
 1

Dan Gillick
Josh Blumenstock

CS294-10 Final Write-up
12/11/2006

Netflix:
Combining meta-data features with neighbor-based models

1. Introduction

There are around 20,000 movies available for rental through Netflix and over 2,500,000
songs available on Yahoo! Music. While some users know exactly what movies they
want to watch and which music they want to listen to, the majority of users are likely to
be overwhelmed by the range of possibilities. One way to narrow down the selection
problem is to provide suggestions to users based on their preferences – that is – based on
ratings they’ve given to some subset of the movies or songs.

To collect this preference data, both Netflix and Yahoo!, along with Amazon and other
companies with a wide variety of products, typically ask users to rate items on a 5-star
scale. A user can then be represented by a list of (product, rating) pairs, perhaps along
with some metadata such as age, gender, zip-code, and so on. By looking for patterns in
a user’s data and for similarities between users and between products, we hope to predict
how that user would rate new products, using these predicted ratings in a suggestions
engine.

This task is broadly referred to as Collaborative Filtering. With the recent expansion of
internet-accessible catalogues of movies, music, etc., this has suddenly become quite
valuable technology. A few months ago, Netflix announced a competition to improve on
their collaborative filtering algorithm. In this paper, we motivate some general classes of
techniques to address the Netflix problem and present some results and analysis. As this
is a relatively unexplored area, and the massive data-set presented a host of initial
challenges, the work presented here is fairly preliminary. We are encouraged, however,
by early results, and intend to continue this research over the next few months.

The organization of the paper is as follows: section 2 describes the training data, test data,
and evaluation criteria; section 3 introduces a few baseline methods and scores; section 4
outlines two approaches we have begun investigating along with early prediction results
and analysis; finally, section 5 summarizes some conclusions and suggests future work.

2. The Netflix Data

Netflix provides ~20,000 movie IDs, ~500,000 user IDs, and ~100,000,000 examples of
the form (movie ID, user ID, rating). The data is quite sparse, with roughly 200

 2

ratings/user, and 5,000 ratings/movie (Figure 1). We can imagine a matrix M where each
user is a row and each movie is a column. M is thus 20,000 by 500,000 and we are
provided with 100,000,000 entries, or about 1% of all possible entries (if every user rated
every movie).

Figure 1: Number of ratings per movie and per user

Figure 2: Average rating by movie and by user.

 3

3. Baselines

Before delving into more sophisticated techniques, we ran a simple set of baseline
experiments (Table 1) on the probe set. This included, for every (movie, user) pair:

a) Predicting “3 stars”, irrespective of the movie and user
b) Predicting the user’s average rating (mode), irrespective of the movie
c) Predicting the user’s average rating (mean), irrespective of the movie
d) Predicting the movie’s average rating (mean), irrespective of the user
e) Predicting the average of the user and move means.

Baseline Method RMSE
Guess “3 stars” 1.313
Guess global mean ~ 3.60 1.130
Guess movie mean 1.052
Guess user mean 1.043
Guess (movie mean + user mean) / 2 1.004
Netflix “cinematch” system .951

Table 1: RMSE on probe set for different baseline methods

A more interesting baseline combines these aggregate-style statistics. Taking a
probabilistic view, we are interested in calculating P(rating|user, movie), which we will
abbreviate as P(r|u,m). Applying Bayes Rule, we have:

 P(r|u,m) = P(r,u,m) / P(u,m) = P(u,m|r)P(r) / P(u,m)

Note that some of these quantities do not have particularly meaningful interpretations. It
is easiest to think about these probabilities as maximum-likelihood estimates over data of
the from (u,m,r), of which we have many examples. P(r) for example can be estimated
by summing over all users and all movies and normalizing so that we have the ratio of the
number of ratings of a particular value over the total number of ratings.

