions and k/2+1 insertions, and the total cost is at

least k+2.

 To decide if D(A,B)≤k, it is thus

sufficient to do computation inside

the diagonal zone: O(kn) time.

0 1 2 ... k/2
-1

.-2

..
-k/2

i

j

A

B

0

D

O(dn) time, where d is D(A,B)

 We can use doubling: Run computation with k=1, k=2, k=4, …

 As soon as D[n,n]≤k, we know that any traceback path that goes

outside the diagonal zone will have cost greater than D[n,n]. That

is, d=D(A,B)=D[n,n].

 As we didn’t stop earlier, k/2<d.

 The running time is

 σ𝑥=0
1+log2 𝑑 2𝑥𝑛 < 22+log2 𝑑 𝑛

 = 𝑂(𝑑𝑛)

 Algorithm and its analysis

extend to the general case,

where |A|≠|B|.

0 1 2 ... k/2
-1

.-2

..
-k/2

i

j

Longest Common Subsequence

Sparse dynamic programming

Longest Common Subsequence (LCS)

 LCS(A,B) is a longest sequence that can be obtained both by

deleting characters from A and by deleting characters from B

 E.g. LCS(”AGCTAG”,”ACCACC”)=”ACA”

 Consider edit distance Did(A,B) with insertions and deletions only

 Did[i,j]=min(

 Did[i-1,j-1]+(A[i]=B[j]?0:∞),

 Did[i-1,j]+1,

 Did[i,j-1]+1)

 Did[0,j]=j, Did[i,0]=i as initialization, Did(A,B)= Did[|A|,|B|] as

finalization

 |LCS(A,B)|=(|A|+|B|-Did(A,B))/2 (proof as exercise)

Sparse dynamic programming for LCS

4

2

2

0

1

3

1

1

4

T

A

T

T

C

T

A

T

C

T

T

C

T

C

T

A

T

T

T

1

3

G G A G G G G C G G C G G G A G G G G G C …

2

3

2

2 3

4

max+1

• Compute L(i,j)=

|LCS(A[1..i],B[1..j])|for 𝑖, 𝑗 ∈ 𝑀,
𝑀 = { 0,0 } ∪ 𝑖, 𝑗 𝐴 𝑖 = 𝐵[𝑗]}

• L(i,j)=1 + max
𝑖′,𝑗′ ∈M,

𝑖′<𝑖,𝑗′<𝑗

𝐿(𝑖′, 𝑗′)

• We compute the values in reverse

column order and add (key,value) pairs

(i,L(i,j)) into a search treeT.

• L(i,j)=1+T.rangemax(0,i-1)

• A standard balanced binary search tree

can be used for supporting the

operations in O(log |A|) time.

• Running time O(|M|log |A|),

assuming M given.

…

Co-linear chaining

Like LCS computation but the set of matches replaced by a set of

alignment anchors

Co-linear chaining (CLC)

T

R

T

R

Co-linear chaining (CLC)

 Alignment anchors = e.g., set of N minimizer matches or MEMs
between read R and reference T

 Chain = Subset of anchors forming a linear order in both R and T

 Objective: Score of chain, e.g, coverage of R

 Key facts:
 Many variants: different ways of handling overlaps of anchors, assigning

penalties to gaps

 Many algorithms: Most variants can be solved in O(N log N) time or
slightly worse running time

 Can be applied to the alignment of both DNA (variant calling) and RNA
long-reads (spliced alignment, transcript prediction)

 Course book gives an O(N log N) algorithm for allowing overlaps
and for optimizing coverage of R

 Next slide illustrates a simplication of it: no overlaps allowed
 It uses the same search tree as in the sparse dynamic programming LCS

solution

 In fact, if alignment anchors = set of matches, this algorithm solves LCS

Co-linear chaining (CLC)

T

R

T

R

5

5

3

8
max +3

3

max +3
3

4

9
max +4

9

Affine gap penalties

Sparse dynamic programming --> Gotoh’s algorithm

Global alignment with affine gaps

 Consider global alignment where a run of gaps of length 𝑔 is

penalized with −𝛼 + 𝑔 − 1 𝛽, rather than with −𝑔𝑑.

 This looks like LCS computation…

ACA-GA-T-AA
ACAG--G-GAA

𝑔 = 6

Global alignment with affine gaps

b

0

max

i’

j’

i

j

a

• 𝑆 𝑖, 𝑗 = 𝑠 𝐴 𝑖 , 𝐵 j +
max(S i − 1, j − 1 ,

𝑚𝑎𝑥
𝑖′<𝑖,𝑗′<𝑗, 𝑖′,𝑗′ ≠(𝑖−1𝑗−1)

𝑆[𝑖′, 𝑗′]

−𝛼 − 𝛽(𝑖 − 𝑖′ − 1
+ 𝑗 − 𝑗′ − 1 − 1))

• 𝑆 𝑖, 𝑗 = 𝑠 𝐴 𝑖 , 𝐵 j +
max(S i − 1, j − 1 ,
−𝛼 − 𝛽 𝑖 + 𝑗 − 3 +

𝑚𝑎𝑥
𝑖′<𝑖,𝑗′<𝑗, 𝑖′,𝑗′ ≠(𝑖−1𝑗−1)

𝑆[𝑖′, 𝑗′]

+𝛽 𝑖′ + 𝑗′)

i-
i’

-1

j-j’-1

Global alignment with affine gaps

b

0

max

i’

j’

i

j

a

• One can proceed as in the

LCS algorithm adding (key,value)

pairs (i′, 𝑆 𝑖′, 𝑗′ + 𝛽 𝑖′ + 𝑗′) to a

search tree, and querying the tree

for max value in a range adding

−𝛼 − 𝛽 𝑖 + 𝑗 − 3
• This yields an O(|A||B|log |A|)

time algorithm.

• Now that we are not storing a sparse

set, search tree becomes obsolete.

• Instead, we can keep some simple

row and column maxima values to

obtain O(|A||B|) time

(see course book).

i-
i’

-1

j-j’-1

Gotoh’s algorithm

 Even simpler than the one derived through LCS connection.

 Idea: Compute two tables, one storing optimal score for

alignments ending with a match and the other for alignments

ending with a gap.

 M[i,j]=S(A[1..i],B[i..j] | match)

 G[i,j]=S(A[1..i],B[i..j] | gap)

 M[i,j]=s(A[i],B[j])+max(M[i-1,j-1],G[i-1,j-1])

 G[i,j]=max 𝑀 𝑖 − 1, 𝑗 − 𝛼,𝑀 𝑖, 𝑗 − 1 − 𝛼,
𝐺 𝑖 − 1, 𝑗 − 𝛽, 𝐺 𝑖, 𝑗 − 1 − 𝛽)

 These can be evaluated in synchronization in O(|A||B|) time.

