
Abstract
A software architecture is the key artifact in software
design, describing the main elements of a software
system and their interrelationships. We present a
method for automatically analyzing the quality of an
architecture by searching for architectural and design
patterns from it. In addition to approximating the
quality of the design, the extracted patterns can also
be used for predicting the quality of the actual system.
The method is demonstrated by an industrial case over
a complex telephone exchange software.

Keywords
Software metrics, software architecture, design
patterns, anti-patterns, constraint satisfaction

1. Introduction

A generally accepted principle in software engineering
is that the quality of a software system should be
assured in the early phases of its life cycle. Quality
assurance methods are most effective when capturing
the requirements of the system and least effective
when the system is already in full operational use:
correcting an error encountered by an end-user is an
order of magnitude more expensive than when finding
it already in the requirements analysis phase.

Unfortunately, quality assurance methods that are
applicable in the early development phases (such as
reviews and inspections) rely on slow manual reading
of documents with marginal possibilities for
automation. On the other hand, methods with
extensive automated support (such as testing) only
apply in phases that are too late in the development
life cycle to be really cost-effective.

The software design phase, acting as a bridge
between informal, highly subjective user requirements
and formal, precise implementation is a most natural
place for effective quality assurance. On one hand,
software design is one of the phases in software
development where one still works on an abstract
level without too much detail. On the other hand, the
software design can be described in a precise manner
using notations that can be automatically analyzed.

The main technical result of the design phase is a
software architecture, describing the functional
elements of the system and their interrelationships. In
recent years, software architectures have been steadily
growing in importance as one of the cornerstones of
software quality, documentation, and reuse.

In this paper we present a technique for
predicting the quality of a software system by its
architectural analysis. Our technique is based on
automatically finding architectural patterns whose
properties are well-known to the extent that their
effect on the behavior of the resulting system can be
quantitatively measured.

We start by introducing the concept of software
architecture in Section 2 and the applied pattern
classes in Section 3. The pattern mining algorithm and
a tool based on it are presented in Section 4, followed
by a summary of software metrics supported by the
tool in Section 5. An industrial case is discussed in
Section 6. Finally, conclusions are drawn in Section 7.

2. Software Architectures

The concept of “software architecture” has been under
intensive research during the last few years. The area
is still somewhat immature, and no single standard
definition for the term exists. Usually a software
architecture is understood as an abstract structural

Software Metrics by Architectural Pattern Mining
Jukka Paakki1, Anssi Karhinen2,

Juha Gustafsson1, Lilli Nenonen1, A. Inkeri Verkamo1

1Dept. of Computer Science, PO Box 26, 00014 University of Helsinki, Finland
2Nokia Research Center, PO Box 407, 00045 Nokia Group, Finland

Email: {jukka.paakki,juha.gustafsson,lilli.nenonen,inkeri.verkamo}@cs.helsinki.fi;
anssi.karhinen@nokia.com

Fax: +358 9 19144441 (UH), +358 9 43766227 (NRC)

description of the software system in terms of its main
components and the relationships among them [1]. A
software architecture is a technical artifact, meaning
that it is given in a particular (semi-)formal notation
so as to be analyzable.

A software architecture is usually a rather
complex entity. To manage the complexity, it must be
possible to divide the architecture description into
smaller units. Usually these units stand for different
architectural views that complement each other.

Several view-based architectural models have
been developed. One of the most popular ones is the
“4+1 model” which organizes a software architecture
into the following views [2]:

1. The logical view describes the static structure of
the system, as derived from its domain.

2. The process view describes the (dynamic)
concurrency, distribution and synchronization
aspects of the system.

3. The development view shows the (static)
organization of the system in terms of technical
facilities of the development environment.

4. The physical view describes the mapping of the
system onto hardware, databases, and
communication infrastructure.

5. The scenarios tie the other views together into
externally usable system services.

To describe the architecture of the software system
comprehensively, a language is needed that supports
all the central viewpoints. A real architecture
description language must provide description
facilities at the architectural level (that is, as
“components” and “connectors”) and it must have
precise syntax and semantics. To support human
intercourse, the language should also be visual.

