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1. Introduction 
 
There are around 20,000 movies available for rental through Netflix and over 2,500,000 
songs available on Yahoo! Music. While some users know exactly what movies they 
want to watch and which music they want to listen to, the majority of users are likely to 
be overwhelmed by the range of possibilities. One way to narrow down the selection 
problem is to provide suggestions to users based on their preferences – that is – based on 
ratings they’ve given to some subset of the movies or songs. 
 
To collect this preference data, both Netflix and Yahoo!, along with Amazon and other 
companies with a wide variety of products, typically ask users to rate items on a 5-star 
scale. A user can then be represented by a list of (product, rating) pairs, perhaps along 
with some metadata such as age, gender, zip-code, and so on.  By looking for patterns in 
a user’s data and for similarities between users and between products, we hope to predict 
how that user would rate new products, using these predicted ratings in a suggestions 
engine. 
 
This task is broadly referred to as Collaborative Filtering. With the recent expansion of 
internet-accessible catalogues of movies, music, etc., this has suddenly become quite 
valuable technology. A few months ago, Netflix announced a competition to improve on 
their collaborative filtering algorithm. In this paper, we motivate some general classes of 
techniques to address the Netflix problem and present some results and analysis. As this 
is a relatively unexplored area, and the massive data-set presented a host of initial 
challenges, the work presented here is fairly preliminary. We are encouraged, however, 
by early results, and intend to continue this research over the next few months. 
 
The organization of the paper is as follows: section 2 describes the training data, test data, 
and evaluation criteria; section 3 introduces a few baseline methods and scores; section 4 
outlines two approaches we have begun investigating along with early prediction results 
and analysis; finally, section 5 summarizes some conclusions and suggests future work. 
 

2. The Netflix Data 
 
Netflix provides ~20,000 movie IDs, ~500,000 user IDs, and ~100,000,000 examples of 
the form (movie ID, user ID, rating). The data is quite sparse, with roughly 200 
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ratings/user, and 5,000 ratings/movie (Figure 1).  We can imagine a matrix M where each 
user is a row and each movie is a column. M is thus 20,000 by 500,000 and we are 
provided with 100,000,000 entries, or about 1% of all possible entries (if every user rated 
every movie). 

 
Figure 1: Number of ratings per movie and per user 

 

 
Figure 2: Average rating by movie and by user. 
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3. Baselines 
 
Before delving into more sophisticated techniques, we ran a simple set of baseline 
experiments (Table 1) on the probe set.  This included, for every (movie, user) pair: 
 

a) Predicting “3 stars”, irrespective of the movie and user 
b) Predicting the user’s average rating (mode), irrespective of the movie 
c) Predicting the user’s average rating (mean), irrespective of the movie 
d) Predicting the movie’s average rating (mean), irrespective of the user 
e) Predicting the average of the user and move means. 

 

Baseline Method RMSE 
Guess “3 stars” 1.313 
Guess global mean ~ 3.60 1.130 
Guess movie mean 1.052 
Guess user mean 1.043 
Guess (movie mean + user mean) / 2 1.004 
Netflix “cinematch” system .951 

Table 1: RMSE on probe set for different baseline methods 
 

A more interesting baseline combines these aggregate-style statistics.  Taking a 
probabilistic view, we are interested in calculating P(rating|user, movie), which we will 
abbreviate as P(r|u,m).  Applying Bayes Rule, we have: 
 
 P(r|u,m) = P(r,u,m) / P(u,m) = P(u,m|r)P(r) / P(u,m) 
 
Note that some of these quantities do not have particularly meaningful interpretations.  It 
is easiest to think about these probabilities as maximum-likelihood estimates over data of 
the from (u,m,r), of which we have many examples.  P(r) for example can be estimated 
by summing over all users and all movies and normalizing so that we have the ratio of the 
number of ratings of a particular value over the total number of ratings.  
 
