Algorithms in Genome Analysis, Spring 2023

Veli Mäkinen

Week 3

Multiple Sequence Alignment (MSA) and graph alignments

Multiple sequene alignment (MSA)

Small parsimony problem for scoring MSAs, NP-hard to compute optimal MSAs, exponential dynamic programming, heuristics, applications

Multiple sequence alignment (MSA)

ACGATCGAGCGATC-ACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

MSA problem

- Add gaps to m sequences to make them equal length
- Let M[1..m,1..n] be the resulting matrix
- $S(M[1 . . m, 1 . . n])=s u m$ of column scores
- Finding M with max score $\mathrm{S}(\mathrm{M})$ is NP-hard (see the course book)
- One can extend the dynamic programming pair-wise global alignment algorithm to solve the problem in $\mathrm{O}\left(2^{m} N^{m} \mathrm{f}(\mathrm{m})\right)$ time, where N is the length of the longest input sequence and $f(m)$ is the time needed to compute the score of a column
- How to define the score of a column?
- Sum of pair-wise aligment scores (SP)
- Entropy
- Small parsimony score
- Fix an evolutionary tree whose leaves are the rows
- Label the internal nodes so that the substitution scores between a child and its parent are maximized
- Find a tree that maximizes the score

Small parsimony problem

Score $=4 \mathrm{~s}(\mathrm{~A}, \mathrm{~A})+\mathrm{s}(\mathrm{A}, \mathrm{C})+\mathrm{s}(\mathrm{A}, \mathrm{T})$

Small parsimony problem solved by dynamic programming

Small parsimony problem solved by dynamic programming

Assume $\mathrm{s}(\mathrm{a}, \mathrm{a})=1, \mathrm{~s}(\mathrm{a}, \mathrm{b})=0$, for $\mathrm{a} \neq \mathrm{b}$

Small parsimony problem solved by dynamic programming

Assume $s(a, a)=1, s(a, b)=0$, for $a \neq b$

Small parsimony problem solved by dynamic programming

$\mathrm{O}\left(|\Sigma|^{2} m\right)$ time

Assume $s(a, a)=1, s(a, b)=0$, for $a \neq b$

Progressive alignment: heuristic for solving the MSA problem

- Compute alignment score $\mathrm{S}(\mathrm{A}, \mathrm{B})$ or edit distance $D(A, B)$ for all pairs of input sequences A and B
- Use these scores / distances to find an optimal evolutionary tree using distance-based phylogeny algorithms (see Elements of Bioinformatics)
- This tree is used as a guide tree to align the sequences from bottom to top
- Two neighboring leaves are aligned optimally using global alignment
- Alignments in internal nodes are interpreted as sequences of columns (profiles) and aligned optimally to each others using global alignment, with the modification of using MSA-type scoring

Progressive alignment

DAG-path alignment

- To circumvent the "once a gap, always a gap" problem of progressive alignment, one can replace the sequence of columns representation with a labeled directed acyclic graph (labeled DAG)
- Then the core alignment problem becomes that of finding a path P^{A} in DAG A and a path P^{B} in DAG B with maximum alignment score $\mathrm{S}\left(P^{A}, P^{A}\right)$
- This problem is easy to solve by a slight modification of the global alignment dynamic programming:
- Let $\ell(v)$ give the single-character label of node v and let $S(v, w)$ give an optimal alignment score among paths ending at nodes v and w of two DAGs, respectively.
- If an optimal alignment ends with a substitution $\ell(v) \rightarrow l(w)$, it is sufficient to look for the pair (v^{\prime}, w^{\prime}) of nodes, where v^{\prime} is an in-neighbor of v and w^{\prime} is an in-neighbor of w, such that score $S\left(v^{\prime}, w^{\prime}\right)$ is maximum:

$$
\mathrm{S}(\mathrm{v}, \mathrm{w})=\mathrm{S}\left(\mathrm{v}^{\prime}, \mathrm{w}^{\prime}\right)+\mathrm{s}(\ell(v), \ell(w))
$$

- Alignments ending with gaps can be handled analogously
- This yields an $O\left(\left|E^{A}\right|\left|E^{B}\right|\right)$ time algorithm on two DAGs A and B with the sets of edges E^{A} and E^{B}, respectively

Progressive alignment with DAG-paths

Jumping alignment

- Given sequence A, MSA M, and threshold k for jumps.
- Find a path through the columns of M spelling sequence B so that you can jump at most k times from row to to row and $S(A, B)$ is maximized.

A ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
B ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

Jumping alignment

- Application: From which species an unknown sequence U is from?
- An MSA represents the pangenome of a species
- You can test U against several MSAs to decide the most likely source.

A ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
B ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

Sequence to graph alignment

We saw how to align paths of two DAGs, but what if our graphs have cycles?

Sequence to graph alignment

- Input: Sequence A and a labeled directed graph G
- Output: Min edit distance $D(A, P)$ over all paths P of G
- Trivial solution:
- Enumerate all paths of length at most $2|\mathrm{~A}|$, compute the edit distance with A , and pick the minimum.
- Longer paths cannot have better alignments
- Exponential time
- How to avoid the enumeration?
- Compute values $\mathrm{d}(\mathrm{i}, \mathrm{v})$ that give (in the end) the edit distance for aligning $\mathrm{A}[1 . . \mathrm{i}]$ to a path ending at node v
$d(i, v)=\min \left\{\begin{array}{c}d\left(i-1, v^{\prime}\right)+\delta(A[i], \ell(v)),\left(v^{\prime}, v\right) \in E \\ d(i-1, v)+1 \\ d\left(i, v^{\prime}\right)+1,\left(v^{\prime}, v\right) \in E\end{array}\right.$
- At each row i , we compute values $\mathrm{d}(\mathrm{i}, \mathrm{v})$ ignoring insertions (last case, cyclic dependency)
- One can see that the minimum d(i,v) at row i cannot be improved by insertions, so these values are final
- We propagate these final values to their out-neighbors
- These neighbors can then be seen to have their final values, and we can proceed identically, until all values at the row are final
- At each row we may need to visit each edge, so the running time is $\mathrm{O}(|\mathrm{E}||\mathrm{A}|$), if we are able to maintain the correct order of propagations efficiently
- See course book (2nd edition) for correctness proof and details about the data structure needed for propagations (double-linked list of double-linked lists)
- Let us now simulate this algorithm on some small input to gain some insights

Sequence to graph alignment

$$
\begin{aligned}
& \text { Black=before insertion propagation } \\
& \text { Red }=\text { after insertion propagation } \\
& A \rightarrow C \rightarrow C \rightarrow T \\
& \begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \text { A } 1 \begin{array}{llllll}
1 & 00 & 11 & 11 & 11 & 11
\end{array} \\
& \text { C } 2 \quad 11001122 \quad 22 \\
& \text { C } 3 \quad 2211002132 \\
& \text { G } 4 \quad 33 \quad 22110021 \\
& \text { T } 5444331211100 \\
& \text { C } 655544002111 \\
& \text { A } 7 \quad 66 \quad 551111 \quad 22
\end{aligned}
$$

