Algorithms in Genome Analysis,

Spring 2023

Veli Makinen

Week 6

Bidirectional BWT: maximal repeats, MUMs, overlaps revisited

Bidirectional BWT

Let’s motivate it first through case analysis pruning / read alignment

Case analysis pruning revisited

e (Consider searching pattern P with 2 mismatches in textT

* For any partitioning of P to three pieces P = P 1p2p3the
mismatches between an occurrence T[i..j] will be distributed

® 002,020,200,011,101,0r 110, where the i-th digit denotes the

number of mismatches in piece Pt.

® Using indexes on BWT of T and on BW'T of the reverse of T, it is
possible to search P starting with allowing no mismatches in the first
piece (no branching), except for the case 101.

® For case 101 we need to start the search in the middle of P, e.g.,
searching P 1 P2 backwards (allowing one mismatch in part P), then
continuing with P 3 forwards.

® This change of direction is the key feature of the bidirectional BWT
index.

Bidirectional BWT index

BWT(T) sorted suffixes of T# BWT(Tl)

. #

#

é ACGA—

A ACGA

- 5 c ACGC #

Backward step with C? ¢ eec

G ACGG

c ACGT |

>on0 4o >

sorted suffixes of T'#

#

GCAA
GCAA
GCAC
GCAC
GCAG
GCAG

Bidirectional BWT index

BWT(T) sorted suffixes of T# BWT(T' 1) sorted suffixes of T'#
#

#

G ACGA

A ACGA

C ACGC #

A ACGG

G ACGG

C ACGT

G CACGC

A CACGT
A GCAA
G GCAA
T GCACA
C GCACG
G GCAG
A GCAG

Range counting with wavelet tree

Bidirectional backward step needs operation
RangeCount(L,i,j,a,b) that gives the amount of symbols in range
[a..b] occurring in L[i..j], where L is the Burrows-Wheeler
transform of textT.

Namely, let [i. j] and [x..y] be the BWT ranges correspondlng to a
strings () and Q_ , respectively, in BWT L of T and BWT L’ of

reverse of T.

[i..j] can be updated to range [i’..j’] corresponding to CQ) using the
normal BWT backward step update rules.

[x..y] can be updated to range [x’..y’] using

* x’ = xtRangeCount(L,i,j,0,c-1)

* y’ = xtRangeCount(L,i,j,0,c)-1

Wavelet tree supports this operation in 0 (log|Z]) time.

Example 3.3 Continue Example 3.2 to illustrate the computation of rangeCount (7', 5, 10, 1, 3),

that is, to count how many times characters A, C, and G occur in substring
T[5..10].

Solution

o=
P!
— =
o0
QT
o=
==
==
o=
[@X@)]
[oX@!
(P
=]
P
[oX@!
P!
o=
P
o0
=
[@X @)
— -
—= o
o=

o

() w
ACAACCCACCA GTGTTGTGGGTTG
B, 01001110 0 B, 0101101000110
/ \)) / \
+2 A c +1 +1 G T

Here the ranges on top of the sequences illustrate [i,..j,] for each node v. The
ranges in the last level illustrate contributions to the range count. That is,
rangeCount(7,5,10,1,3) = 2+ 1+ 1 = 4, as L = A, V' = {c}, V" = 0,
and R = G.

™~

Maximal repeats revisited

Bidirectional BWT yields space—efficient enumeration of maximal

repeats

Visiting suffix tree nodes with
bidirectional BWT 1/2

® Consider backward backtracking with bidirectional BWT of textT

e Start with pair of ranges L[1..n], L'[1..n], where L is the BWT of T
and L is the BWT of the reverse of T

® Do bidirectional backward step with all symbols

* Continue backward steps recursively at each interval pair [i..j], [x..y]
until yielding an empty interval pair or L’[x..y] contains only a run of
single symbol

® We will see that this search implicitly visits all internal nodes of

the suftix tree of T'

® Hence, it works in O(|T'| log 0) time and can turn many suffix tree
algorithms space-efficient: From O (|T|) words to ~2|T| log o bits,

that is, from hundreds of bits per nucleotide to ~5 bits per nucleotide
for DNA

Visiting suffix tree nodes with
bidirectional BWT 2/2

Consider suffix tree of T#. Let aX and X be the strings spelled on the
path from root to nodes v and w, respectively.

Consider suffix link sl(v)=w.

Assume inductively that our backtracking algorithm reaches interval pair
[i..j], [x..y] such that subtree of w contains leaves with lexicographic
ranks [i..j].

Since w is an internal node, L’[x..y] is not a run of a single symbol, and
the algorithm makes a backward step with symbol a reaching interval
pair [i"..j’], [x"..y'].

Suffixes with lexicographic ranks [i’..j’] are the only ones starting with
aX, that is, those forming the leafs of subtree rooted at node v.

Hence, the algorithm implicitly visits all suftix tree nodes.

Last branch of recursion yields intervals that are not suffix tree nodes
(L’[x..y] consists of a run of one symbol), but this does not affect the
asymptotic running time (see course book)

Edges branching from w start with

X c € {L'[x..y]}
aX
Edges branching from v start with
)=, ce{l'[x..y']}
OV

Maximal repeats

If |[{L'[x..y]}| > 1 then

Xis a right—maximal repeat

If |{L[i..j]}| > 1 then

X is a left-maximal repeat

If both hold, then X is maximal repeat

i

Maximal unigue matches revisited

Bidirectional BWT yields space—efficient enumeration of maximal
unique matches (MUMs)

@

MUMSs

cXa

dXa cXb

cXa

Consider bidirectional BWT index on

the concatenation

C =S #S2#--- SO of d sequences

Find max repeats X with interval pair
[i..j], [x..y] s.t. j-i+1=d as candidates,
omitting branches with #

Consider a bitvector B[1..n]

initialized to zeros and bitvector I[1..n]
s.t. [[i]=1 iff [i. j], [x..y] is the interval
associated to some MUM candidate X

Consider reading C backwards using
LF-mapping so that at each step we know
the lexicographic rank k of some suffix
Clp..], which starts at d’-th sequence:
* If k<select(rank(l,k))+d,

set B[i+d’-1]=1

9
X is MUM iff B[i..i+d-1]=11..1

/

Maximal overlaps revisited

BWT yields space-efficient computation of maximal overlaps

Overlaps using BWT

Consider BWT L on the concatenation C = #R1#R%# --- Rd#
of d reads

Consider backward searching R%. After at least K steps, try to
backward step with #. If this results into a non-empty range,
some reads have long enough prefix that matches suffix of R%

Each occurrence of # can be associated with the id of the
following read, so we can report the overlapping pairs

The problem again is how to report only maximal overlaps when a
read has multiple overlaps with another

Observation: If read R% has multiple overlaps with read RY , the
shorter overlaps are prefixes of the longer overlaps

Corollary: The lexicographic ranges of the overlapping suffixes
are nested

Overlaps using suffix tree and BWT

e Consider suffix tree of read R%

e Consider having backward searched
suffix R%[p..] using BWT of C and
backward step with # results into a
non-empty interval [i. j]

® Store [i..j] at locus v of suffix tree,

where the path to v spells R%[p..]

® After reading whole R%, collapse the
suffix tree removing nodes not storing

an interval

® Remove intervals of children from
each parent interval

® What remains are the longest overlaps

