
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 6

Bidirectional BWT: maximal repeats, MUMs, overlaps revisited

Bidirectional BWT

Let’s motivate it first through case analysis pruning / read alignment

Case analysis pruning revisited
 Consider searching pattern P with 2 mismatches in textT

 For any partitioning of P to three pieces 𝑃 = 𝑃1𝑃2𝑃3the
mismatches between an occurrenceT[i..j] will be distributed

 002,020,200,011,101,or 110, where the i-th digit denotes the
number of mismatches in piece 𝑃𝑖 .

 Using indexes on BWT of T and on BWT of the reverse of T, it is
possible to search P starting with allowing no mismatches in the first
piece (no branching), except for the case 101.

 For case 101 we need to start the search in the middle of P, e.g.,
searching 𝑃1𝑃2 backwards (allowing one mismatch in part 𝑃1), then
continuing with 𝑃3 forwards.

 This change of direction is the key feature of the bidirectional BWT
index.

Bidirectional BWT index
BWT(T) BWT(T-1)

.

.

.
#
.
.
G
A
C
A
G
C
.
.
.

.

.

.

.

#

.

.

.

A
G
T
C
G
A

.

.

.

sorted suffixes of T# sorted suffixes of T-1#

#

.

.

.

ACGA
ACGA
ACGC
ACGG
ACGG
ACGT

.

.

.

#

.

.

.

GCAA
GCAA
GCAC
GCAC
GCAG
GCAG

.

.

.

Backward step with C?

Bidirectional BWT index
BWT(T) BWT(T-1)

.

.

.
#
.
.
G
A
C
A
G
C
.
.
G
A
.
.
.

.

.

.

.

#

.

.

.

A
G
T
C
G
A

.

.

.

sorted suffixes of T# sorted suffixes of T-1#

#

.

.

.

ACGA
ACGA
ACGC
ACGG
ACGG
ACGT
.
.
CACGC
CACGT

#

.

.

.

GCAA
GCAA
GCACA
GCACG
GCAG
GCAG

.

.

.

Range counting with wavelet tree
 Bidirectional backward step needs operation

RangeCount(L,i,j,a,b) that gives the amount of symbols in range
[a..b] occurring in L[i..j], where L is the Burrows-Wheeler
transform of textT.

 Namely, let [i..j] and [x..y] be the BWT ranges corresponding to a
strings 𝑄 and 𝑄−1, respectively, in BWT L of T and BWT L’ of
reverse of T.

 [i..j] can be updated to range [i’..j’] corresponding to c𝑄 using the
normal BWT backward step update rules.

 [x..y] can be updated to range [x’..y’] using
 x’ = x+RangeCount(L,i,j,0,c-1)
 y’ = x+RangeCount(L,i,j,0,c)-1

 Wavelet tree supports this operation in 𝑂 log Σ time.

Maximal repeats revisited

Bidirectional BWT yields space-efficient enumeration of maximal

repeats

Visiting suffix tree nodes with

bidirectional BWT 1/2
 Consider backward backtracking with bidirectional BWT of textT

 Start with pair of ranges L[1..n], L’[1..n], where L is the BWT of T
and L’ is the BWT of the reverse of T

 Do bidirectional backward step with all symbols

 Continue backward steps recursively at each interval pair [i..j], [x..y]
until yielding an empty interval pair or L’[x..y] contains only a run of
single symbol

 We will see that this search implicitly visits all internal nodes of
the suffix tree of T!

 Hence, it works in 𝑂(𝑇 log 𝜎) time and can turn many suffix tree
algorithms space-efficient: From 𝑂(𝑇) words to ~2 𝑇 log 𝜎 bits,
that is, from hundreds of bits per nucleotide to ~5 bits per nucleotide
for DNA

Visiting suffix tree nodes with

bidirectional BWT 2/2
 Consider suffix tree of T#. Let aX and X be the strings spelled on the

path from root to nodes v and w, respectively.

 Consider suffix link sl(v)=w.

 Assume inductively that our backtracking algorithm reaches interval pair
[i..j], [x..y] such that subtree of w contains leaves with lexicographic
ranks [i..j].

 Since w is an internal node, L’[x..y] is not a run of a single symbol, and
the algorithm makes a backward step with symbol a reaching interval
pair [i’..j’], [x’..y’].

 Suffixes with lexicographic ranks [i’..j’] are the only ones starting with
aX, that is, those forming the leafs of subtree rooted at node v.

 Hence, the algorithm implicitly visits all suffix tree nodes.

 Last branch of recursion yields intervals that are not suffix tree nodes
(L’[x..y] consists of a run of one symbol), but this does not affect the
asymptotic running time (see course book)

w
v

X

aX

i...j

Edges branching from w start with

𝑐 ∈ {𝐿′ 𝑥. . 𝑦 }

i’..j’

Edges branching from v start with

𝑐 ∈ {𝐿′ 𝑥′. . 𝑦′ }

w

X

i...j

If 𝐿′ 𝑥. . 𝑦 > 1 then

X is a right-maximal repeat

If 𝐿 𝑖. . 𝑗 > 1 then

X is a left-maximal repeat

If both hold, then X is maximal repeat

Maximal repeats

Maximal unique matches revisited

Bidirectional BWT yields space-efficient enumeration of maximal

unique matches (MUMs)

Consider bidirectional BWT index on

the concatenation

𝐶 = 𝑆1#𝑆2#⋯𝑆𝑑# of d sequences

Find max repeats X with interval pair

[i..j], [x..y] s.t. j-i+1=d as candidates,

omitting branches with #

Consider a bitvector B[1..n]

initialized to zeros and bitvector I[1..n]

s.t. I[i]=1 iff [i..j], [x..y] is the interval

associated to some MUM candidate X

Consider reading C backwards using

LF-mapping so that at each step we know

the lexicographic rank k of some suffix

C[p..], which starts at d’-th sequence:

• If k<select(rank(I,k))+d,

set B[i+d’-1]=1

→

X is MUM iff B[i..i+d-1]=11..1

MUMs

C

w

X

cXa dXa cXb cXa

left(w)={}

i j

Maximal overlaps revisited

BWT yields space-efficient computation of maximal overlaps

Overlaps using BWT
 Consider BWT L on the concatenation 𝐶 = #𝑅1#𝑅2#⋯𝑅𝑑#

of d reads

 Consider backward searching 𝑅𝑎. After at least 𝜅 steps, try to
backward step with #. If this results into a non-empty range,
some reads have long enough prefix that matches suffix of 𝑅𝑎

 Each occurrence of # can be associated with the id of the
following read, so we can report the overlapping pairs

 The problem again is how to report only maximal overlaps when a
read has multiple overlaps with another

 Observation: If read 𝑅𝑎 has multiple overlaps with read 𝑅𝑏, the
shorter overlaps are prefixes of the longer overlaps

 Corollary: The lexicographic ranges of the overlapping suffixes
are nested

Overlaps using suffix tree and BWT
 Consider suffix tree of read 𝑅𝑎

 Consider having backward searched
suffix 𝑅𝑎[p..] using BWT of 𝐶 and
backward step with # results into a
non-empty interval [i..j]

 Store [i..j] at locus v of suffix tree,
where the path to v spells 𝑅𝑎[p..]

 After reading whole 𝑅𝑎, collapse the
suffix tree removing nodes not storing
an interval

 Remove intervals of children from
each parent interval

 What remains are the longest overlaps

