

Compressing Wikipedia

Group #1

Aija Niissalo
Marko Laakso

Markus Heinonen

Stream Transformation Framework
● Generic framework that converts standard input

to standard output
● Pipeline architecture with accessible

intermediate values
● Common interface for all transformations
● The basic functionality that is needed for a

stand-alone application
● Set of useful stream handling utilities
● Implemented in Java and tested with JUnit

Encoding Pipeline

BWTEnc M2FEnc AriEnc

AriDecM2FDecBWTDec

enwik8 enwik8.mam

PPMModel

AdaptiveModelMAMEnc

MAMDec

ZIPDec

ZIPEnc

Burrows-Wheeler Transformation
● Reversible permutation of the characters
● No compression (extra bytes for the starting position)

● Long sequences of repetitive strings
– Local entropy becomes lower

● Implementation was based on Wikipedia
– C-program was converted into Java
– Quick sort replaced with merge sort
– Some optimizations
– Block size of 500KB

Burrows-Wheeler Example

Input Rotations Sorted rotations Output
^BANANA@ ANANA@^B
@^BANANA ANA@^BAN
A@^BANAN A@^BANAN

^BANANA@ NA@^BANA BANANA@^ BNN^AA@A
ANA@^BAN NANA@^BA
NANA@^BA NA@^BANA
ANANA@^B ^BANANA@
BANANA@^ @^BANANA

This example has been taken from Wikipedia

Move-to-front Transformation
● Reversible encoding of the character indices
● No compression, block based transformation

– May compress if symbols are longer than indices
● Each input symbol (we use bytes) has an index
● Each input symbol is replaced with its index and

the indices are shifted so that the index of the
symbol becomes 0

● Repetitive sequences are encoded with small
indices thus the distribution of output symbols is
highly skewed

Arithmetic Coding
● A message is represented by a real interval [a,b) from

the base interval [0,1)
● The more likely symbols reduce the range by less than

the unlikely symbols → fewer bits to message
● Each symbol s

i
 has its own interval [a

i
,b

i
) such that p

i

is/(is proportional to) b
i
 - a

i

● Problem 1 = need of infinite precision
● Solution 1 = use integer arithmetics [0,1) → e.g. [0,232)
● → Problem 2 = consecutive symbol readings → interval shrinks

into a single integer
● Solution 2 = use rescaling

Arithmetic Coding – steps

Encoding Decoding code = [c,d)

1. set [a,b) := [0,1) 1. set [a,b) := [0,1)
2. step 3 to all s

i
 2. - set x := (c-a)/(b-a)

3. [a,b) := [a+(b-a)*a
i
, a+(b-a)*b

i
) - find i such that a

i
 = x < b

i

 - print s
i

 3. update interval:
 [a,b) := [a+(b-a)*a

i
, a+(b-a)*b

i
)

 4. repeat steps 2 and 3 until
 'end'-symbol is reached

Arithmetic Coding - example

si pi range [0, 1)
a 0.2 [0, 0.2)
e 0.3 [0.2, 0.5)
w 0.1 [0.5, 0.6)
o 0.2 [0.6, 0.8)
u 0.1 [0.8, 0.9)
'end' 0.1 [0.9, 1)

Arithmetic Coding - example
initial range [0, 1)

read e [0.2, 0.5)

read o [0.38, 0.44)

read e [0.392, 0.41)

read 'end' [0.4082, 0.41)

While decoding variable x has values 0.4082, 0.694, 0.47 and 0.9,
corresponding symbols: e, o ,e and 'end'

In practice the code is some number from the code interval e.g. 0.409

Character Frequency Model

Adaptive model
● Start with uniform distribution
● Update model for each symbol
● Re-scaling before overflow
Possible improvements
● Start with a skewed distribution
● Sliding window
● Prediction with partial matching

Prediction by partial matching PPM

● Adaptive statistical
modeling technique
based on blending
together different
length context models
to predict the next
character in the input
sequence

● If no prediction can be
made based on all n
context symbols a
prediction is
attempted with just
n-1 symbols

PPM implementation

 In the implementation:
● set the initial probabilities

of all of the symbols to 0
for a given context, and
have a method to fall-back
to a different context when
a previously unseen
symbol occurs. This is
done by emitting a special
code, referred to as an
Escape code.

● e.g. the depth of the tree =
n

● The -1 context is set
up at initialization to
have a count of 1 for
every possible
symbol, and doesn't
ever get updated. So
it is guaranteed to be
able to encode every
symbol.

Results
● Generic compression platform with several

transformations implemented
– Tested and documented API

● Compression of enwik8
– Native executable with multiprocessor support
– Size: 45779 (program) + 34066116 (enwik8.mam) =

34111895
– Requirements: RAM < 60MB, time < 7min

