
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 3

Multiple Sequence Alignment (MSA) and graph alignments

Multiple sequene alignment (MSA)

Small parsimony problem for scoring MSAs, NP-hard to compute

optimal MSAs, exponential dynamic programming, heuristics,

applications

Multiple sequence alignment (MSA)

ACGATCGAGCGATC-ACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

MSA problem
 Add gaps to m sequences to make them equal length

 Let M[1..m,1..n] be the resulting matrix

 S(M[1..m,1..n])=sum of column scores

 Finding M with max score S(M) is NP-hard (see the course book)

 One can extend the dynamic programming pair-wise global
alignment algorithm to solve the problem in O(2𝑚𝑁𝑚f(m)) time,
where N is the length of the longest input sequence and f(m) is
the time needed to compute the score of a column

 How to define the score of a column?
 Sum of pair-wise aligment scores (SP)

 Entropy
 Small parsimony score

 Fix an evolutionary tree whose leaves are the rows

 Label the internal nodes so that the substitution scores between a child
and its parent are maximized

 Find a tree that maximizes the score

Small parsimony problem

A

A A

A C A T

Score = 4s(A,A)+s(A,C)+s(A,T)

Small parsimony problem solved by
dynamic programming

?

? ?

A C A T

Small parsimony problem solved by
dynamic programming

?

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

A C A T

Assume s(a,a)=1, s(a,b)=0, for a≠b

Small parsimony problem solved by
dynamic programming

A:4,C:3,G:2,T:3,-:2

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

A C A T

Assume s(a,a)=1, s(a,b)=0, for a≠b

Small parsimony problem solved by
dynamic programming

A:4,C:3,G:2,T:3,-:2

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

A C A T

Assume s(a,a)=1, s(a,b)=0, for a≠b

O(Σ 2𝑚) 𝑡𝑖𝑚𝑒

Progressive alignment: heuristic for

solving the MSA problem

 Compute alignment score S(A,B) or edit distance
D(A,B) for all pairs of input sequences A and B

 Use these scores / distances to find an optimal
evolutionary tree using distance-based phylogeny
algorithms (see Elements of Bioinformatics)

 This tree is used as a guide tree to align the
sequences from bottom to top

 Two neighboring leaves are aligned optimally using
global alignment

 Alignments in internal nodes are interpreted as
sequences of columns (profiles) and aligned optimally to
each others using global alignment, with the modification
of using MSA-type scoring

Progressive alignment

ACTATGC
ACT-TGC
ACCATG-
ACT-TC-

ACTATGC
ACT-TGC

ACCATG
ACT-TC

ACTATGC ACTTGC ACCATG ACTTC

ACTATGC
ACT-TGC
ACCATG-
ACT-T-C

DAG-path alignment
 To circumvent the ”once a gap, always a gap” problem of progressive

alignment, one can replace the sequence of columns representation
with a labeled directed acyclic graph (labeled DAG)

 Then the core alignment problem becomes that of finding a path 𝑃𝐴 in
DAG A and a path 𝑃𝐵 in DAG B with maximum alignment score
S(𝑃𝐴, 𝑃𝐴)

 This problem is easy to solve by a slight modification of the global
alignment dynamic programming:
 Let ℓ(𝑣) give the single-character label of node v and let S(v,w) give an

optimal alignment score among paths ending at nodes v and w of two
DAGs, respectively.

 If an optimal alignment ends with a substitution ℓ 𝑣 → 𝑙 𝑤 , it is sufficient
to look for the pair (v’,w’) of nodes, where v’ is an in-neighbor of v and w’
is an in-neighbor of w, such that score S(v’,w’) is maximum:
S(v,w)=S(v’,w’)+ s ℓ 𝑣 , ℓ(𝑤)

 Alignments ending with gaps can be handled analogously

 This yields an 𝑂 𝐸𝐴 𝐸𝐵 time algorithm on two DAGs A and B with the
sets of edges 𝐸𝐴 and 𝐸𝐵, respectively

Progressive alignment with DAG-paths

** *
ACT-TGC
ACTATGC
ACT-T-C
ACCATG-

ACTATGC
ACT-TGC

ACCATG
ACT-TC

ACTATGC ACTTGC ACCATG ACTTC

ACTATGC
ACT-TGC
ACCATG-
ACT-T-C

A->C->T->A->T->G->C
A->C->C->A->T->G

T C

ACTTGC
ACTT-C

trusted columns re-aligned

Here we are simulating

an imaginary heuristic

(only in lecture’s head),

but similar ideas are used

in practical tools

Jumping alignment

ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

• Given sequence A, MSA M, and threshold k for jumps.

• Find a path through the columns of M spelling sequence B so that you can

jump at most k times from row to to row and S(A,B) is maximized.

A

B

k=1

Jumping alignment

ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

• Application: From which species an unknown sequence U is from?

• An MSA represents the pangenome of a species

• You can test U against several MSAs to decide the most likely source.

A

B

k=1

Sequence to graph alignment

We saw how to align paths of two DAGs, but what if our graphs have

cycles?

Sequence to graph alignment
 Input: Sequence A and a labeled directed graph G

 Output: Min edit distance D(A,P) over all paths P of G

 Trivial solution:

 Enumerate all paths of length at most 2|A|, compute the edit distance with A, and pick the minimum.

 Longer paths cannot have better alignments

 Exponential time

 How to avoid the enumeration?

 Compute values d(i,v) that give (in the end) the edit distance for aligning A[1..i] to a path ending at node v

 𝑑 𝑖, 𝑣 = min൞

𝑑 𝑖 − 1, 𝑣′ + 𝛿 𝐴 𝑖 , ℓ 𝑣 , 𝑣′, 𝑣 ∈ 𝐸

𝑑 𝑖 − 1, 𝑣 + 1
𝑑 𝑖, 𝑣′ + 1, 𝑣′, 𝑣 ∈ 𝐸

 At each row i, we compute values d(i,v) ignoring insertions (last case, cyclic dependency)

 One can see that the minimum d(i,v) at row i cannot be improved by insertions, so these values are final

 We propagate these final values to their out-neighbors

 These neighbors can then be seen to have their final values, and we can proceed identically, until all values at the
row are final

 At each row we may need to visit each edge, so the running time is O(|E||A|), if we are able to maintain the correct
order of propagations efficiently

 See course book (2nd edition) for correctness proof and details about the data structure needed for propagations
(double-linked list of double-linked lists)

 Let us now simulate this algorithm on some small input to gain some insights

Sequence to graph alignment

A C C G T

0 0 0 0 0 0
A 1 00 11 11 11 11
C 2 11 00 11 22 22
C 3 22 11 00 21 32
G 4 33 22 11 00 21
T 5 44 33 21 11 00
C 6 55 44 00 21 11
A 7 66 55 11 11 22

Black=before insertion propagation

Red = after insertion propagation