While expressive dedicated architecture
description languages have been developed, they are
not very popular. Instead, it seems that the general-
purpose object-oriented and visual modeling language
UML (Unified Modeling Language) [3] will take the
role of a leading architecture description language.

Even though UML does not support the
description of software architectures per se, its rich
selection of extensible diagram types makes it
expressive enough even in this area. Most notably,
class diagrams, interaction diagrams, component
diagrams, deployment diagrams, and use case
diagrams of UML can be used for representing the
logical view, the process view, the development view,
the physical view, and the scenarios of the 4+1 model,
respectively. We also have chosen UML as our core

description language, mainly due to its industrial
relevance.

3. Architectural Patterns

The area of software design has a relatively long
history with a number of sound technical
achievements such as the principles of modularization,
information hiding, coupling and cohesion. These
have mainly existed as informal guidelines whose
realization each software designer or architect has to
create by herself, in different forms in different
situations.

Especially the object-oriented software
community has recently tackled this ad-hoc state of
the art by collecting and documenting widely used
solutions to frequently occurring software problems.
The most well-known class of these are design
patterns [4] that describe reusable and extensible
technical solutions to common design problems in a
standard object-oriented format. Other forms of the
same concept are, e.g, higher-level architectural
patterns and lower-level programming idioms [5].

The general idea behind these patterns is to
describe a sound design solution in an explicit (object-
oriented) form that applies in a certain context, and to
analyze the benefits and drawbacks of the solution.
Usually the patterns have been found from existing
systems, but they can also be created from scratch.

What makes patterns a powerful design tool is
the fact that they can be embedded as such or with
small modifications into a software architecture. Since
the documented patterns have been found highly
mature, they implicitly bring a significant amount of
discipline and quality into software design.
Furthermore, the documented properties, merits and
drawbacks of design patterns make it possible to
predict the quality of a software system from its
architecture that contains instances of patterns.

As an example, Figure 1 shows the structure of
the Abstract Factory design pattern [4] as a class
diagram. The pattern provides an object-oriented
interface (role AbstractFactory in the pattern) for
operations (Creates) that create families of related
objects (Abstracts) without specifying their concrete
classes (Products).

In addition to “good” (design) patterns, also
“bad” software patterns have been recognized. Such a
pattern, when applied in software development,
sooner or later leads into some kind of trouble. One
set of “bad” patterns has been documented under the
term AntiPattern: an AntiPattern is a literary form that

describes a commonly occurring solution to a problem
that generates decidedly negative consequences [6]. In
the following we will use the general term anti-
pattern for such "bad" patterns.

Anti-patterns may be technical, or more related
to general software processes and projects. When
detecting them in order to uncover potential quality
problems in a software architecture, just the technical
class of anti-patterns is applicable. Finding an instance
of an anti-pattern from an architecture typically means
that the architecture should be improved by
refactoring the suspicious instance into a more robust
form – e.g, into an instance of a design pattern.

As an example, Figure 2 depicts the anti-pattern
commonly known as Common Coupling between
software modules [7]. In concurrent systems the
pattern is known as “shared memory”, and in [6] as
the AntiPattern “Blob”. In this case the anti-pattern is
described by two UML diagrams, a deployment
diagram on the left and a sequence diagram on the
right. These diagrams emphasize different aspects of

the pattern and thus complement each other in
architectural analysis.

The deployment diagram for the pattern shows
that there are two processes, P1 and P2, accessing the
same memory node. What makes this solution an anti-
pattern is the fact that both processes have a friend
dependency to the memory. Now the processes can
freely access the shared information, violating the
disciplined principles of interfacing and information
hiding and making data corruption in the memory a
potential danger.

The sequence diagram, on the other hand, shows
that the processes access the shared memory by
message passing. The upper half of the diagram
specifies synchronous communication and potential
concurrency (indicated by two messages at the same
horizontal level). The lower half represents a sequence
of procedure calls (arrows with solid head) and
associated returns (dashed arrows), showing that the
calls and returns for the processes P1 and P2 are
interleaved and out of synchronism. Both these cases,

AbstractA

ClientAbstractFactory

CreateA():AbstractA
CreateB():AbstractB

ConcreteFactory1

CreateA():ProductA1
CreateB():ProductB1

ConcreteFactory2

CreateA():ProductA2
CreateB():ProductB2

ProductA2 ProductA1

AbstractB

ProductB2 ProductB1

Figure 1. Abstract Factory design pattern.

