Algorithms in Genome Analysis, Spring 2023

Veli Mäkinen

Week 3

Alignments - some more advanced topics

Connection to edit distance

- An alignment can be interpreted as editing instructions to convert A into B:
- $A[i]$ is aligned with $\mathrm{B}[\mathrm{j}] \rightarrow$ Substitute $\mathrm{A}[\mathrm{i}]$ with $\mathrm{B}[\mathrm{j}]$
- $A[i]$ is aligned with a gap "-" \rightarrow Delete $A[i]$
- Gap "-" is aligned with $\mathrm{B}[\mathrm{j}] \rightarrow$ Insert $\mathrm{B}[\mathrm{j}]$
- D[i, j$]=\min ($
- $D[i-1, j-1]+(A[i]=B[j] ? 0: 1)$,
- $\mathrm{D}[\mathrm{i}-1, \mathrm{j}]+1$,
- D[i,j-1]+1)
- $\mathrm{D}[0, \mathrm{j}]=\mathrm{j}, \mathrm{D}[\mathrm{i}, 0]=\mathrm{i}$ as initialization, $\mathrm{D}(\mathrm{A}, \mathrm{B})=\mathrm{D}[|\mathrm{A}|,|\mathrm{B}|]$ as finalization
- Here $D(A, B)$ is the unit cost edit distance.

More variations of the theme

B

Approximate string matching

Shortest detour

Speeding-up edit distance computation

O(kn) time, where k is a threshold

- Assume $|\mathrm{A}|=|\mathrm{B}|=\mathrm{n}$ for simplicity of exposition.
- Consider a diagonal zone $i-j \in\left[-\frac{k}{2},-\frac{k}{2}+1, \ldots, 0,1,2, \ldots, \frac{k}{2}\right]$.
- If traceback to D[n,n] uses a cell outside the diagonal zone, it corresponds to an alignment with at least $k / 2+1$ deletions and $k / 2+1$ insertions, and the total cost is at least $\mathrm{k}+2$.
- To decide if $D(A, B) \leq k$, it is thus sufficient to do computation inside the diagonal zone: $\mathrm{O}(\mathrm{kn})$ time.

O(dn) time, where d is $D(A, B)$

- We can use doubling: Run computation with $\mathrm{k}=1, \mathrm{k}=2, \mathrm{k}=4, \ldots$
- As soon as $\mathrm{D}[\mathrm{n}, \mathrm{n}] \leq \mathrm{k}$, we know that any traceback path that goes outside the diagonal zone will have cost greater than $\mathrm{D}[\mathrm{n}, \mathrm{n}]$. That is, $d=D(A, B)=D[n, n]$.
- As we didn't stop earlier, $\mathrm{k} / 2<\mathrm{d}$.
- The running time is
- $\sum_{x=0}^{1+\log _{2} d} 2^{x} n<2^{2+\log _{2} d} n$
- $=O(d n)$
- Algorithm and its analysis extend to the general case, where $|\mathrm{A}| \neq|\mathrm{B}|$.

Longest Common Subsequence

Sparse dynamic programming

Longest Common Subsequence (LCS)

- $\operatorname{LCS}(\mathrm{A}, \mathrm{B})$ is a longest sequence that can be obtained both by deleting characters from A and by deleting characters from B
- E.g. LCS(" $\underline{A G} \underline{C} T \underline{A} G$ "," $\underline{A C C} \underline{A C C ")=" A C A " ~}$
- Consider edit distance $D_{i d}(A, B)$ with insertions and deletions only
- $D_{i d}[i, j]=\min ($
- $D_{i d}[i-1, j-1]+(A[i]=B[j] ? 0: \infty)$,
- $\mathrm{D}_{\mathrm{id}}[i-1, \mathrm{j}]+1$,
- $\left.D_{i d}[i, j-1]+1\right)$
- $D_{i d}[0, j]=j, D_{i d}[i, 0]=i$ as initialization, $D_{i d}(A, B)=D_{i d}[|A|,|B|]$ as finalization
- $|\operatorname{LCS}(\mathrm{A}, \mathrm{B})|=\left(|\mathrm{A}|+|\mathrm{B}|-\mathrm{D}_{\mathrm{id}}(\mathrm{A}, \mathrm{B})\right) / 2$ (proof as exercise)

