
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 6

Prefix-free parsing and r-index

Motivation
 Consider a collection of d similar sequences

 One can build any BWT index on the collection to support fast read alignment,
but the size of the index is d times the size of a single sequence

 If d-1 sequences differ from reference T[1..n] in s positions, one would wish to
have an index that takes O(n+d+s) space

 Lempel-Ziv (LZ) compression achieves such bound, but index structures based
on LZ are slow in practice

 BWT of such collection has long runs of identical characters, in fact, 𝑟 =
𝑂(𝑧 log2 𝑛), where r is the number of runs and z is the length of the LZ
parsing

 Can we build run-length (RL) encoded BWT directly and can we use it as an
index?

 Yes, direct construction is possible e.g. using prefix-free parsing and r-index
operates directly on the RL-encoded BWT

Prefix-free parsing 1/2
 Fix k and a hash-function h() on k-mers of a collection of

sequences concatenated into a long stringT[1..n].

 Let also h() be such that h(T[1..k])≠0

 Assume there is unique substring X of T with h(X)=0 (this is for

simplicity of exposition, and can be relaxed)

 The first phrase of T is T[1..i], whereT[i-k+1..i]=X is the first

occurrence of X. The second phrase of T is T[i-k+1..j], whereT[j-

k+1..j]=X is the second occurrence of X, and so on until the

second last phrase. The last phrase is T[p..n]#, whereT[p..p+k-

1]=X is the last occurrence of X

T X X X X X

Prefix-free parsing 2/2

 Note that the phrases form a prefix-free set, hence the name

 Identical parts in the collection will have identical parsing

 We can collect the phrases into a set, considering

occurrences of a phrase as one entity

 It turns out one can sort the suffixes of the set of phrases to

infer the sorted order of suffixes of the collection

 Furthermore, in many cases a range of suffixes is inferred at a

time so we can output directly a run of BWT (for details see

the 2nd edition of the course book)

T X X X X X

Example

mississippimississippi# → 1,4,3,4,2

k=2, h(si)=0

Phrases Lex rank

missi 1

sissi 4

sippimissi 3

sippi# 2

parsing

Sort suffixes of the

concatenation of phrases

sort suffixes

of the parsing

Combine the information

to get the final sorted order

of suffixes of T

Where do we get the runs? The lex order of suffixes close to the start of a phrase

may be fully determined within the phrase

→ Phrase occurs x times→ BWT run of length x

r-index

 LetT[1..n] be a collection of sequences concatenated

 Let r be the number of runs in the BWT of T. E.g. if

BWT=TTTAACCCC#AATT, r=6.

 To turn our BWT indexes to use space sub-linear in n, we

need to replace the rank and wavelet tree data structures,

e.g., with balanced binary trees (BSTs).

Run-length rank data structure
 For backward search, we need to support rankc(L,i).

 We store the start of the runs as keys in a BST. As values we add

the rank of each run.

 Assume L=TTTAACCCC#AATT.

 We add (key,value) pairs (1,1),(4,2),(6,3),(10,4),

(11,5),(13,6) to BST

 We store the rank answers preceding each run for the character of

each run

 Pre-rank[1..r]=0,0,0,0,2,3

 We also build the wavelet tree of L’, where L’ is the sequence of

characters of the runs.

Run-length rank query
 Consider rankc(L,i).

 We search the largest key i’ not larger than i in BST. Let it be

associated with value p.

 If c=L’[p], rankc(L,i)=pre-rank[p]+i-i’+1.

 If 𝑐 ≠ L’[p], rankc(L,i)=pre-rank[p’]+dp’, where p’=selectc

(L’,rankc(L’,p)) and dp’ is the length of the p’-th run.

 Since rank takes O(log n) time, we can do backward search in

O(m log n) time for a query of length m.

Locating the occurrences
 Our previous sampling scheme fails as in O(r) space each locate

needs O(n/r) steps.

 It turns our that there is a different samping scheme taking O(r)

space and allowing to locate each occurrence in O(log n) time.

 The idea is to sample the beginning and end of runs.

 During the backward search one maintains one sampled location in the

interval (next slide).

 In the end of the process, the neighboring occurrences can be revealed using

a tunneling property of BWT (following slide).

Maintaining one occurrence

T

BWTCase a) Case b)

Retrieving neighboring occurrences

T

BWT

i

SA[i-1],SA[i],SA[i+1]

x

SA[x-1]=?,SA[x],SA[x+1]=?

SA[x-1]=SA[i-1]+SA[x]-SA[i]

SA[x+1]=SA[i+1]+SA[x]-SA[i]

LF[LF[…]]