We cannot directly use this equation since the joint probability P(u,m) is either 0 or 1, 
depending on whether user u has rated movie m.  Making some independence 
assumptions allows us to estimate this quantity easily from our data.  We assume that (1) 
u and m are independent and that (2) u and m are conditionally independent given r.  
Assumption (1) has a meaningful interpretation, though it is most likely not correct: it 
says that the probability that a user u has rated a movie m is equal to the product 
P(u)P(m).  P(u) is estimated as the number of ratings made by u as a fraction of all ratings 
and P(m) is estimated as the number of ratings on m as a fraction of all ratings.  This 
seems generally correct: the probability that u has rated m is high if u rates many movies 
and if m has many ratings.  Assumption (2) is a little less intuitive, but has basically the 
same interpretation. We can then reduce our equation as follows: 
 
 P(r|u,m) = P(u|r)P(m|r)P(r) / P(u)P(m)    [independence assumptions] 
    = P(r|u)P(u) P(r|m)P(m) P(r) / P(u)P(m)P(r)P(r)      [Bayes Rule again] 
    = P(r|u)P(r|m) / P(r)        [simplifying] 
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We can easily estimate P(r|u), P(r|m), and P(r) from our data using the principle of 
maximum likelihood.  Finally, we need to make a prediction given this distribution.  
While we might select the value of r which has the largest value, we are not practically 
constrained to making integer predictions, and in fact, taking the expectation of this 
distribution provides far better predictions.   
 
Another nice feature of the distribution over ratings is that we can estimate confidence 
based on the sharpness of the distribution.  Intuitively, the sharper the distribution, the 
more confident we are of our prediction.  The table below shows the results over various 
confidence levels. 

 
confidence Rmse Frac. of total 
>0.99 0.2985 0.0000078 
>0.90 0.5537 0.0058151 
>0.80 0.7027 0.0233911 
>0.70 0.7768 0.0594605 
>0.60 0.818 0.1373335 
>0.50 0.8432 0.3251507 
>0.40 0.8892 0.6883717 
>0.30 0.9527 0.9597528 
>0.20 0.9693 1  

Confidence Rmse frac. of total 
>0.99 0.2985 0.0000078 
>0.90 0.554 0.0058073 
>0.80 0.7455 0.017576 
>0.70 0.8212 0.0360694 
>0.60 0.8481 0.077873 
>0.50 0.8611 0.1878173 
>0.40 0.9284 0.3632213 
>0.30 1.0975 0.2713813 
>0.20 1.3038 0.0402465  

Table 2: For each confidence level, cumulative rmse (left) and per-bin rmse (right). 
 
Note that the RMSE for the entire probe set is 0.969, a rather impressive result given the 
simplicity of the model (compared to the Netflix baseline of 0.951 on the same set).  
Also, our confidence measure is reasonably well-calibrated, which suggests that we could 
combine multiple systems by weighting the contribution of each system by its 
confidence. 
 
Thinking about this model more generally, we can rewrite our equation for P(r|m,u) in the 
log domain.  Letting Q stand for the log probability, we obtain a linear model: 
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Note that P(r), above, which served as a normalizing constant is excluded from the model 
here as these values would be the same for each data point.  We are then left with a 
regression problem in which we learn a set of 11 weights, W, for each value of r.  At 
prediction time, we compute the expectation as before: 
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This formulation gives us a general framework for predicting ratings.  Given some set of 
features for a (movie, user) paring, we learn a set of weights to predict the probability of 
each rating class.  Thus far, we have been talking about a global set of weights, learned 
over all examples.  Besides the fact that 100 million data points is hard to load into 
memory (making the least-squares computation difficult), we’d really like to model each 
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user or perhaps each movie separately.  To do this effectively, we need features that 
capture more about movies and users than simply the distribution over ratings.  The 
remainder of this paper can be viewed as an exploration of novel features to use in these 
models. 

4. New Methods 
 
The task before us is to predict the rating given to movie mj by user ui for an unseen pair 
(ui, mj).  In this section we discuss the three main approaches we took to the problem. 
 
The first technique relies on P(r | u), using each user’s aggregate rating behavior to 
cluster users (4.1).  While effective at identifying users with unique rating behavior (e.g. 
only rating movies 1-star), it is not very robust, as it does not account for concepts like 
movie content, user tastes, etc.  The second technique presented (4.2) is a collaborative 
filtering method using nearest neighbors, where the rating r(ui, mj) is based on ratings ui 
gave to movies similar to mj (4.2.1), and ratings given to mj by users similar to ui (future 
work).  Lastly, we discuss a content-based approach, where the features are terms 
commonly associated with movies, such as “Al Pacino” or “Thriller” (4.2.3).  Using these 
terms as features, we are able to assess movie similarity, do simple clustering, and make 
predictions based on the ratings ui gave to the movies similar to mj. 