We cannot directly use this equation since the joint probability P(u,m) is either 0 or 1,
depending on whether user u has rated movie m. Making some independence
assumptions allows us to estimate this quantity easily from our data. We assume that (1)
u and m are independent and that (2) u and m are conditionally independent given r.
Assumption (1) has a meaningful interpretation, though it is most likely not correct: it
says that the probability that a user u has rated a movie m is equal to the product
P(u)P(m). P(u) is estimated as the number of ratings made by u as a fraction of all ratings
and P(m) is estimated as the number of ratings on m as a fraction of all ratings. This
seems generally correct: the probability that u has rated m is high if u rates many movies
and if m has many ratings. Assumption (2) is a little less intuitive, but has basically the
same interpretation. We can then reduce our equation as follows:

 P(r|u,m) = P(u|r)P(m|r)P(r) / P(u)P(m) [independence assumptions]
 = P(r|u)P(u) P(r|m)P(m) P(r) / P(u)P(m)P(r)P(r) [Bayes Rule again]
 = P(r|u)P(r|m) / P(r) [simplifying]

 4

We can easily estimate P(r|u), P(r|m), and P(r) from our data using the principle of
maximum likelihood. Finally, we need to make a prediction given this distribution.
While we might select the value of r which has the largest value, we are not practically
constrained to making integer predictions, and in fact, taking the expectation of this
distribution provides far better predictions.

Another nice feature of the distribution over ratings is that we can estimate confidence
based on the sharpness of the distribution. Intuitively, the sharper the distribution, the
more confident we are of our prediction. The table below shows the results over various
confidence levels.

confidence Rmse Frac. of total
>0.99 0.2985 0.0000078
>0.90 0.5537 0.0058151
>0.80 0.7027 0.0233911
>0.70 0.7768 0.0594605
>0.60 0.818 0.1373335
>0.50 0.8432 0.3251507
>0.40 0.8892 0.6883717
>0.30 0.9527 0.9597528
>0.20 0.9693 1

Confidence Rmse frac. of total
>0.99 0.2985 0.0000078
>0.90 0.554 0.0058073
>0.80 0.7455 0.017576
>0.70 0.8212 0.0360694
>0.60 0.8481 0.077873
>0.50 0.8611 0.1878173
>0.40 0.9284 0.3632213
>0.30 1.0975 0.2713813
>0.20 1.3038 0.0402465

Table 2: For each confidence level, cumulative rmse (left) and per-bin rmse (right).

Note that the RMSE for the entire probe set is 0.969, a rather impressive result given the
simplicity of the model (compared to the Netflix baseline of 0.951 on the same set).
Also, our confidence measure is reasonably well-calibrated, which suggests that we could
combine multiple systems by weighting the contribution of each system by its
confidence.

Thinking about this model more generally, we can rewrite our equation for P(r|m,u) in the
log domain. Letting Q stand for the log probability, we obtain a linear model:

∑∑
=

+
=

=+=+=
5

1
5

5

1
0)|()|(),|(

i
i

i
i uirQwmirQwwumrQ

Note that P(r), above, which served as a normalizing constant is excluded from the model
here as these values would be the same for each data point. We are then left with a
regression problem in which we learn a set of 11 weights, W, for each value of r. At
prediction time, we compute the expectation as before:

∑∑ ⋅⋅==⋅=Ε
r

umi
r

FWrumirPrumr)exp(),|(),|(,

This formulation gives us a general framework for predicting ratings. Given some set of
features for a (movie, user) paring, we learn a set of weights to predict the probability of
each rating class. Thus far, we have been talking about a global set of weights, learned
over all examples. Besides the fact that 100 million data points is hard to load into
memory (making the least-squares computation difficult), we’d really like to model each

 5

user or perhaps each movie separately. To do this effectively, we need features that
capture more about movies and users than simply the distribution over ratings. The
remainder of this paper can be viewed as an exploration of novel features to use in these
models.

4. New Methods

The task before us is to predict the rating given to movie mj by user ui for an unseen pair
(ui, mj). In this section we discuss the three main approaches we took to the problem.

The first technique relies on P(r | u), using each user’s aggregate rating behavior to
cluster users (4.1). While effective at identifying users with unique rating behavior (e.g.
only rating movies 1-star), it is not very robust, as it does not account for concepts like
movie content, user tastes, etc. The second technique presented (4.2) is a collaborative
filtering method using nearest neighbors, where the rating r(ui, mj) is based on ratings ui
gave to movies similar to mj (4.2.1), and ratings given to mj by users similar to ui (future
work). Lastly, we discuss a content-based approach, where the features are terms
commonly associated with movies, such as “Al Pacino” or “Thriller” (4.2.3). Using these
terms as features, we are able to assess movie similarity, do simple clustering, and make
predictions based on the ratings ui gave to the movies similar to mj.