Sparse dynamic programming for LCS

-G_G_A_G_G_G_C_G_G_C_G_G_G G G G G G C \ldots

Compute $L(i, j)=$
$|\operatorname{LCS}(\mathrm{A}[1 . . \mathrm{i}], \mathrm{B}[1 . . \mathrm{j}])|$ for $(i, j) \in M$, $M=\{(0,0)\} \cup\{(i, j) \mid A[i]=B[j]\}$
$\mathrm{L}(\mathrm{i}, \mathrm{j})=\underset{(i,, j \prime) \in \mathrm{M},}{1+\max L\left(i^{\prime}, j^{\prime}\right), ~\left(i^{\prime}\right)}$
$i^{\prime}<i, j^{\prime}<j$

- We compute the values in reverse column order and add (key, value) pairs $(i, L(i, j))$ into a search tree T.
- $\mathrm{L}(\mathrm{i}, \mathrm{j})=1+$ T.rangemax $(0, \mathrm{i}-1)$
- A standard balanced binary search tree can be used for supporting the operations in $\mathrm{O}(\log |\mathrm{A}|)$ time.
- Running time $\mathrm{O}(|\mathrm{M}| \log |\mathrm{A}|)$, assuming M given.

Co-linear chaining

Like LCS computation but the set of matches replaced by a set of alignment anchors

Co-linear chaining (CLC)

Co-linear chaining (CLC)

- Alignment anchors = e.g., set of N minimizer matches or MEMs between read R and reference T
- Chain = Subset of anchors forming a linear order in both R and T
- Objective: Score of chain, e.g, coverage of R
- Key facts:
- Many variants: different ways of handling overlaps of anchors, assigning penalties to gaps
- Many algorithms: Most variants can be solved in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time or slightly worse running time
- Can be applied to the alignment of both DNA (variant calling) and RNA long-reads (spliced alignment, transcript prediction)
- Course book gives an $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ algorithm for allowing overlaps and for optimizing coverage of R
- Next slide illustrates a simplication of it: no overlaps allowed
- It uses the same search tree as in the sparse dynamic programming LCS solution
- In fact, if alignment anchors = set of matches, this algorithm solves LCS

Co-linear chaining (CLC)

Affine gap penalties

Sparse dynamic programming $-->$ Gotoh's algorithm

Global alignment with affine gaps

- Consider global alignment where a run of gaps of length g is penalized with $-\alpha+(g-1) \beta$, rather than with $-g d$.

$$
\underbrace{\mathrm{ACA}-\mathrm{GA}-\mathrm{T}-\mathrm{AA}}_{g=6}
$$

- This looks like LCS computation...

Global alignment with affine gaps

Global alignment with affine gaps

- One can proceed as in the LCS algorithm adding (key, value) pairs $\left(\mathrm{i}^{\prime}, S\left[i^{\prime}, j^{\prime}\right]+\beta\left(i^{\prime}+j^{\prime}\right)\right)$ to a search tree, and querying the tree for max value in a range adding

$$
-\alpha-\beta(i+j-3)
$$

- This yields an $\mathrm{O}(|\mathrm{A}||\mathrm{B}| \log |\mathrm{A}|)$ time algorithm.
- Now that we are not storing a sparse set, search tree becomes obsolete.
- Instead, we can keep some simple row and column maxima values to obtain $\mathrm{O}(|\mathrm{A}||\mathrm{B}|)$ time (see course book).

Gotoh's algorithm

- Even simpler than the one derived through LCS connection.
- Idea: Compute two tables, one storing optimal score for alignments ending with a match and the other for alignments ending with a gap.
- M[i,j]=S(A[1..i],B[i..j] | match)
- $G[i, j]=S(A[1 . . i], B[i . . j] \mid$ gap $)$
- $M[i, j]=s(A[i], B[j])+\max (M[i-1, j-1], G[i-1, j-1])$
- $\mathrm{G}[\mathrm{i}, \mathrm{j}]=\max M[i-1, j]-\alpha, M[i, j-1]-\alpha$,

$$
G[i-1, j]-\beta, G[i, j-1]-\beta)
$$

- These can be evaluated in synchronization in $\mathrm{O}(|\mathrm{A}||\mathrm{B}|)$ time.