4.1. Distribution-based clustering 
 
In the sample of 500,000 users, there are people with vastly different rating behavior.  
Some users only rate movies 1-star, some rate only 5-stars, and some users distribute 
their ratings with relatively uniform frequency (Figure 3). Similarly, the 20,000 movies 
encompass a wide range of distributions – some with consistently high ratings (e.g. 
Battlestar Galactica), some with evenly distributed ratings (e.g. Miss Congeniality), etc.  
For predictive purposes, the distribution profile of a user or movie can be extremely 
useful – if every movie rated by ui has been rated 4-stars, it is probable that the next 
movie will also be rated 4-stars.   

 
Figure 3: Sample rating distributions from representative users 
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A variety of statistics exist for measuring the dispersion and deviation of a distribution 
[Joanes]; however, the standard deviation is a simple metric that allows us to identify 
users and movies with consistent ratings.  By limiting our predictions on the probe set to 
those users and movies with relatively low standard deviation, we were able to drastically 
lower the predictive error of the relevant baselines.  For instance, 33% of users have a 
standard deviation less than .90.  Predicting the user’s average for this subset of users 
produced an error of .8 – a 30% reduction over the baseline error (baseline c).  Figure 4 
illustrates the relationship between standard deviation, predictive accuracy, and probe set 
coverage. 
 
 

 
Figure 4: For users with very low standard deviation, predicting the user’s mean is 
extremely accurate.  As the standard deviation grows, the user’s mean becomes less 
accurate.  The same is generally true for the movie – the movie mean is a less 
accurate when the movie has a high standard deviation.  The “neighbor deviation” is 
the standard deviation of the ratings given movie Y by the k nearest neighbors to user 
X. 

 

4.1.1. Computing nearest neighbors 
 
Using standard deviation as a measure of dispersion is a useful technique for finding 
users and movies with extremely consistent rating behavior.  However, it is also 
conceivable that the shape of the distribution itself would be a useful means for 
comparing two users, or two movies.  To this end, we attempted to run k-nearest neighbor 



 7

clustering on both (a) users and (b) movies, where distance between, for instance, u1 and 
u2 was measured as the distance between the two distributions.  For example, using the 
symmetrised Kullback-Leibler divergence:1 
 

D(ui, uj) = KL(ui,uj) + KL(uj,ui), where 
 

ui = {r(ui, m1), … ,r(ui, mN)}, and  
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4.1.2. Predicting r(ui, mj) from nearest neighbors 
 
Such a distance function gives a distance matrix D of pairwise distances between all 
users, from which the k-nearest neighbors to each user can be extracted.  The hope is that 
the rating behavior of ui’s neighbors will better predict r(ui, mj) than the aggregate ratings 
for all users.  Figure 5 shows the distinction in ratings for a given movie between all users 
(grey histogram) and the 10-nearest neighbors (yellow histogram). 
 

 
Figure 5: different distributions of ratings for 16 different movies, for all users (grey 

histogram) and the k-nearest neighbors to ui (yellow histogram).  The true score is 
displayed over the histograms. 

 
Thus, a simple method for computing r(ui, mj) for an unseen movie mj is given by: 
 

r(ui, mj) = ∑
=
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1 We use the symmetrised K-L divergence instead of the simpler K-L distance in order to reduce 
computational cost. 
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where ),( jk muR  is the known rating given mj by uk.  Here, the rating given mj by ui is 
predicted using the ratings given m by neighbors to ui, weighted according to the 
neighbor’s distance from ui by the weighting parameter α. The constant c is a 
normalization parameter. 
 
Unfortunately, computation of the entire 500,000 x 500,000 user matrix D was not 
feasible with the computing resources we could muster, but preliminary tests on subsets 
of the matrix are encouraging.  Blindly choosing a subset of 10,000 users, and following 
the above technique with α=1, produces an overall RMSE of .972, a small improvement 
over the baseline predictor.  However, clever selection of the users (e.g. by randomly 
choosing users who have seen many movies), can produce an RMSE as low as .896, 
though such a technique does not generalize to the entire data set. 

4.2.  Item-based collaborative filtering 

4.2.1. Distance Metric 
 
The distribution-based technique described above uses individual user distributions to 
measure distance between users, then makes predictions r(ui, mj) based on the ratings 
given mj by users near ui.  The intuition here is that if many users rate two movies the 
same, the movies should be considered similar.  Conversely, if many users rate two 
movies differently, the movies should be considered different. 
 