4.1. Distribution-based clustering

In the sample of 500,000 users, there are people with vastly different rating behavior.
Some users only rate movies 1-star, some rate only 5-stars, and some users distribute
their ratings with relatively uniform frequency (Figure 3). Similarly, the 20,000 movies
encompass a wide range of distributions – some with consistently high ratings (e.g.
Battlestar Galactica), some with evenly distributed ratings (e.g. Miss Congeniality), etc.
For predictive purposes, the distribution profile of a user or movie can be extremely
useful – if every movie rated by ui has been rated 4-stars, it is probable that the next
movie will also be rated 4-stars.

Figure 3: Sample rating distributions from representative users

 6

A variety of statistics exist for measuring the dispersion and deviation of a distribution
[Joanes]; however, the standard deviation is a simple metric that allows us to identify
users and movies with consistent ratings. By limiting our predictions on the probe set to
those users and movies with relatively low standard deviation, we were able to drastically
lower the predictive error of the relevant baselines. For instance, 33% of users have a
standard deviation less than .90. Predicting the user’s average for this subset of users
produced an error of .8 – a 30% reduction over the baseline error (baseline c). Figure 4
illustrates the relationship between standard deviation, predictive accuracy, and probe set
coverage.

Figure 4: For users with very low standard deviation, predicting the user’s mean is
extremely accurate. As the standard deviation grows, the user’s mean becomes less
accurate. The same is generally true for the movie – the movie mean is a less
accurate when the movie has a high standard deviation. The “neighbor deviation” is
the standard deviation of the ratings given movie Y by the k nearest neighbors to user
X.

4.1.1. Computing nearest neighbors

Using standard deviation as a measure of dispersion is a useful technique for finding
users and movies with extremely consistent rating behavior. However, it is also
conceivable that the shape of the distribution itself would be a useful means for
comparing two users, or two movies. To this end, we attempted to run k-nearest neighbor

 7

clustering on both (a) users and (b) movies, where distance between, for instance, u1 and
u2 was measured as the distance between the two distributions. For example, using the
symmetrised Kullback-Leibler divergence:1

D(ui, uj) = KL(ui,uj) + KL(uj,ui), where

ui = {r(ui, m1), … ,r(ui, mN)}, and

∑
=

=
5

1)(
)(log)(),(

r j

i
iki ru

ruruuuKL

4.1.2. Predicting r(ui, mj) from nearest neighbors

Such a distance function gives a distance matrix D of pairwise distances between all
users, from which the k-nearest neighbors to each user can be extracted. The hope is that
the rating behavior of ui’s neighbors will better predict r(ui, mj) than the aggregate ratings
for all users. Figure 5 shows the distinction in ratings for a given movie between all users
(grey histogram) and the 10-nearest neighbors (yellow histogram).

Figure 5: different distributions of ratings for 16 different movies, for all users (grey

histogram) and the k-nearest neighbors to ui (yellow histogram). The true score is
displayed over the histograms.

Thus, a simple method for computing r(ui, mj) for an unseen movie mj is given by:

r(ui, mj) = ∑
=

•
M

k
kijk uuDmuR

M
c

1

/1),(),(α

1 We use the symmetrised K-L divergence instead of the simpler K-L distance in order to reduce
computational cost.

 8

where),(jk muR is the known rating given mj by uk. Here, the rating given mj by ui is
predicted using the ratings given m by neighbors to ui, weighted according to the
neighbor’s distance from ui by the weighting parameter α. The constant c is a
normalization parameter.

Unfortunately, computation of the entire 500,000 x 500,000 user matrix D was not
feasible with the computing resources we could muster, but preliminary tests on subsets
of the matrix are encouraging. Blindly choosing a subset of 10,000 users, and following
the above technique with α=1, produces an overall RMSE of .972, a small improvement
over the baseline predictor. However, clever selection of the users (e.g. by randomly
choosing users who have seen many movies), can produce an RMSE as low as .896,
though such a technique does not generalize to the entire data set.

4.2. Item-based collaborative filtering

4.2.1. Distance Metric

The distribution-based technique described above uses individual user distributions to
measure distance between users, then makes predictions r(ui, mj) based on the ratings
given mj by users near ui. The intuition here is that if many users rate two movies the
same, the movies should be considered similar. Conversely, if many users rate two
movies differently, the movies should be considered different.