«create»

«create»

«memory»
M

«process»
P1

«process»
P2

Figure 2. Common Coupling anti-pattern.

«friend» «friend»

:P1 :M :P2

concurrent access and unbalanced interleaving, may
be indications of mutual exclusion and
synchronization problems in the system.

4. Pattern Mining in Maisa

Maisa (Metrics for Analysis and Improvement of
Software Architectures) is a currently ongoing
research project at the Department of Computer
Science, University of Helsinki. The project develops
methods and tools for automatically analyzing the
quality of a software architecture and for predicting
some central properties of the system founded upon
the architecture. The project is financed by the
Finnish National Technology Agency (Tekes), Kone,
Nokia Mobile Phones, Nokia Research Center, and
Space Systems Finland.

In Maisa, architecture analysis and quality
prediction is based on the discovery of patterns from
the description of the architecture, given as UML
diagrams. There are two basic classes of patterns
subject to architectural mining: “good” design patterns
and “bad” anti-patterns. Instances of design patterns
usually show robustness and discipline in design,
whereas instances of anti-patterns might indicate poor
solutions and lead to quality problems in the long run.

In our project pattern mining is considered as a
constraint satisfaction problem (CSP). CSP has its
roots in artificial intelligence where a large number of
central problems can be formulated as a set of
predicates (constraints) over variables in a particular
domain [8]. Constraint satisfaction algorithms have
been applied, for instance, in machine vision,
scheduling, and program understanding.

More precisely, a CSP consists of a set V of
variables, a finite and discrete domain Di for each
variable i ∈ V, and a set of constraints P (unary
constraints Pi for single variables i, and binary
constraints Pij for pairs of variables i, j). The goal is to
find an assignment S to the variables such that it
satisfies all the constraints:

S = {i := x | p1 ∧ p2 ∧ … ∧ pn ∧ p1j ∧ p2j ∧ … ∧ pmj
∀ pk ∈ Pi ∀ pkj ∈ Pij ∀ i, j ∈ V, x ∈ Di}.

A number of constraint satisfaction algorithms have
been developed [9]. In Maisa, we apply the arc
consistency algorithm AC-3 [8], where a CSP is
represented as a graph in which the nodes stand for
variables V with their domains D and the arcs stand
for constraints P. The algorithm iteratively deletes
from the node-domains such values that cannot satisfy

the connected arc-constraints, until a solution (if any)
is found. Since we want to find all potential pattern
instances and have them verified by the user, our AC-
3 implementation is exhaustive and interactive.

The pattern mining algorithm needs a software
architecture and a set of subject patterns as input. The
patterns and their metrics prediction attributes reside
in a library and the user may choose which patterns
she is interested in. Then the system searches for
instances of the selected patterns in the architecture
description and provides each match as a potential
candidate to the user.

Since the constraints of a CSP can be
conveniently expressed in first-order predicate logic,
we have chosen (extended) Prolog as the structural
coding of software architectures and architectural
patterns. A similar solution has been applied when
developing a tool that automatically recognizes design
patterns in object-oriented (Java) programs [10]. Note
that while Prolog is used for the representation of
architectures and patterns, the actual implementation
language of Maisa is Java.

The main components of an architecture / pattern
and their relationships are expressed as Prolog facts.
For example, the Abstract Factory pattern described
in Figure 1 can be represented as follows:

class(“AbstractA”).
abstract(“AbstractA”).
class(“AbstractFactory”).
abstract("AbstractFactory”).
class(“ProductA2”).
class(“ConcreteFactory2”).
inherits(“ProductA2”,”AbstractA”).
inherits(“ConcreteFactory2”,”AbstractFactory”).
has(“AbstractFactory”,”CreateA()”).
abstract(“AbstractFactory.CreateA()”).
returns(“AbstractFactory.CreateA()”, “AbstractA”).
creates(“ConcreteFactory2.CreateA()”,

“ProductA2”).
returns(“ConcreteFactory2.CreateA()”,

“ProductA2”).
not same(“AbstractFactory”,”AbstractA”).