Thus, a simple method for assessing similarity between two movies is: 
 

∑ −⋅−=
N

k
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where ),( ik muR  is the known rating given mi by uk, and cr weights the term by the 
difference in ratings given mi and mj by uk.  Intuitively, c0 should be zero and c4 should be 
large. 
 
Ideally, we would like to compute the 17,000 x 17,000 distance matrix using the full data 
set with M=500,000.  Unfortunately, this computation requires significant resources2, so 
we instead tested the method on a subset of the data with M=500.3  As can be seen in 
Table 3, this method of assessing movie similarity accurately reflects our intuitive notion 
of similarity. 
 
 
 
 

                                                 
2 We initially wrote most of our code in Python, which was a regrettable decision.  We’re currently porting 
the code to C, which should make the full computation possible. 
3 Choice of the subset of M users significantly affects the resulting clustering; we didn’t fully explore this 
parameter as we intended to later use the entire dataset (M=500,000). 
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LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo 
1. LOTR: The Two Towers 
2. LOTR: The Return of the King 
3. LOTR: The Fellowship of the 

Ring: Extended Edition 
4. LOTR: The Two Towers: 

Extended Edition 
5. Raiders of the Lost Ark 
6. LOTR: The Return of the 

King: Extended Edition 
7. Pirates of the Caribbean: 

The Curse of the Black Pearl 
8. The Matrix 
9. The Shawshank Redemption: 

Special Edition 
10. Braveheart 

1. Sex and the City: Season 3 
2. Sex and the City: Season 5 
3. Sex and the City: Season 1 
4. Sex and the City: Season 2 
5. Sex and the City: Season 6: 

Part 1 
6. Sex and the City: Season 6: 

Part 2 
7. The Sixth Sense 
8. Finding Nemo (Widescreen) 
9. Forrest Gump 
10. The Shawshank Redemption: 

Special Edition 

1. Monsters 
2. Shrek (Full-screen) 
3. Shrek 2 
4. LOTR: The Two Towers 
5. Pirates of the 

Caribbean: The Curse 
of the Black Pearl 

6. The Incredibles 
7. The Sixth Sense 
8. The Shawshank 

Redemption: Special 
Edition 

9. LOTR: The Fellowship 
of the Ring 

10. Forrest Gump 
Table 3: Sample nearest neighbors using user-based collaborative filtering 

 

4.2.2. Predicting r(ui, mj) from nearest neighbors 
 
Using a technique very similar to the one described in (4.2.1), we can compute r(ui, mj) 
for an unseen movie mj using: 
 

r(ui, mj) = ∑
=
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The results were not as good as we had hoped, producing an RMSE of .992.  However, 
the overall error depends, to some extent, on M (RMSE=1.02 for M=50), and as we scale 
M up by 2-3 orders of magnitude we expect the RMSE to continue to drop. 
 
User-based collaborative filtering is perhaps a more interesting approach, though the 
computational constraints are larger given the potential 500,000 x 500,000 distance 
matrix.  
 
User-based filtering is also less intelligible, as it is impossible to produce a meaningful 
table such as Table 3.  As we refine our computational methods and develop a deeper 
understanding of what we’re doing, we will “flip the axes” and apply these item-based 
techniques to users. 
 

4.3. Metadata 
 
Thus far, we have been comparing movies based on the ratings provided by users.  That 
is, two movies are similar if many users rate them similarly.  While this information is 
informative, it is neither deep nor interpretable.  Moreover, we would expect a person’s 
taste in movies to be multifaceted – that is – I like stupid comedies but also 
documentaries; Quentin Tarentino but also Woody Allen; the Marx Brothers but also 
Dustin Hoffman.  In light of this observation, we collected metadata for each movie, in 
the hopes of more precisely featurizing movies based on some set of tangible dimensions.  
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We also hope to be able to model user preferences based on the ratings given to movies 
of each type.  With these somewhat lofty ambitions, we have: 

1. collected a corpus of web-based movie text 
2. compiled a list of relevant movie terms 
3. extracted features for each movie 

 
While these are not directly machine-learning tasks, we discuss them briefly in part 
because they are interesting and in part because we spent a lot of time working on this 
part of the project. 

