
Veli Mäkinen

Algorithms in Genome Analysis,

Spring 2023

Week 6

Prefix-free parsing and r-index

Motivation
 Consider a collection of d similar sequences

 One can build any BWT index on the collection to support fast read alignment,
but the size of the index is d times the size of a single sequence

 If d-1 sequences differ from reference T[1..n] in s positions, one would wish to
have an index that takes O(n+d+s) space

 Lempel-Ziv (LZ) compression achieves such bound, but index structures based
on LZ are slow in practice

 BWT of such collection has long runs of identical characters, in fact, 𝑟 =
𝑂(𝑧 log2 𝑛), where r is the number of runs and z is the length of the LZ
parsing

 Can we build run-length (RL) encoded BWT directly and can we use it as an
index?

 Yes, direct construction is possible e.g. using prefix-free parsing and r-index
operates directly on the RL-encoded BWT

Prefix-free parsing 1/2
 Fix k and a hash-function h() on k-mers of a collection of

sequences concatenated into a long stringT[1..n].

 Let also h() be such that h(T[1..k])≠0

 Assume there is unique substring X of T with h(X)=0 (this is for

simplicity of exposition, and can be relaxed)

 The first phrase of T is T[1..i], whereT[i-k+1..i]=X is the first

occurrence of X. The second phrase of T is T[i-k+1..j], whereT[j-

k+1..j]=X is the second occurrence of X, and so on until the

second last phrase. The last phrase is T[p..n]#, whereT[p..p+k-

1]=X is the last occurrence of X

T X X X X X

Prefix-free parsing 2/2

 Note that the phrases form a prefix-free set, hence the name

 Identical parts in the collection will have identical parsing

 We can collect the phrases into a set, considering

occurrences of a phrase as one entity

 It turns out one can sort the suffixes of the set of phrases to

infer the sorted order of suffixes of the collection

 Furthermore, in many cases a range of suffixes is inferred at a

time so we can output directly a run of BWT (for details see

the 2nd edition of the course book)

T X X X X X

Example

mississippimississippi# → 1,4,3,4,2

k=2, h(si)=0

Phrases Lex rank

missi 1

sissi 4

sippimissi 3

sippi# 2

parsing

Sort suffixes of the

concatenation of phrases

sort suffixes

of the parsing

Combine the information

to get the final sorted order

of suffixes of T

Where do we get the runs? The lex order of suffixes close to the start of a phrase

may be fully determined within the phrase

→ Phrase occurs x times→ BWT run of length x

r-index

 LetT[1..n] be a collection of sequences concatenated

 Let r be the number of runs in the BWT of T. E.g. if

BWT=TTTAACCCC#AATT, r=6.

 To turn our BWT indexes to use space sub-linear in n, we

need to replace the rank and wavelet tree data structures,

e.g., with balanced binary trees (BSTs).

Run-length rank data structure
 For backward search, we need to support rankc(L,i).

 We store the start of the runs as keys in a BST. As values we add

the rank of each run.

 Assume L=TTTAACCCC#AATT.

 We add (key,value) pairs (1,1),(4,2),(6,3),(10,4),

(11,5),(13,6) to BST

 We store the rank answers preceding each run for the character of

each run

 Pre-rank[1..r]=0,0,0,0,2,3

 We also build the wavelet tree of L’, where L’ is the sequence of

characters of the runs.

Run-length rank query
 Consider rankc(L,i).

 We search the largest key i’ not larger than i in BST. Let it be

associated with value p.

 If c=L’[p], rankc(L,i)=pre-rank[p]+i-i’+1.

 If 𝑐 ≠ L’[p], rankc(L,i)=pre-rank[p’]+dp’, where p’=selectc

(L’,rankc(L’,p)) and dp’ is the length of the p’-th run.

 Since rank takes O(log n) time, we can do backward search in

O(m log n) time for a query of length m.

Locating the occurrences
 Our previous sampling scheme fails as in O(r) space each locate

needs O(n/r) steps.

 It turns our that there is a different samping scheme taking O(r)

space and allowing to locate each occurrence in O(log n) time.

 The idea is to sample the beginning and end of runs.

 During the backward search one maintains one sampled location in the

interval (next slide).

 In the end of the process, the neighboring occurrences can be revealed using

a tunneling property of BWT (following slide).

Maintaining one occurrence

T

BWTCase a) Case b)

Retrieving neighboring occurrences

T

BWT

i

SA[i-1],SA[i],SA[i+1]

x

SA[x-1]=?,SA[x],SA[x+1]=?

SA[x-1]=SA[i-1]+SA[x]-SA[i]

SA[x+1]=SA[i+1]+SA[x]-SA[i]

LF[LF[…]]

