
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 6

Bidirectional BWT: maximal repeats, MUMs, overlaps revisited

Bidirectional BWT

Let’s motivate it first through case analysis pruning / read alignment

Case analysis pruning revisited
 Consider searching pattern P with 2 mismatches in textT

 For any partitioning of P to three pieces 𝑃 = 𝑃1𝑃2𝑃3the
mismatches between an occurrenceT[i..j] will be distributed

 002,020,200,011,101,or 110, where the i-th digit denotes the
number of mismatches in piece 𝑃𝑖 .

 Using indexes on BWT of T and on BWT of the reverse of T, it is
possible to search P starting with allowing no mismatches in the first
piece (no branching), except for the case 101.

 For case 101 we need to start the search in the middle of P, e.g.,
searching 𝑃1𝑃2 backwards (allowing one mismatch in part 𝑃1), then
continuing with 𝑃3 forwards.

 This change of direction is the key feature of the bidirectional BWT
index.

Bidirectional BWT index
BWT(T) BWT(T-1)

.

.

.
#
.
.
G
A
C
A
G
C
.
.
.

.

.

.

.

#

.

.

.

A
G
T
C
G
A

.

.

.

sorted suffixes of T# sorted suffixes of T-1#

#

.

.

.

ACGA
ACGA
ACGC
ACGG
ACGG
ACGT

.

.

.

#

.

.

.

GCAA
GCAA
GCAC
GCAC
GCAG
GCAG

.

.

.

Backward step with C?

Bidirectional BWT index
BWT(T) BWT(T-1)

.

.

.
#
.
.
G
A
C
A
G
C
.
.
G
A
.
.
.

.

.

.

.

#

.

.

.

A
G
T
C
G
A

.

.

.

sorted suffixes of T# sorted suffixes of T-1#

#

.

.

.

ACGA
ACGA
ACGC
ACGG
ACGG
ACGT
.
.
CACGC
CACGT

#

.

.

.

GCAA
GCAA
GCACA
GCACG
GCAG
GCAG

.

.

.

Range counting with wavelet tree
 Bidirectional backward step needs operation

RangeCount(L,i,j,a,b) that gives the amount of symbols in range
[a..b] occurring in L[i..j], where L is the Burrows-Wheeler
transform of textT.

 Namely, let [i..j] and [x..y] be the BWT ranges corresponding to a
strings 𝑄 and 𝑄−1, respectively, in BWT L of T and BWT L’ of
reverse of T.

 [i..j] can be updated to range [i’..j’] corresponding to c𝑄 using the
normal BWT backward step update rules.

 [x..y] can be updated to range [x’..y’] using
 x’ = x+RangeCount(L,i,j,0,c-1)
 y’ = x+RangeCount(L,i,j,0,c)-1

 Wavelet tree supports this operation in 𝑂 log Σ time.

Maximal repeats revisited

Bidirectional BWT yields space-efficient enumeration of maximal

repeats

Visiting suffix tree nodes with

bidirectional BWT 1/2
 Consider backward backtracking with bidirectional BWT of textT

 Start with pair of ranges L[1..n], L’[1..n], where L is the BWT of T
and L’ is the BWT of the reverse of T

 Do bidirectional backward step with all symbols

 Continue backward steps recursively at each interval pair [i..j], [x..y]
until yielding an empty interval pair or L’[x..y] contains only a run of
single symbol

 We will see that this search implicitly visits all internal nodes of
the suffix tree of T!

 Hence, it works in 𝑂(𝑇 log 𝜎) time and can turn many suffix tree
algorithms space-efficient: From 𝑂(𝑇) words to ~2 𝑇 log 𝜎 bits,
that is, from hundreds of bits per nucleotide to ~5 bits per nucleotide
for DNA

Visiting suffix tree nodes with

bidirectional BWT 2/2
 Consider suffix tree of T#. Let aX and X be the strings spelled on the

path from root to nodes v and w, respectively.

 Consider suffix link sl(v)=w.

 Assume inductively that our backtracking algorithm reaches interval pair
[i..j], [x..y] such that subtree of w contains leaves with lexicographic
ranks [i..j].

 Since w is an internal node, L’[x..y] is not a run of a single symbol, and
the algorithm makes a backward step with symbol a reaching interval
pair [i’..j’], [x’..y’].

 Suffixes with lexicographic ranks [i’..j’] are the only ones starting with
aX, that is, those forming the leafs of subtree rooted at node v.

 Hence, the algorithm implicitly visits all suffix tree nodes.

 Last branch of recursion yields intervals that are not suffix tree nodes
(L’[x..y] consists of a run of one symbol), but this does not affect the
asymptotic running time (see course book)

w
v

X

aX

i...j

Edges branching from w start with

𝑐 ∈ {𝐿′ 𝑥. . 𝑦 }

i’..j’

Edges branching from v start with

𝑐 ∈ {𝐿′ 𝑥′. . 𝑦′ }

w

X

i...j

If 𝐿′ 𝑥. . 𝑦 > 1 then

X is a right-maximal repeat

If 𝐿 𝑖. . 𝑗 > 1 then

X is a left-maximal repeat

If both hold, then X is maximal repeat

Maximal repeats

Maximal unique matches revisited

Bidirectional BWT yields space-efficient enumeration of maximal

unique matches (MUMs)

Consider bidirectional BWT index on

the concatenation

𝐶 = 𝑆1#𝑆2#⋯𝑆𝑑# of d sequences

Find max repeats X with interval pair

[i..j], [x..y] s.t. j-i+1=d as candidates,

omitting branches with #

Consider a bitvector B[1..n]

initialized to zeros and bitvector I[1..n]

s.t. I[i]=1 iff [i..j], [x..y] is the interval

associated to some MUM candidate X

Consider reading C backwards using

LF-mapping so that at each step we know

the lexicographic rank k of some suffix

C[p..], which starts at d’-th sequence:

• If k<select(rank(I,k))+d,

set B[i+d’-1]=1

→

X is MUM iff B[i..i+d-1]=11..1

MUMs

C

w

X

cXa dXa cXb cXa

left(w)={}

i j

Maximal overlaps revisited

BWT yields space-efficient computation of maximal overlaps

Overlaps using BWT
 Consider BWT L on the concatenation 𝐶 = #𝑅1#𝑅2#⋯𝑅𝑑#

of d reads

 Consider backward searching 𝑅𝑎. After at least 𝜅 steps, try to
backward step with #. If this results into a non-empty range,
some reads have long enough prefix that matches suffix of 𝑅𝑎

 Each occurrence of # can be associated with the id of the
following read, so we can report the overlapping pairs

 The problem again is how to report only maximal overlaps when a
read has multiple overlaps with another

 Observation: If read 𝑅𝑎 has multiple overlaps with read 𝑅𝑏, the
shorter overlaps are prefixes of the longer overlaps

 Corollary: The lexicographic ranges of the overlapping suffixes
are nested

Overlaps using suffix tree and BWT
 Consider suffix tree of read 𝑅𝑎

 Consider having backward searched
suffix 𝑅𝑎[p..] using BWT of 𝐶 and
backward step with # results into a
non-empty interval [i..j]

 Store [i..j] at locus v of suffix tree,
where the path to v spells 𝑅𝑎[p..]

 After reading whole 𝑅𝑎, collapse the
suffix tree removing nodes not storing
an interval

 Remove intervals of children from
each parent interval

 What remains are the longest overlaps