This description captures the relevant class hierarchies
for product factories (with AbstractFactory as root)
and for products (with AbstractA, AbstractB as roots).
It also specifies that the final products shall be created
by the concrete CreateA/CreateB methods. The last
fact states that the class hierarchies for factories and
products shall be distinct, so as to guarantee the
central aspects of extensibility and reconfigurability of
the pattern. The description could be extended, e.g.,

by stating that the CreateA/CreateB methods shall
follow the Factory Method design pattern [4], as is
done in [10].

As noted above, the AC-3 algorithm iteratively
traverses the CSP as a graph. In this case the variables
residing at the nodes of the graph stand for the classes
and methods (e.g., AbstractFactory, CreateA) of the
pattern and the arcs stand for the different kinds of
relations between them (e.g., generalization: inherits
and dependency: creates). The functor names used in
the Prolog representation (e.g., class, inherits,
creates) are taken from the standard UML meta
model.

The worst-case complexity of the constraint
satisfaction algorithm AC-3 is O(ed3) where e is the
number of arcs in the constraint graph, and d is the
domain size for the variables [9]. According to the
tests reported in [10], the algorithm seems to be fast
enough in practice: finding all the potential instances
of the standard design patterns [4] from medium-size
Java programs took just a few minutes. On the other
hand, exhaustively mining a 100 KLOC program with
667 pattern matches took almost 20 hours.

In addition to [10], techniques for automatically
discovering design patterns have been published, e.g.,
in [11, 12]. A general observation is that design
patterns with an explicit structural form (such as
Abstract Factory) can be recognized quite precisely,
whereas patterns with loose structure and strong
semantics (such as Interpreter [4]) are no subject for
automatic search.

5. Software Metrics in Maisa

There exists a variety of software metrics that
characterize properties of a software system [13] or an
object-oriented design [14]. Most of these are
implementation-level metrics that are computed from
program code, and therefore appear usually too late in
software development to be really useful. On the other
hand, these estimates are quite accurate since they are
generated from a precise description of the system.

The intended scope of the metric tool Maisa is
the design phase of a system. The metrics supported
by Maisa can be roughly divided into two categories
[15]: (1) measures over the system architecture and
(2) estimates over the final system. The architectural
measures mostly address size or complexity in the
style of traditional software metrics, examples being
number of classes, number of messages, and depth of
inheritance hierarchy. Notice that these measures are
accurate and can be given as exact numbers.

The estimates, on the other hand, aim at
predicting the quality of the actual system based on
the analyzed design. The prediction is founded on the
pattern mining approach described in the previous
section. In the Maisa project, size, performance, and
complexity (understandability) have been selected as
the quality attributes to be foremost supported.

As was motivated when discussing the Common
Coupling anti-pattern in Section 3, the patterns to be
searched by Maisa can be specified in terms of several
diagram types of UML. Usually both software
architectures and patterns are specified for Maisa as
class diagrams, activity diagrams, or sequence
diagrams (or as a combination of these).

One problem to be studied is the mutual effect
interacting, overlapping, and even conflicting patterns
may have on the measures or predictions. For
instance, what should be concluded if there is a
significant overlap between a "good" design pattern
instance and a "bad" anti-pattern instance in the
architecture?

The main components of Maisa are a UML editor
("front-end"), a pattern library, a pattern miner, a
metric analyzer, and a reporting tool. As mentioned in
Section 4, Prolog is used as the internal representation
format of architectures and patterns. Prolog is also
used as the intermediate format between the external
front-end and the actual Maisa tool set. In principle,
any UML editor capable of exporting the diagrams in
Prolog format can be used as the front-end; in the
project we have selected a commercial customizable
CASE tool as the default editor.

6. Case Study: Nokia's DX200
Switching System

Call control is one of the central functions of a
telephone exchange. Call control functionality can be
divided into different abstraction layers: The highest
layer manages both a generic call between two
subscribers, generally known as A- and B-subscribers,
as well as all activities, like charging, that belong to
generic calls. A layer below call control takes care of
setting up the calls and tearing them apart. This is
called the signaling layer.