4.3.1. Web Corpus 
 
There is a huge amount of information available on the internet, and in particular, many 
pages about each movie.  Given the list movie titles and release years provided by 
Netflix, we used the Yahoo! Search API to get the top 10 urls for each movie and 
downloaded the text from these pages.  This raw data comes from many sources, 
including, but not limited to the Internet Movie Database (IMDB), Wikipedia, personal 
web pages, reviews, blogs, discussion boards, and Netflix itself.  The data is roughly 
sentencized, punctuation is removed, and cleaned to remove code, html tags, etc.  This 
final step is done by throwing out lines of text with out-of-vocabulary (OOV) rates above 
a certain threshold (where the vocabulary is an English dictionary).  While this ends up 
pruning a few proper names that appear out of context, adjusting the OOV threshold 
mostly solves this problem. 
 
In the end, we are left with somewhat clean text for each movie, and around 150 million 
words over all 17,770 movies, or around 8,500 words per movie.  As this is automatically 
extracted web data, there is a good deal of noise – advertisements, broken urls, bad search 
results, and so on, but the overall effect appears reasonable.  To demonstrate the potential 
of this data, we begin by computing term frequency-inverse document frequency 
(TFIDF) over the words in each movie’s web-data.  TFIDF is roughly the ratio between 
the number of appearances of word w in a document and the number of documents over 
the whole corpus in which word w appears.  Thus, common words like ‘the’ and ‘of’ tend 
to have small TFIDF values (they have large TF and large IDF), while relevant words 
tend to have large TFIDF values (they large TF and small IDF).  The table shows the top 
ranked TFIDF words for a few well-known movies. 
LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo 
fellowship 
tolkien 
rings 
lord 
ring 
zealand 
towers 
storyboards 
afi 
merry 
triology 
Jackson 

461 
384 
345 
151 
115 
99 
82 
43 
42 
37 
35 
34  

miranda 
carrie 
samantha 
half-hour 
charlotte 
glaad 
excellence 
mini-series 
sex 
parker 
housewives 
hbo 

263 
243 
159 
100 
90 
84 
82 
81 
80 
43 
43 
42  

nemo 
pixar 
stanton 
degeneres 
finding 
fish 
sharks 
brooks 
exploring 
underwater 
thx 
ellen 

1127 
244 
196 
149 
96 
93 
50 
49 
48 
45 
37 
32  

Table 4: Top TFIDF words and their values.  Note that adding bigrams would capture full names 
like Ellen Degeneres. 
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Apart from being amusing, these terms do appear to get at the important components of 
the movies: we see featured actors, characters, locations, descriptions, directors, etc.  
Convinced that our web-data contains some useful information, we proceed to step 2. 
 

4.3.2. Feature Selection 
 
We would like to select a fixed set of terms so we can create feature vectors that describe 
movies.  But how to select our terms?  Ideally, we would somehow choose the most 
relevant.  We might approximate this set by aggregating the top TFIDF terms we 
extracted for each movie.  This list gets quite large, though, so as a first step, we chose a 
set of categories by hand and used Wikipedia (and our own brainstorming) to fill them in.  
Our categories, and some example terms from each are shown below. 
 
Category Examples 
Actresses aaliyah, alicia silverstone, anna pacquin 
Actors adrien brody, alan alda, albert brooks 
Directors woody allen, wes anderson, warren beatty 
Genres drama, comedy, documentary 
MPAA ratings rated g, rated pg, rated r 
MPAA descriptions kids, violence, nudity 
DVD words special features, bonus, exclusive 
Awards academy award, dest actor, costume design 
Festivals cannes film festival, venice film festival, sundance film festival 
Countries albania, austria, Bulgaria 
Keywords racial, intellectual, witty 
Table 5: Metadata categories and example terms in each 

4.3.3. Extracting Features 
 
In total, we ended up with 2,500 terms across 11 categories which we pruned to 1,900 by 
removing any which did not appear in at least 10 movies.  Of course, the feature vector of 
any given movie is still fairly sparse as typically only a few actors (from our list of some 
500), for example, make an appearance in the text of a movie.  Specifically, the value of a 
feature for a movie is the TFIDF for that term.  Features are then normalized per-movie 
so that features for each movie sum to 1 to allow comparison between movies. 
 

4.3.4. PCA 
 
Now that we have a new metadata representation of the movies, we need to decide what 
to do with it.  As a first step, we construct the complete featurized movie matrix where 
each row is a movie and each column is a feature.  For the sake of comparison, we 
construct a parallel matrix where each column represents a user and the values are the 
ratings given to each movie.  We use only the 1,900 users who rated the most movies to 
minimize sparsity and to keep the comparison meaningful.  We refer to the metadata 
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matrix as Mw (for web) and the user-ratings matrix as Mr (for ratings).  Both Mw and Mr 
have dimensionality 17,770 by 1,900.  Mw is 98% sparse – that is – 2% of the values are 
non-zero, while Mr is 87% sparse (though recall that the overall sparsity of the ratings 
matrix, including all users, is 99%).  The table shows the relative sizes of the first few 
eigenvalues of the covariance matrices for Mw and Mr. 
 

