
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 3

Multiple Sequence Alignment (MSA) and graph alignments

Multiple sequene alignment (MSA)

Small parsimony problem for scoring MSAs, NP-hard to compute

optimal MSAs, exponential dynamic programming, heuristics,

applications

Multiple sequence alignment (MSA)

ACGATCGAGCGATC-ACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

MSA problem
 Add gaps to m sequences to make them equal length

 Let M[1..m,1..n] be the resulting matrix

 S(M[1..m,1..n])=sum of column scores

 Finding M with max score S(M) is NP-hard (see the course book)

 One can extend the dynamic programming pair-wise global
alignment algorithm to solve the problem in O(2𝑚𝑁𝑚f(m)) time,
where N is the length of the longest input sequence and f(m) is
the time needed to compute the score of a column

 How to define the score of a column?
 Sum of pair-wise aligment scores (SP)

 Entropy
 Small parsimony score

 Fix an evolutionary tree whose leaves are the rows

 Label the internal nodes so that the substitution scores between a child
and its parent are maximized

 Find a tree that maximizes the score

Small parsimony problem

A

A A

A C A T

Score = 4s(A,A)+s(A,C)+s(A,T)

Small parsimony problem solved by
dynamic programming

?

? ?

A C A T

Small parsimony problem solved by
dynamic programming

?

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

A C A T

Assume s(a,a)=1, s(a,b)=0, for a≠b

Small parsimony problem solved by
dynamic programming

A:4,C:3,G:2,T:3,-:2

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

A C A T

Assume s(a,a)=1, s(a,b)=0, for a≠b

Small parsimony problem solved by
dynamic programming

A:4,C:3,G:2,T:3,-:2

A:1,C:1,G:0,T:0,-:0 A:1,C:0,G:0,T:1,-:0

A C A T

Assume s(a,a)=1, s(a,b)=0, for a≠b

O(Σ 2𝑚) 𝑡𝑖𝑚𝑒

Progressive alignment: heuristic for

solving the MSA problem

 Compute alignment score S(A,B) or edit distance
D(A,B) for all pairs of input sequences A and B

 Use these scores / distances to find an optimal
evolutionary tree using distance-based phylogeny
algorithms (see Elements of Bioinformatics)

 This tree is used as a guide tree to align the
sequences from bottom to top

 Two neighboring leaves are aligned optimally using
global alignment

 Alignments in internal nodes are interpreted as
sequences of columns (profiles) and aligned optimally to
each others using global alignment, with the modification
of using MSA-type scoring

Progressive alignment

ACTATGC
ACT-TGC
ACCATG-
ACT-TC-

ACTATGC
ACT-TGC

ACCATG
ACT-TC

ACTATGC ACTTGC ACCATG ACTTC

ACTATGC
ACT-TGC
ACCATG-
ACT-T-C

DAG-path alignment
 To circumvent the ”once a gap, always a gap” problem of progressive

alignment, one can replace the sequence of columns representation
with a labeled directed acyclic graph (labeled DAG)

 Then the core alignment problem becomes that of finding a path 𝑃𝐴 in
DAG A and a path 𝑃𝐵 in DAG B with maximum alignment score
S(𝑃𝐴, 𝑃𝐴)

 This problem is easy to solve by a slight modification of the global
alignment dynamic programming:
 Let ℓ(𝑣) give the single-character label of node v and let S(v,w) give an

optimal alignment score among paths ending at nodes v and w of two
DAGs, respectively.