Thus, a simple method for assessing similarity between two movies is:

∑ −⋅−=
N

k
ikikrikikji muRmuRcmuRmuRmmd)),(),((),(),(),(

where),(ik muR is the known rating given mi by uk, and cr weights the term by the
difference in ratings given mi and mj by uk. Intuitively, c0 should be zero and c4 should be
large.

Ideally, we would like to compute the 17,000 x 17,000 distance matrix using the full data
set with M=500,000. Unfortunately, this computation requires significant resources2, so
we instead tested the method on a subset of the data with M=500.3 As can be seen in
Table 3, this method of assessing movie similarity accurately reflects our intuitive notion
of similarity.

2 We initially wrote most of our code in Python, which was a regrettable decision. We’re currently porting
the code to C, which should make the full computation possible.
3 Choice of the subset of M users significantly affects the resulting clustering; we didn’t fully explore this
parameter as we intended to later use the entire dataset (M=500,000).

 9

LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo
1. LOTR: The Two Towers
2. LOTR: The Return of the King
3. LOTR: The Fellowship of the

Ring: Extended Edition
4. LOTR: The Two Towers:

Extended Edition
5. Raiders of the Lost Ark
6. LOTR: The Return of the

King: Extended Edition
7. Pirates of the Caribbean:

The Curse of the Black Pearl
8. The Matrix
9. The Shawshank Redemption:

Special Edition
10. Braveheart

1. Sex and the City: Season 3
2. Sex and the City: Season 5
3. Sex and the City: Season 1
4. Sex and the City: Season 2
5. Sex and the City: Season 6:

Part 1
6. Sex and the City: Season 6:

Part 2
7. The Sixth Sense
8. Finding Nemo (Widescreen)
9. Forrest Gump
10. The Shawshank Redemption:

Special Edition

1. Monsters
2. Shrek (Full-screen)
3. Shrek 2
4. LOTR: The Two Towers
5. Pirates of the

Caribbean: The Curse
of the Black Pearl

6. The Incredibles
7. The Sixth Sense
8. The Shawshank

Redemption: Special
Edition

9. LOTR: The Fellowship
of the Ring

10. Forrest Gump
Table 3: Sample nearest neighbors using user-based collaborative filtering

4.2.2. Predicting r(ui, mj) from nearest neighbors

Using a technique very similar to the one described in (4.2.1), we can compute r(ui, mj)
for an unseen movie mj using:

r(ui, mj) = ∑
=

•
N

k
kjjk mmdmuR

N
c

1

/1),(),(α

The results were not as good as we had hoped, producing an RMSE of .992. However,
the overall error depends, to some extent, on M (RMSE=1.02 for M=50), and as we scale
M up by 2-3 orders of magnitude we expect the RMSE to continue to drop.

User-based collaborative filtering is perhaps a more interesting approach, though the
computational constraints are larger given the potential 500,000 x 500,000 distance
matrix.

User-based filtering is also less intelligible, as it is impossible to produce a meaningful
table such as Table 3. As we refine our computational methods and develop a deeper
understanding of what we’re doing, we will “flip the axes” and apply these item-based
techniques to users.

4.3. Metadata

Thus far, we have been comparing movies based on the ratings provided by users. That
is, two movies are similar if many users rate them similarly. While this information is
informative, it is neither deep nor interpretable. Moreover, we would expect a person’s
taste in movies to be multifaceted – that is – I like stupid comedies but also
documentaries; Quentin Tarentino but also Woody Allen; the Marx Brothers but also
Dustin Hoffman. In light of this observation, we collected metadata for each movie, in
the hopes of more precisely featurizing movies based on some set of tangible dimensions.

 10

We also hope to be able to model user preferences based on the ratings given to movies
of each type. With these somewhat lofty ambitions, we have:

1. collected a corpus of web-based movie text
2. compiled a list of relevant movie terms
3. extracted features for each movie

While these are not directly machine-learning tasks, we discuss them briefly in part
because they are interesting and in part because we spent a lot of time working on this
part of the project.