Figure 6: First eigenvalues for cov(Mw) (left) and cov(Mr) (right) 
 
What is most interesting about the eigenvalue decomposition is best shown with a table, 
shown below.  The first principle component of Mr contains far more of the variance than 
any other component, while the variance in Mw is more evenly distributed among the 
principle components.  Nonetheless, the first 50 principle components of Mw contain a 
larger percentage of the total variance than in Mr, suggesting that the metadata does in 
fact provide a richer parameterization of movies than the user ratings.  Moreover, we are 
encouraged that these two sources of data are somewhat different, and may combine to 
give superior features to either method alone. 
 

Number of eigenvalues % of total variance, Mw % of total variance, Mr 
1 
2 
5 
10 
50 
100 
500 
1000 

0.06 
0.12 
0.23 
0.34 
0.61 
0.68 
0.86 
0.95 

0.36 
0.41 
0.47 
0.50 
0.59 
0.63 
0.80 
0.91 

Table 6: Percent of total variance in the first k eigenvectors for the two matrices 
 
 
The tables below show the nearest neighbors of a few movies given features extracted 
from Mw and Mr, respectively.  Note that while there is some overlap, the features group 
movies together for different reasons. 
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LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo 
1. The Key: Special Edition 
2. LOTR: The Fellowship of the 

Ring: Extended Edition 
3. LOTR: The Two Towers: Bonus 

Material 
4. Lord of the Rings: The Two 

Towers 
5. Doctor Who: Lost in Time: 

The William Hartnell Years 
6. Mission to Mars 
7. Doctor Who: Lost in Time: 

The Patrick Troughton Years 
8. LOTR: The Fellowship of the 

Ring: Bonus Material 
9. LOTR: The Return of the 

King: Extended Edition 
10. Star Trek: The Motion 

Picture 
11. Legend: Director's Cut 
12. Crossworlds 
13. LOTR: The Two Towers: 

Extended Edition 
14. The Incredible Hulk: The TV 

Series Ultimate Collection 

1. Sex and the City: 
Season 1 

2. Sex and the City: 
Season 2 

3. Sex and the City: 
Season 3 

4. Lie Down with Dogs 
5. How To Be A Player 
6. Jeffrey 
7. Sex and the City: 

Season 6: Part 2 
8. Eddie Griffin: Voodoo 

Child 
9. Sex and the City: 

Season 5 
10. Sex Is Comedy 
11. Tomcats 
12. Loving Jezebel 
13. Why Do They Call It 

Love When They Mean 
Sex? 

14. Teaserama 

1. Finding Nemo (Full-
screen) 

2. SpongeBob 
SquarePants: Tide and 
Seek 

3. Toy Story 
4. Monsters 
5. A Bug's Life: Bonus 

Material 
6. Robin Hood (Disney) 
7. Brother Bear 

(Theatrical 
Widescreen Version) 

8. Balto 2: Wolf Quest 
9. SpongeBob 

SquarePants: 
SpongeBob Goes 
Prehistoric 

10. The Rescuers Down 
Under 

11. Thumbelina 
12. Shrek (Widescreen) 
13. Robbie the Reindeer 

in Hooves of Fire and 
the Legend of the 
Lost Tribe 

14. Father of the Pride: 
The Complete Series 

Table 7: Sample nearest neighbors using Euclidean distance on Mw 
 
LOTR: Fellowship of the Ring Sex and the City: Season 4 Finding Nemo 
1. Lord of the Rings: The Two 

Towers 
2. Lord of the Rings: The 

Return of the King 
3. The Matrix 
4. Indiana Jones and the Last 

Crusade 
5. Raiders of the Lost Ark 
6. Gladiator 
7. Pirates of the Caribbean: 

The Curse of the Black Pearl 
8. Braveheart 
9. The Sixth Sense 
10. Spider-Man 
11. The Terminator 
12. The Shawshank Redemption: 

