Algorithms in Genome Analysis,

Spring 2023

Veli Makinen

Week 3

Multiple Sequence Alignment (MSA) and graph alignments

Multiple sequene alignment (MSA)

Small parsimony problem for scoring MSAs, NP-hard to compute
optimal MSAs, exponential dynamic programming, heuristics,

applications

Multiple sequence alignment (MSA)

ACGATCGAGCGATC-ACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC--~--~ C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA----- GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

MSA problem

* Add gaps to m sequences to make them equal length

e Let M[1..m,1..n] be the resulting matrix

e S(M[1..m,1..n])=sum of column scores

* Finding M with max score S(M) is NP-hard (see the course book)

e One can extend the dynamic programming pair-wise global
alignment algorithm to solve the problem in O(2™N™f(m)) time,
where N is the length of the longest input sequence and f(m) is
the time needed to compute the score of a column

e How to define the score of a column?
e Sum of pair-wise aligment scores (SP)
e Entropy

e Small parsimony score
Fix an evolutionary tree whose leaves are the rows

Label the internal nodes so that the substitution scores between a child
and its parent are maximized

Find a tree that maximizes the score

e
Small parsimony problem

Score = 4s(A,A)ts(A,C)+s(A,T)

4 N
Small parsimony problem solved by

dynamic programming

™~
Small parsimony problem solved by

dynamic programming

?

/T

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

N N

A C A T

Assume s(a,a)=1, s(a,b)=0, for a#b

™~
Small parsimony problem solved by

dynamic programming

A:4,C:3,G:2,T:3,-:2

N\

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

NN

A C A T

Assume s(a,a)=1, s(a,b)=0, for a#b

™~
Small parsimony problem solved by

dynamic programming

A:4,C:3,G:2,T:3,-:2

N

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

/\ /\ O(|Z|?m) time

A C A T

Assume s(a,a)=1, s(a,b)=0, for a#b

e

Progressive alignment: heuristic for
solving the MSA problem

e Compute alignment score S(A,B) or edit distance
D(A,B) for all pairs of input sequences A and B

e Use these scores / distances to find an optimal
evolutionary tree using distance-based phylogeny
algorithms (see Elements of Bioinformatics)

e This tree is used as a guide tree to align the
sequences from bottom to top

e Two neighboring leaves are aligned optimally using
global alignment

e Alignments in internal nodes are interpreted as
sequences of columns (profiles) and aligned optimally to
each others using global alignment, with the modification
of using MSA-type scoring

Progressive alignment

ACTATGC
sl ACT-TGC
ACTATGC vs. O am ACCATG-
ACT-TGC ACT-T-C
ACCATG-
ACT-TC-
ACTATGC ﬁgﬁfig
ACT-TGC /\\\\\\\\\
ACTATGC ACTTGC ACCATG ACTTC

DAG -path alignment

To circumvent the "once a gap, always a gap” problem of progressive
allgnment one can replace the sequence of columns representation
with a labeled directed acyclic graph (labeled DAG)

e Then the core allgnment problem becomes that of finding a path P4 in
DAG A and a path PZ in DAG B with maximum alignment score
S(P4, P4)

e This problem is easy to solve by a slight modification of the global
alignment dynamic programming:
e Let £(v) give the single-character label of node v and let S(v,w) give an

optimal alignment score among paths ending at nodes v and w of two
DAGs, respectively.

e |f an optimal allgnment ends with a substltutlon t(v) - l(w), itis suff|C|ent
to look for the pair (v’,w’) of nodes, where v’ is an in-neighbor of v and w’
Is an in-neighbor ofw such that score S(v’,w’) is maximum:
S(v,w)=S(V’,w’)+ s(i’(v) 2(w))

e Alignments ending with gaps can be handled analogously

e This yields an 0(|EA| |EB|) time algorithm on two DAGs A and B with the
sets of edges E4 and EZ, respectively

e
Progressive alignment with DAG-paths

trusted columns re-aligned ACTATGC

\ \ ACT-TGC
ima ACCATG-

0 am
K ¥ / vs. Op ACT-T-C

ACT-TGC
ACTATGC
ACT-T-C
ACCATG-

ACTTGC - -
ACTToC Here we are simulating

an imaginary heuristic
(only in lecture’s head),
but similar ideas are used

in practical tools

ACCATG
ACTATGC —» A->C->C->A->T->G
- - - - - - <4 -
A->C->T->A->T->G->C e 7 - AC'}TC\ \‘T/ \C
ACTATGC ACTTGC ACCATG ACTTC

Jumping alignment

* Given sequence A, MSA M, and threshold k for jumps.
* Find a path through the columns of M spelling sequence B so that you can

jump at most k times from row to to row and S(A,B) is maximized.

ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC----- C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA----- GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

Jumping alignment

. Application: From which species an unknown sequence U is from?
* An MSA represents the pangenome of a species

* You can test U against several MSAs to decide the most likely source.

ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC----- C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA----- GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

Sequence to graph alignment

We saw how to align paths of two DAGs, but what it our graphs have

cycles?

Sequence to graph alignment

Input: Sequence A and a labeled directed graph G
Output: Min edit distance D(A,P) over all paths P of G
Trivial solution:

Enumerate all paths of length at most 2|A|, compute the edit distance with A, and pick the minimum.
Longer paths cannot have better alignments
Exponential time

How to avoid the enumeration?

Compute values d(i,v) that give (in the end) the edit distance for aligning A[1..i] to a path ending at node v

d(i—1,v")+ 6(Alil,£(v)), (v',v) EE
d(i,v) = min di—1,v)+1
d@i,v')+1,(v',v) €EE
At each row i, we compute values d(i,v) ignoring insertions (last case, cyclic dependency)
One can see that the minimum d(i,v) at row i cannot be improved by insertions, so these values are final
We propagate these final values to their out-neighbors

These neighbors can then be seen to have their final values, and we can proceed identically, until all values at the
row are final

At each row we may need to visit each edge, so the running time is O(|E||A]), if we are able to maintain the correct
order of propagations efficiently

See course book (2nd edition) for correctness proof and details about the data structure needed for propagations
(double-linked list of double-linked lists)

Let us now simulate this algorithm on some small input to gain some insights

Sequence to graph alignment

Black=before insertion propagation

Red = after insertion propagation

A>C>C>»G>T

O 0 0 0 0
00 11 11 11 11
11 00 11 22 22
22 11 00 21 32
33 22 11 00 21
44 33 21 11 00
55 44 00 21 11
66 55 11 11 22

>4 00N>
NouphwNnNRroO

