
Veli Mäkinen

Algorithms in Genome Analysis, 

Spring 2023



Week 5

Genome analysis with suffix trees: maximal repeats, maximal unique

matches, maximal overlaps



Maximal repeats

Compact encoding of the repeat structure of a genome



Maximal repeats

 A repeat is a substring of sequence S that has at least two

occurrences: e.g. ACAGCAT

 Left-maximal (right-maximal) repeat is one that cannot be

extended to the left (to the right, respectively) without

loosing one of its occurrences

 If repeat is left- and right-maximal, it is called maximal

repeat: e.g. C is left-maximal repeat but not right-maximal in 

ACAGCAT



Right-maximal repeats = labels of paths from the

suffix tree root to its internal nodes
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Substring X is maximal repeat of sequence S iff

X=string(v) for some node v of suffix tree of S and 

left(v)={}, where left(v)={c} if all occurrences of X in S are

preceded by c, otherwise left(v)={}
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left(v) can be computed bottom up for all nodes v in 

linear time

→ maximal repeats can be found in linear time

ST(S)

S

v

X

cXa cXa cXb cXa

left(v)={c}



Maximal unique matches

Repeat extension to multiple sequences

Can be used to identify conserved regions for a divide-and-conquer 

type multiple sequence alignment heuristic



Maximal unique matches
 Consider a collection of d sequences {𝑆1, 𝑆2, … , 𝑆𝑑}

 Substring X is maximal unique match (MUM) if it occurs exactly once
in each sequence 𝑆𝑖 and its left- and right-extensions do not have
this property

 Consider a generalized suffix tree: Suffix tree of the concatenation
𝐶 = 𝑆1$1𝑆

2$2⋯𝑆𝑑$𝑑, where we have added unique separator
symbols in between

 Property 1: Substring X can be a MUM only if it is a maximal
repeat in 𝐶

 Property 2: Substring X can be a MUM only if node v has exactly
d leaves in its subtree, where v is s.t. string(v)=X

 What other properties must hold for substring X to be a MUM?



Let X be a MUM candidate (properties 1 and 2 holding).

Consider bit-vector 𝐵𝑣 1. . 𝑑 initialized to zeros.

Traverse the subtree of v and mark 𝐵𝑣 𝑖 = 1 if a leaf points to a suffix starting

at 𝑆𝑖.
Candidate X is a MUM iff 𝐵𝑣 𝑖 contains no zero. 
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MUMs in linear time

 MUM candidates can be found in linear time

 The subtrees corresponding to MUM candidates are disjoint

 Filling the bit-vectors take overall linear time

 Hence, MUMs can be found in linear time



MUMs as anchors for multiple

alignment

. . . ACGATTACACC . . .

. . . ACGATTACATC . . .

. . . AGGATTACACC . . .

. . . ACGATTACACC . . .

. . . ACGATTACACC . . .

. . . AGGATTACACC . . .

. . . ACGATTACATC . . .

• Split at the MUM and recurse

• When no MUMs left, 

remaining MSA might be small

enough to admit optimal

alignment computation



Maximal overlaps

How to build an assembly graphs efficiently



Maximal overlaps

Set of sequencing reads

Subset sorted by suffix-prefix overlaps

Longer contiguous fragment of DNA

Overlap graph: nodes are reads, arcs present

suffix-prefix overlaps



Maximal overlaps

 Consider a set of reads

 We say that a pair of reads (A,B) has a significant suffix-prefix

overlap if A[|A|-k+1..|A|]=B[1..k], where 𝑘 ≥ 𝜅 and 𝜅 is 

a predefined threshold. 

 For each pair of reads (A,B) with a significant overlap, we

wish to report the length k of the largest overlap

 Can we find all such overlaps in linear time in the size of the

input and output?



Maximal overlaps in suffix tree
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• Search each read A until its $A

• Reads B whose suffix overlaps

a prefix of read A will branch

by $B

• If each read pair has at most

one overlap, one could just

report all pairs (A,B) found this

way, where $B branches at string

depth at least 𝜅



Maximal overlaps in suffix tree
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• If read B has multiple overlaps

with read A, we wish to report

only the longest

• For this, we keep a stack B for 

each read B, and apply

B.push(k) when we see $B

branching at string depth k when

searching read A

• After reading the whole read A, 

it suffices to output the last

item pushed to each non-empty

stack

$B



Maximal overlaps in suffix tree

ST(read1$1read2$2...)
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• How to know which stacks

are non-empty?

• We can maintain a stack of

pointers to the non-empty

stacks; whenever stack for

read B is created, we add

a pointer to this stack in 

a global stack

• After searching read A, 

we can access each non-empty

stack in constant time and

pop the largest overlap between

each read B

$B



Maximal overlaps in suffix tree

ST(read1$1read2$2...)

reads

Read A

$A

$A

Read B

$B
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• Is this approach now optimal?

• We didn’t yet take into account

the time needed to detect the

branches with separator symbols

• If we search each read A 

independently, we may need to 

spend #reads time for each overlap

• To amortize this cost (in order to

handle each edge constant time),

we traverse the whole tree once,

popping from and pushing to the

stacks as we go 

$B



Maximal overlaps in suffix tree
• When reaching locus corresponding

to read A, one still gets the maximal

overlaps from the non-empty stacks

• When a stack gets empty, pointer

to it needs to be removed from the

global stack; with some care

(handling children in reverse order

when coming back to a node), 

popping from the global stack suffices

to remove the correct pointer

• Alternatively, one can replace the

global stack with a double-linked list,

and keep back-pointers to this list
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Maximal overlaps in suffix tree
• When reaching locus corresponding
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(handling children in reverse order

when coming back to a node, 

popping from the global stack suffices

to remove the correct pointer

• Alternatively, one can replace the

global stack with a double-linked list,

and keep back-pointers to this list

1

2

3

4

5

6

7

8

4 7

5

5

String depths in stacksRead id’sDouble-linked list

of non-empty stacks

8

$5

Read A

$5

$8

$2



Pseudo-code