Special Edition 
13. Star Wars: Episode V: The 

Empire Strikes Back 
14. Jurassic Park 

1. Sex and the City: 
Season 3 

2. Sex and the City: 
Season 5 

3. Sex and the City: 
Season 1 

4. Sex and the City: 
Season 2 

5. Sex and the City: 
Season 6: Part 1 

6. Sex and the City: 
Season 6: Part 2 

7. The Sixth Sense 
8. Finding Nemo 

(Widescreen) 
9. Forrest Gump 
10. The Shawshank 

Redemption: Special 
Edition 

1. Shrek (Full-screen) 
2. Monsters 
3. Shrek 2 
4. Pirates of the 

Caribbean: The Curse 
of the Black Pearl 

5. Indiana Jones and the 
Last Crusade 

6. Indiana Jones and the 
Temple of Doom 

7. Spider-Man 
8. Forrest Gump 
9. Jurassic Park 
10. Harry Potter and the 

Sorcerer's Stone 
11. Men in Black 
12. Big 
13. The Sixth Sense 
14. A Bug's Life 

Table 8: Sample nearest neighbors using Euclidean distance on Mr 
 
 
It is instructive to consider why we are interested in PCA.  Afterall, we could simply 
measure the distance between each pair of movies using all 1,900 features.  Or in the case 
of Mr, the distance between each pair of movies could be computed over all the ratings by 
users who have rated both.  The first reason is computational: the full distance calculation 
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is on the order of (20,000 x 20,000 x 2,000) = 800 billion.  Taking only first 50 principle 
components reduces the calculation by a factor of 40.  A second, and more important 
reason has to do with noise and generalization.  In most applications, we would test 
reconstruction error on some held-out set of movies to see how our dimensionality 
reduction generalizes to new data.  This problem is somewhat unique, though, in that the 
set of movies (and users, for that matter) is fixed, at least in the contest formulation.  That 
is, we will never be asked to rate a new movie we have never seen before.  Note that our 
metadata parameterization would be particularly useful in this case (which Netflix needs 
to address when they add new movies to their collection that nobody has yet rated).  Even 
in our case, though, we can hope that PCA captures most of the important or robust 
variance, discarding noise and misleading correlations in the training data. 
 

5. A Few In-Progress Results 
 
Now that we’ve extracted these web features, we need to decide how to apply them. As a 
first experiment, we tried a linear regression model to learn the importance of each 
feature to each user.  Each user has a number of sample points of the form (x,y) where x 
is the feature vector for a movie and y is the rating he gave that movie.  Based on this 
data, we learn a set of weights to minimize prediction error (we end up with 1900 weights 
per user).  The best RMSE achieved in this fashion was 1.35. 
 
Realistically, this is probably too much to expect from a regression model, especially 
when we only have a few example points (many users only have rated a few movies). 
Thus, our next experiment involved reducing the dimensionality of the feature space from 
1900 to 50, as described above.  The best RMSE was reduced to around 1.25.  For the 
sake of comparison, we also tried this technique using the 50-dimensional features 
extracted from Mr as well, with very similar results, RMSE = 1.27.  It is also worth 
noting that this framework for predicting actual ratings (rather than probabilities of 
ratings) as described in section 3, is problematic because the regression is sensitive to the 
magnitudes of the features.  This is evidenced by the fact that the training error is actually 
quite low – the average per-user error at training time is around 0.65. 
 
Similarly, we tried SVM-regression on the original feature set, hoping that the SVM 
would learn to distinguish valuable features while ignoring unimportant features. To start, 
we used a simple linear kernel, giving RMSE = 1.09.  While this result is certainly an 
improvement, it is not particularly impressive compared with other methods.  Linear 
Discriminant Analysis produced comparable results.  With LDA, we tested to see if some 
set of features did a good job at separating a user’s 5 ratings from his 1 ratings, for 
example.  Preliminary tests on a few individual users suggest that this might work, but we 
have not had a chance to extend this idea into a classification system. 
 

6. Conclusions and Future Work 
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Intuition tells us that some small set of these meta-data features ought to be important for 
a particular user.  Since we want to build user models, we really want to know which 
features to select for that user.  For instance, some users might best be described by their 
aggregate distribution, whereas others might be better modeled by the keywords present 
in the movies they rate.  Our current “best method” is to combine the results of the SVM 
regression with our probabilistic baseline, giving an RMSE of 0.958 a (1% 
improvement).  This gives us hope of combining systems effectively, once we find a way 
to use the metadata more productively. 
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