4.3.1. Web Corpus

There is a huge amount of information available on the internet, and in particular, many
pages about each movie. Given the list movie titles and release years provided by
Netflix, we used the Yahoo! Search API to get the top 10 urls for each movie and
downloaded the text from these pages. This raw data comes from many sources,
including, but not limited to the Internet Movie Database (IMDB), Wikipedia, personal
web pages, reviews, blogs, discussion boards, and Netflix itself. The data is roughly
sentencized, punctuation is removed, and cleaned to remove code, html tags, etc. This
final step is done by throwing out lines of text with out-of-vocabulary (OOV) rates above
a certain threshold (where the vocabulary is an English dictionary). While this ends up
pruning a few proper names that appear out of context, adjusting the OOV threshold
mostly solves this problem.

In the end, we are left with somewhat clean text for each movie, and around 150 million
words over all 17,770 movies, or around 8,500 words per movie. As this is automatically
extracted web data, there is a good deal of noise – advertisements, broken urls, bad search
results, and so on, but the overall effect appears reasonable. To demonstrate the potential
of this data, we begin by computing term frequency-inverse document frequency
(TFIDF) over the words in each movie’s web-data. TFIDF is roughly the ratio between
the number of appearances of word w in a document and the number of documents over
the whole corpus in which word w appears. Thus, common words like ‘the’ and ‘of’ tend
to have small TFIDF values (they have large TF and large IDF), while relevant words
tend to have large TFIDF values (they large TF and small IDF). The table shows the top
ranked TFIDF words for a few well-known movies.
LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo
fellowship
tolkien
rings
lord
ring
zealand
towers
storyboards
afi
merry
triology
Jackson

461
384
345
151
115
99
82
43
42
37
35
34

miranda
carrie
samantha
half-hour
charlotte
glaad
excellence
mini-series
sex
parker
housewives
hbo

263
243
159
100
90
84
82
81
80
43
43
42

nemo
pixar
stanton
degeneres
finding
fish
sharks
brooks
exploring
underwater
thx
ellen

1127
244
196
149
96
93
50
49
48
45
37
32

Table 4: Top TFIDF words and their values. Note that adding bigrams would capture full names
like Ellen Degeneres.

 11

Apart from being amusing, these terms do appear to get at the important components of
the movies: we see featured actors, characters, locations, descriptions, directors, etc.
Convinced that our web-data contains some useful information, we proceed to step 2.

4.3.2. Feature Selection

We would like to select a fixed set of terms so we can create feature vectors that describe
movies. But how to select our terms? Ideally, we would somehow choose the most
relevant. We might approximate this set by aggregating the top TFIDF terms we
extracted for each movie. This list gets quite large, though, so as a first step, we chose a
set of categories by hand and used Wikipedia (and our own brainstorming) to fill them in.
Our categories, and some example terms from each are shown below.

Category Examples
Actresses aaliyah, alicia silverstone, anna pacquin
Actors adrien brody, alan alda, albert brooks
Directors woody allen, wes anderson, warren beatty
Genres drama, comedy, documentary
MPAA ratings rated g, rated pg, rated r
MPAA descriptions kids, violence, nudity
DVD words special features, bonus, exclusive
Awards academy award, dest actor, costume design
Festivals cannes film festival, venice film festival, sundance film festival
Countries albania, austria, Bulgaria
Keywords racial, intellectual, witty
Table 5: Metadata categories and example terms in each

4.3.3. Extracting Features

In total, we ended up with 2,500 terms across 11 categories which we pruned to 1,900 by
removing any which did not appear in at least 10 movies. Of course, the feature vector of
any given movie is still fairly sparse as typically only a few actors (from our list of some
500), for example, make an appearance in the text of a movie. Specifically, the value of a
feature for a movie is the TFIDF for that term. Features are then normalized per-movie
so that features for each movie sum to 1 to allow comparison between movies.

4.3.4. PCA

Now that we have a new metadata representation of the movies, we need to decide what
to do with it. As a first step, we construct the complete featurized movie matrix where
each row is a movie and each column is a feature. For the sake of comparison, we
construct a parallel matrix where each column represents a user and the values are the
ratings given to each movie. We use only the 1,900 users who rated the most movies to
minimize sparsity and to keep the comparison meaningful. We refer to the metadata

 12

matrix as Mw (for web) and the user-ratings matrix as Mr (for ratings). Both Mw and Mr
have dimensionality 17,770 by 1,900. Mw is 98% sparse – that is – 2% of the values are
non-zero, while Mr is 87% sparse (though recall that the overall sparsity of the ratings
matrix, including all users, is 99%). The table shows the relative sizes of the first few
eigenvalues of the covariance matrices for Mw and Mr.