A problem of call control and signaling in
existing telecommunications networks is the great
variety of different standards and conventions.
Networks are usually connected together to form large
interoperable telecom networks. Eventually all the
public telecom networks of the world are connected.
The users of these networks must be able to make

calls to all other users in other networks. This creates
the typical problem of designing an abstract virtual
system capable of dynamically supporting many
different implementations.

Inside the telephone switches that form the core
logic platform of the network, Nokia has implemented
a generic model to support different call types through
the network. The model is rich enough to support all
native call types in different customer areas. There
are abstract definitions with the required interfaces
and functionality for all components needed to
connect calls in this abstract layer. When a call is
constructed (call-setup) these components must be
instantiated and bound to actual implementations of
signaling protocols and call management. In the
object-oriented design paradigm this problem is
known as a "virtual constructor".

To achieve correct instantiation of the
components, the conditions that control the selection
of correct implementations must be known. Of course
this knowledge could be coded into the client that
actually constructs the objects but conceptually that
seems not to be the right place for such information.
The abstract call components model the general
functionality of call control in the network, not the
relations and compatibilities between some signaling
and call control protocols. The solution has shown to
be robust, even though originally nobody knew that it
actually is quite a common "pattern".

When the initial architecture of Nokia's DX200
telecom switches was carved, object-oriented design
was not common activity, let alone rigorous usage of
design patterns. Still the designs that were landed on
some 15 years ago seem to hold well even in today's
fast changing environment of telecom and data
networks.

The basic idiom for DX200 is a communicating
finite state machine, a paradigm that is directly
supported by the definition and programming
language SDL. In fact most important parts of the
system have been implemented in an executable
dialect of SDL. The basic implementation entity is a
process family that can be mapped to several object-
oriented design patterns. The process family models a
service that can contain many types of subservices or
functionalities. The master process receives service
requests from the clients and depending on the type of
the request activates a hand process of suitable type to
handle the request and to take care of any further
communication with the client.

Start()
HangUp()

A-Subscriber
B-Subscriber

Call

DialNumber()
Answer()

Terminate()

Status

Signaling

CreateSignaling()
CreateSubscriber()

CallPartsFactory

CreateSignaling()
CreateSubscriber()

TerminalPartsFactory

CreateSignaling()
CreateSubscriber()

TrunkPartsFactory

SS7-ISUP

Status

TrunkSignaling

ISDN-BRI Q.931

Status

TerminalSignaling

Data
Signaling

Subscriber

Data
TerminalSignaling

LocalSubscriber

Data
TrunkSignaling

ExternSubscriber

Start()
Stop()

Phase1()
Phase2()

Charging

<<uses>>

<<create>>

<<create>>

Figure 3. Call-control software architecture.

The usage of process families can be presented as a
class diagram shown in Figure 3. When translated into
Prolog format, the following facts are obtained. Here
we omit most of the facts that are irrelevant for our
case:

class(“Signaling”).
abstract(“Signaling”).
class(“CallPartsFactory”).
abstract("CallPartsFactory”).
class(“TrunkSignaling”).
class(“TerminalSignaling”).
class(“TerminalPartsFactory”).
class(“TrunkPartsFactory”).
inherits(“TrunkSignaling”,”Signaling”).
inherits(“TerminalSignaling”,”Signaling”).
inherits(“TerminalPartsFactory”,

”CallPartsFactory”).
inherits(“TrunkPartsFactory”,

”CallPartsFactory”).
has(“CallPartsFactory”,”CreateSignaling()”).
has(“CallPartsFactory”,”CreateSubscriber()”).
abstract(“CallPartsFactory.

CreateSignaling()”).
abstract(“CallPartsFactory.CreateSubscriber()”).
returns(“CallPartsFactory.CreateSignaling()”,

“Signaling”).
returns(“CallPartsFactory.CreateSubscriber()”,

“Subscriber”).
creates(“TrunkPartsFactory.

CreateSignaling()”,“TrunkSignaling”).
returns(“TrunkPartsFactory.