 If an optimal alignment ends with a substitution ℓ 𝑣 → 𝑙 𝑤 , it is sufficient
to look for the pair (v’,w’) of nodes, where v’ is an in-neighbor of v and w’
is an in-neighbor of w, such that score S(v’,w’) is maximum:
S(v,w)=S(v’,w’)+ s ℓ 𝑣 , ℓ(𝑤)

 Alignments ending with gaps can be handled analogously

 This yields an 𝑂 𝐸𝐴 𝐸𝐵 time algorithm on two DAGs A and B with the
sets of edges 𝐸𝐴 and 𝐸𝐵, respectively

Progressive alignment with DAG-paths

** *
ACT-TGC
ACTATGC
ACT-T-C
ACCATG-

ACTATGC
ACT-TGC

ACCATG
ACT-TC

ACTATGC ACTTGC ACCATG ACTTC

ACTATGC
ACT-TGC
ACCATG-
ACT-T-C

A->C->T->A->T->G->C
A->C->C->A->T->G

T C

ACTTGC
ACTT-C

trusted columns re-aligned

Here we are simulating

an imaginary heuristic

(only in lecture’s head),

but similar ideas are used

in practical tools

Jumping alignment

ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

• Given sequence A, MSA M, and threshold k for jumps.

• Find a path through the columns of M spelling sequence B so that you can

jump at most k times from row to to row and S(A,B) is maximized.

A

B

k=1

Jumping alignment

ACGATCGAGCGATCACGATGAGCAGCTAGCACTAGCGAGCATCGAC

ACGATC-AGCGATCGACGATCGTGCAGCTAGCGACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGAT-GAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATC-AGCGATCGACGATCGTGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGC-ACTAGCGAGCATCGAC
ACGATCGAGCGATC-ACGATCGAGCAGCTAGC-ACTAG-GAGCATCGAC
ACGATGGAGCGACCGACGATCGTGCAGCTAGC--CTAG-GAGCATCGAC
ACGATCGAGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGAGCAGCTAGCGCCTAG-GAGCATCGAC
ACGATC-AGCGACCGACGATCGTGCAGCTAGCGCCTAGCGAGCATCGAC
ACGATG-AGCGATCGACGATCGAGCAGCTAGCGCCTAGCGAGC-----C
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC
ACGATCGAGCGATC-ACGA----GCAGCTAGCGA-----GAGCATCGAC
ACGATCGAGCGATCGACGATCGAGCAGCTAGCGACTAG-GAGCATCGAC

• Application: From which species an unknown sequence U is from?

• An MSA represents the pangenome of a species

• You can test U against several MSAs to decide the most likely source.

A

B

k=1

Sequence to graph alignment

We saw how to align paths of two DAGs, but what if our graphs have

cycles?

Sequence to graph alignment
 Input: Sequence A and a labeled directed graph G

 Output: Min edit distance D(A,P) over all paths P of G

 Trivial solution:

 Enumerate all paths of length at most 2|A|, compute the edit distance with A, and pick the minimum.

 Longer paths cannot have better alignments

 Exponential time

 How to avoid the enumeration?

 Compute values d(i,v) that give (in the end) the edit distance for aligning A[1..i] to a path ending at node v

 𝑑 𝑖, 𝑣 = min൞

𝑑 𝑖 − 1, 𝑣′ + 𝛿 𝐴 𝑖 , ℓ 𝑣 , 𝑣′, 𝑣 ∈ 𝐸

𝑑 𝑖 − 1, 𝑣 + 1
𝑑 𝑖, 𝑣′ + 1, 𝑣′, 𝑣 ∈ 𝐸

 At each row i, we compute values d(i,v) ignoring insertions (last case, cyclic dependency)

 One can see that the minimum d(i,v) at row i cannot be improved by insertions, so these values are final

 We propagate these final values to their out-neighbors

 These neighbors can then be seen to have their final values, and we can proceed identically, until all values at the
row are final

 At each row we may need to visit each edge, so the running time is O(|E||A|), if we are able to maintain the correct
order of propagations efficiently

 See course book (2nd edition) for correctness proof and details about the data structure needed for propagations
(double-linked list of double-linked lists)

 Let us now simulate this algorithm on some small input to gain some insights

Sequence to graph alignment

A C C G T

0 0 0 0 0 0
A 1 00 11 11 11 11
C 2 11 00 11 22 22
C 3 22 11 00 21 32
G 4 33 22 11 00 21
T 5 44 33 21 11 00
C 6 55 44 00 21 11
A 7 66 55 11 11 22

Black=before insertion propagation

Red = after insertion propagation