Figure 6: First eigenvalues for cov(Mw) (left) and cov(Mr) (right)

What is most interesting about the eigenvalue decomposition is best shown with a table,
shown below. The first principle component of Mr contains far more of the variance than
any other component, while the variance in Mw is more evenly distributed among the
principle components. Nonetheless, the first 50 principle components of Mw contain a
larger percentage of the total variance than in Mr, suggesting that the metadata does in
fact provide a richer parameterization of movies than the user ratings. Moreover, we are
encouraged that these two sources of data are somewhat different, and may combine to
give superior features to either method alone.

Number of eigenvalues % of total variance, Mw % of total variance, Mr
1
2
5
10
50
100
500
1000

0.06
0.12
0.23
0.34
0.61
0.68
0.86
0.95

0.36
0.41
0.47
0.50
0.59
0.63
0.80
0.91

Table 6: Percent of total variance in the first k eigenvectors for the two matrices

The tables below show the nearest neighbors of a few movies given features extracted
from Mw and Mr, respectively. Note that while there is some overlap, the features group
movies together for different reasons.

 13

LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo
1. The Key: Special Edition
2. LOTR: The Fellowship of the

Ring: Extended Edition
3. LOTR: The Two Towers: Bonus

Material
4. Lord of the Rings: The Two

Towers
5. Doctor Who: Lost in Time:

The William Hartnell Years
6. Mission to Mars
7. Doctor Who: Lost in Time:

The Patrick Troughton Years
8. LOTR: The Fellowship of the

Ring: Bonus Material
9. LOTR: The Return of the

King: Extended Edition
10. Star Trek: The Motion

Picture
11. Legend: Director's Cut
12. Crossworlds
13. LOTR: The Two Towers:

Extended Edition
14. The Incredible Hulk: The TV

Series Ultimate Collection

1. Sex and the City:
Season 1

2. Sex and the City:
Season 2

3. Sex and the City:
Season 3

4. Lie Down with Dogs
5. How To Be A Player
6. Jeffrey
7. Sex and the City:

Season 6: Part 2
8. Eddie Griffin: Voodoo

Child
9. Sex and the City:

Season 5
10. Sex Is Comedy
11. Tomcats
12. Loving Jezebel
13. Why Do They Call It

Love When They Mean
Sex?

14. Teaserama

1. Finding Nemo (Full-
screen)

2. SpongeBob
SquarePants: Tide and
Seek

3. Toy Story
4. Monsters
5. A Bug's Life: Bonus

Material
6. Robin Hood (Disney)
7. Brother Bear

(Theatrical
Widescreen Version)

8. Balto 2: Wolf Quest
9. SpongeBob

SquarePants:
SpongeBob Goes
Prehistoric

10. The Rescuers Down
Under

11. Thumbelina
12. Shrek (Widescreen)
13. Robbie the Reindeer

in Hooves of Fire and
the Legend of the
Lost Tribe

14. Father of the Pride:
The Complete Series

Table 7: Sample nearest neighbors using Euclidean distance on Mw

LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo
1. Lord of the Rings: The Two

Towers
2. Lord of the Rings: The

Return of the King
3. The Matrix
4. Indiana Jones and the Last

Crusade
5. Raiders of the Lost Ark
6. Gladiator
7. Pirates of the Caribbean:

The Curse of the Black Pearl
8. Braveheart
9. The Sixth Sense
10. Spider-Man
11. The Terminator
12. The Shawshank Redemption:

Special Edition
13. Star Wars: Episode V: The

Empire Strikes Back
14. Jurassic Park

1. Sex and the City:
Season 3

2. Sex and the City:
Season 5

3. Sex and the City:
Season 1

4. Sex and the City:
Season 2

5. Sex and the City:
Season 6: Part 1

6. Sex and the City:
Season 6: Part 2

7. The Sixth Sense
8. Finding Nemo

(Widescreen)
9. Forrest Gump
10. The Shawshank

Redemption: Special
Edition

1. Shrek (Full-screen)
2. Monsters
3. Shrek 2
4. Pirates of the

Caribbean: The Curse
of the Black Pearl

5. Indiana Jones and the
Last Crusade

6. Indiana Jones and the
Temple of Doom

7. Spider-Man
8. Forrest Gump
9. Jurassic Park
10. Harry Potter and the

Sorcerer's Stone
11. Men in Black
12. Big
13. The Sixth Sense
14. A Bug's Life

Table 8: Sample nearest neighbors using Euclidean distance on Mr

It is instructive to consider why we are interested in PCA. Afterall, we could simply
measure the distance between each pair of movies using all 1,900 features. Or in the case
of Mr, the distance between each pair of movies could be computed over all the ratings by
users who have rated both. The first reason is computational: the full distance calculation

 14

is on the order of (20,000 x 20,000 x 2,000) = 800 billion. Taking only first 50 principle
components reduces the calculation by a factor of 40. A second, and more important
reason has to do with noise and generalization. In most applications, we would test
reconstruction error on some held-out set of movies to see how our dimensionality
reduction generalizes to new data. This problem is somewhat unique, though, in that the
set of movies (and users, for that matter) is fixed, at least in the contest formulation. That
is, we will never be asked to rate a new movie we have never seen before. Note that our
metadata parameterization would be particularly useful in this case (which Netflix needs
to address when they add new movies to their collection that nobody has yet rated). Even
in our case, though, we can hope that PCA captures most of the important or robust
variance, discarding noise and misleading correlations in the training data.

5. A Few In-Progress Results

Now that we’ve extracted these web features, we need to decide how to apply them. As a
first experiment, we tried a linear regression model to learn the importance of each
feature to each user. Each user has a number of sample points of the form (x,y) where x
is the feature vector for a movie and y is the rating he gave that movie. Based on this
data, we learn a set of weights to minimize prediction error (we end up with 1900 weights
per user). The best RMSE achieved in this fashion was 1.35.

Realistically, this is probably too much to expect from a regression model, especially
when we only have a few example points (many users only have rated a few movies).
Thus, our next experiment involved reducing the dimensionality of the feature space from
1900 to 50, as described above. The best RMSE was reduced to around 1.25. For the
sake of comparison, we also tried this technique using the 50-dimensional features
extracted from Mr as well, with very similar results, RMSE = 1.27. It is also worth
noting that this framework for predicting actual ratings (rather than probabilities of
ratings) as described in section 3, is problematic because the regression is sensitive to the
magnitudes of the features. This is evidenced by the fact that the training error is actually
quite low – the average per-user error at training time is around 0.65.

Similarly, we tried SVM-regression on the original feature set, hoping that the SVM
would learn to distinguish valuable features while ignoring unimportant features. To start,
we used a simple linear kernel, giving RMSE = 1.09. While this result is certainly an
improvement, it is not particularly impressive compared with other methods. Linear
Discriminant Analysis produced comparable results. With LDA, we tested to see if some
set of features did a good job at separating a user’s 5 ratings from his 1 ratings, for
example. Preliminary tests on a few individual users suggest that this might work, but we
have not had a chance to extend this idea into a classification system.

6. Conclusions and Future Work

 15

Intuition tells us that some small set of these meta-data features ought to be important for
a particular user. Since we want to build user models, we really want to know which
features to select for that user. For instance, some users might best be described by their
aggregate distribution, whereas others might be better modeled by the keywords present
in the movies they rate. Our current “best method” is to combine the results of the SVM
regression with our probabilistic baseline, giving an RMSE of 0.958 a (1%
improvement). This gives us hope of combining systems effectively, once we find a way
to use the metadata more productively.

7. References

Joanes, D. N. & Gill, C. A. “Comparing measures of sample skewness and kurtosis.”
Journal of the Royal Statistical Society (Series D): The Statistician 47 (1), 183–189
(1998)

Chumki Basu and Haym Hirsh and William W. Cohen. “Recommendation as
Classification: Using Social and Content-Based Information in Recommendation.”
AAAI, 714-720 (1998)

Hofmann, Thomas. “Learning What People (Don’t) Want.” Lecture Notes In Computer
Science; Vol. 2167 Proceedings of the 12th European Conference on Machine Learning
214 - 225 (2001)