CreateSignaling()”,“TrunkSignaling”).
not same(“CallPartsFactory”,”Signaling”).
class("Call"). …
class("Subscriber").
uses(“Call”,”Subscriber”). …
class("LocalSubscriber"). …

class("ExternSubscriber"). …
class("Charging"). …

By mapping this architecture description with pattern
descriptions such as those given in Section 4, our
pattern mining tool Maisa can isolate architectural
patterns in the diagram. With the tool we can extract,
for example, the Abstract Factory design pattern in
action. Actually we find two instances of the basic
pattern: one with the abstract call component (Call in
Figure 3) as client and the other with the subscriber
component (Subscriber) as client. Both instances
share the same factory components.

Which call control and signaling components
should be instantiated depends on the topology of the
network, the physical connections of the A- and B-
subscribers of the call, and possibly some national or
operator specific variations and special rules. All this
decision logic is abstracted into the factory
components.

The CSP algorithm returns, among others, the
following bindings that span one of the Abstract
Factory instances. The facts applied for generating
these bindings are emphasized in the list above.

AbstractFactory := CallPartsFactory
AbstractA := Signaling
ProductA2 := TrunkSignaling
ConcreteFactory2 := TrunkPartsFactory
CreateA := CreateSignaling

The found pattern instances can be used to analyze the
architecture and to predict future evolution of the
system, based on the information stored in Maisa's
pattern library. For instance, in this Abstract Factory
case one could conclude that the exchange of process
families is easy and consistency among signaling and
subscribing elements is promoted, but supporting
completely new kinds of product elements is difficult
[4]. Also quantitative prediction can be made, for
instance by reporting that one instance of this
particular pattern typically creates 100 lines of code
into the corresponding software.

The detection of such patterns from legacy
systems with Maisa requires representing the design in
a standard notation (SDL in this example case) and
coding it into Prolog format. The construction of such
an architectural representation is usually too laborious
to be done manually, but fortunately the construction
can be automated with reverse-engineering tools [16].

Such a reverse-engineering tool for the recovery
of architectural information from software code is
currently under development in another research

project, Saara (Software Architecture Analysis,
Recovery and Assessment). Architectural quality of
legacy systems, such as DX200, can then be measured
by first extracting their architecture by Saara and then
analyzing the architecture and its patterns by Maisa.

As previously noted, not all the design patterns
are absolutely "good". Especially old legacy systems
contain examples of design patterns that have evolved
into anti-patterns. These are design patterns that are
systematically used but that have lost their original
justification in architectural decay.

An example of such a pattern in a distributed
system such as DX200 is the usage of shared memory
to communicate between processes (see the pattern in
Figure 2). Typically this is used in the first place to
circumvent any inefficiency in the message passing
mechanism inside one physical computer node. In the
long run the pattern fires back as it makes it
impossible to allocate tightly-coupled processes with
shared memory into different physical computers.
Thus the pattern that was approved to improve
performance can eventually prohibit the scalability of
the system into new levels of performance.

Notice that while this particular case is based on
the analysis of an existing legacy system (which also
is important for future development and maintenance),
the intended application area of Maisa is architectural
analysis at the design phase of the system. Using
Maisa during design makes it possible to localize
design problems before implementing them in the
code. For instance, the potential problem of using
shared memory could have been noticed already at the
design phase when analyzing its architecture with
Maisa.

7. Conclusions

Architectural pattern mining offers a practical way to
evaluate the quality of a software system already at
the design phase, by tracking down and analyzing
patterns that have been introduced into the
architecture of the system. This makes it possible both
to validate the quality of the design in terms of design
patterns and to recognize potential problems as anti-
patterns. In the latter case the analysis can direct
rearchitecting and evolution of system design.

We have presented an approach to architectural
pattern mining. In our method the subject architecture
and the relevant patterns are described as UML
diagrams which are translated into Prolog format. This
intermediate format has been chosen because it makes
it possible to treat pattern mining as a constraint

satisfaction problem.
The method is being developed in the Maisa

project whose main objective is to predict the
system’s quality attributes such as size, performance,
and complexity on the basis of patterns that are found
in the software architecture. Experiences with a
related reverse-engineering tool that discovers design
patterns from program code demonstrate the potential
practicality of the approach: precisely described
patterns can be automatically found from a software
architecture reasonably fast and with a small fraction
of misses or false positives [10].

