Algorithms in Genome Analysis, Spring 2023

Veli Mäkinen

Week 6

Prefix-free parsing and r-index

Motivation

- Consider a collection of d similar sequences
- One can build any BWT index on the collection to support fast read alignment, but the size of the index is d times the size of a single sequence
- If d-1 sequences differ from reference T[1..n] in s positions, one would wish to have an index that takes $\mathrm{O}(\mathrm{n}+\mathrm{d}+\mathrm{s})$ space
- Lempel-Ziv (LZ) compression achieves such bound, but index structures based on LZ are slow in practice
- BWT of such collection has long runs of identical characters, in fact, $r=$ $O\left(z \log ^{2} n\right)$, where r is the number of runs and z is the length of the LZ parsing
- Can we build run-length (RL) encoded BWT directly and can we use it as an index?
- Yes, direct construction is possible e.g. using prefix-free parsing and r-index operates directly on the RL-encoded BWT

Prefix-free parsing 1/2

- Fix k and a hash-function h() on k -mers of a collection of sequences concatenated into a long string $\mathrm{T}[1 . . \mathrm{n}]$.
- Let also $h()$ be such that $h(T[1 . . k]) \neq 0$
- Assume there is unique substring X of T with $h(X)=0$ (this is for simplicity of exposition, and can be relaxed)
- The first phrase of T is $\mathrm{T}[1 . . \mathrm{i}]$, where $\mathrm{T}[\mathrm{i}-\mathrm{k}+1 . . \mathrm{i}]=\mathrm{X}$ is the first occurrence of X . The second phrase of T is $\mathrm{T}[\mathrm{i}-\mathrm{k}+1 . . \mathrm{j}]$, where $\mathrm{T}[\mathrm{j}-$ $\mathrm{k}+1 . . \mathrm{j}]=\mathrm{X}$ is the second occurrence of X , and so on until the second last phrase. The last phrase is $T[p . . n] \#$, where $T[p . . p+k-$ 1] $=\mathrm{X}$ is the last occurrence of X

Prefix-free parsing 2/2

- Note that the phrases form a prefix-free set, hence the name
- Identical parts in the collection will have identical parsing
- We can collect the phrases into a set, considering occurrences of a phrase as one entity
- It turns out one can sort the suffixes of the set of phrases to infer the sorted order of suffixes of the collection
- Furthermore, in many cases a range of suffixes is inferred at a time so we can output directly a run of BWT (for details see the 2 nd edition of the course book)

Example
 $$
\mathrm{k}=2, \mathrm{~h}(\mathrm{si})=0
$$

parsing
mississippimississippi\# \rightarrow 1,4,3,4,2

Phrases	Lex rank
missi	1
sissi	4
sippimissi	3
sippi\# - - . \quad. .	2

Combine the information to get the final sorted order of suffixes ofT

Where do we get the runs?
The lex order of suffixes close to the start of a phrase may befully determined'within the phrase
\rightarrow Phrase occurs x times \rightarrow BWT run of length x

r-index

- Let T[1..n] be a collection of sequences concatenated
- Let r be the number of runs in the BWT of T. E.g. if $B W T=T T T A A C C C C \# A A T T, r=6$.
- To turn our BWT indexes to use space sub-linear in n, we need to replace the rank and wavelet tree data structures, e.g., with balanced binary trees (BSTs).

Run-length rank data structure

- For backward search, we need to support rank ${ }_{c}(L, i)$.
- We store the start of the runs as keys in a BST. As values we add the rank of each run.
- Assume L=TTTAACCCC\#AATT.
- We add (key,value) pairs $(1,1),(4,2),(6,3),(10,4)$, $(11,5),(13,6)$ to BST
- We store the rank answers preceding each run for the character of each run
- Pre-rank[1..r]=0,0,0,0,2,3
- We also build the wavelet tree of L', where L' is the sequence of characters of the runs.

Run-length rank query

- Consider rank $_{\mathrm{c}}(\mathrm{L}, \mathrm{i})$.
- We search the largest key i' not larger than i in BST. Let it be associated with value p .
- If $\mathrm{c}=\mathrm{L}^{\prime}[\mathrm{p}], \operatorname{rank}_{\mathrm{c}}(\mathrm{L}, \mathrm{i})=\operatorname{pre}-\operatorname{rank}[\mathrm{p}]+\mathrm{i}-\mathrm{i}{ }^{\prime}+1$.
- If $c \neq \mathrm{L}^{\prime}[\mathrm{p}], \operatorname{rank}_{\mathrm{c}}(\mathrm{L}, \mathrm{i})=\operatorname{pre}-\operatorname{rank}\left[\mathrm{p}^{\prime}\right]+\mathrm{dp}^{\prime}$, where $\mathrm{p}^{\prime}=$ select $_{\mathrm{c}}$ ($L^{\prime}, \operatorname{rank}_{\mathrm{c}}\left(\mathrm{L}^{\prime}, \mathrm{p}\right)$) and d^{\prime} is the length of the p^{\prime}-th run.
- Since rank takes $O(\log n)$ time, we can do backward search in $\mathrm{O}(\mathrm{m} \log \mathrm{n})$ time for a query of length m .

Locating the occurrences

- Our previous sampling scheme fails as in $\mathrm{O}(\mathrm{r})$ space each locate needs $\mathrm{O}(\mathrm{n} / \mathrm{r})$ steps.
- It turns our that there is a different samping scheme taking $\mathrm{O}(\mathrm{r})$ space and allowing to locate each occurrence in $\mathrm{O}(\log n)$ time.
- The idea is to sample the beginning and end of runs.
- During the backward search one maintains one sampled location in the interval (next slide).
- In the end of the process, the neighboring occurrences can be revealed using a tunneling property of BWT (following slide).

Maintaining one occurrence

Case a)
BWT
Case b)

Retrieving neighboring occurrences