What is unique in our approach is the
combination of pattern discovery and software metrics
for evaluating a software architecture, and the use of
the generated information in predicting the quality of
the system under development. In general, automated
quality assurance of software architectures is a rather
unexplored area. Another novel technique in Maisa is
the recognition of anti-patterns and the estimation of
their effects on software quality.

Pattern discovery is not completely precise.
Since a pattern is always expressed in an abstract
generic form, it also involves some degree of
inaccuracy. In Maisa we try to avoid this problem by
automating the discovery of those patterns only whose
structure is precise enough, and by letting the user
verify the candidates. Moreover, patterns are not the
only source for metrics computation but we also apply
conventional software metrics induced over the
complete architecture. Notice that since the patterns
and the subject architecture are expressed at the same
conceptual level (as UML diagrams), the well-known
problems of conceptual mismatch in design recovery
from software code can be avoided.

The Maisa tool is currently under development.
In addition to architectural pattern mining, research
effort is concentrated on developing a UML-based
diagrammatic formalism for describing and analyzing
real-time and performance aspects of a software
system [17]. Note that standard UML falls short in this
respect, so something more expressive is needed (see,
e.g., [18, 19]).

REFERENCES

1. L. Bass, P. Clements, R. Kazman: Software
Architecture in Practice. Addison-Wesley, 1998.

2. P.B. Kruchten: The 4+1 View Model of
Architecture. IEEE Software 12, 6, 1995, 42-50.

3. J. Rumbaugh, I. Jacobson, G. Booch: The Unified
Modeling Language Reference Manual. Addison-

Wesley, 1998.
4. E. Gamma, R. Helm, R. Johnson, J. Vlissides:

Design Patterns – Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

5. F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal: Pattern-Oriented Software
Architecture – A System of Patterns. John Wiley
& Sons, 1996.

6. W.J. Brown, R.C. Malveau, H.W. McCormick III,
T.J. Mowbray: AntiPatterns – Refactoring
Software, Architectures, and Projects in Crisis.
John Wiley & Sons, 1998.

7. R.S. Pressman: Software Engineering – A
Practitioner’s Approach. McGraw-Hill, 1997.

8. A.K. Mackworth: Consistency in Networks of
Relations. Artificial Intelligence 8, 1, 1977, 99-
118.

9. V. Kumar: Algorithms for Constraint-Satisfaction
Problems: A Survey. AI Magazine 13, 1, 1992, 32-
44.

10. P. Misikangas: Recognizing Design Patterns from
Object-Oriented Programs (in Finnish). Report C-
1998-1, Department of Computer Science,
University of Helsinki, 1998.

11. C. Krämer, L. Prechelt: Design Recovery by
Automated Search for Structural Design Patterns
in Object-Oriented Software. In: Proc. Working
Conference on Reverse Engineering, Monterey,
1996. IEEE CS Press, 1996, 208-215.

12. G. Antoniol, R. Fiutem, L. Cristoforetti: Using
Metrics to Identify Design Patterns in Object-
Oriented Software. In: Proc. 5th Int. Software
Metrics Symposium, Bethesda, ML, 1998. IEEE
CS Press, 1998, 23-34.

13. N. Fenton: Software Metrics: A Rigorous
Approach. Chapman-Hall, 1991.

14. S.R. Chidamber, C.F. Kemerer: A Metrics Suite
for Object-Oriented Design. IEEE Transactions
on Software Engineering 20, 6, 1994, 476-493.

15. L. Nenonen, J. Gustafsson, J. Paakki, A.I.
Verkamo: Measuring Object-Oriented Software
Architectures from UML Diagrams. Submitted for
publication.

16. The FAMOOS project:
http://www.iam.unibe.ch/~famoos.

17. J. Gustafsson, L. Nenonen, J. Paakki, A.I.
Verkamo: Performance Modeling in UML.
Submitted for publication.

18. C. Smith: Performance Engineering of Software
Systems. Addison-Wesley, 1990.

19. B.P. Douglass: Real-Time UML: Developing
Efficient Objects for Embedded Systems. Addison-
Wesley, 1998.

	Abstract
	Keywords
	REFERENCES

