
UML Exercise Session 5 (Comp)

Handed out: April 21 (Wed)

Hints for solution: Exercise class on April 23 (Fr)

Hand in: April 28 (Wed), by email to doris.entner@helsinki.fi. Please
submit your report as a single PDF containing figures, relevant program
output and discussion. Submit the source code as separate files.

Solving the exercises below gives you points, which will, at the end,
determine your grade for the computer project. Each exercise in all the
assignments gives you an equal amount of points. These are the last
exercises!

Ex. 1 — K-means and vector quantization

1. Implement the K-means algorithm and test it on some simple
two-dimensional data like in Fig. 10.1 in the lecture hand-out.
Make plots which show the clustering of the data as in Figs 10.2 to
10.4. Also make plots which show the value of the log10 of the
objective function in Eq 10.3 at each iteration. Note:

1. Initialize the means randomly within the range of your data.

2. Your algorithm should stop when the change in the objective is
smaller than some threshold.

3. Your algorithm should work for data of any dimension with any
number of clusters.

4. The algorithm should return the means of the clusters wc, and,
for each data point, indicate to which cluster it belongs
(variable i(t) in Eq 10.3). Also, it should return the objective
function in Eq 10.3.

(30 %)

2. Load the image.txt and cut it into pieces of size d × d pixels as in
session 3, ex 2. Run your k-means on it with d = 2 and d = 5 and
for each with k = 5 and k = 100 clusters. Visualize the cluster
means as d× d images. Also, plot the objective function and make a
histogram which shows how often each cluster is used (make a
histogram of i(t)). Note:

1. Visualize the cluster means on the same scale so that you can
see the differences in the gray level between the different means.

2. K-means might get stuck in local minima, so you might have to
run the algorithm from several starting points.

(30 %)

3. Replace each patch with the corresponding mean, and glue the
patches together as in session3, ex2. Show us this image. This kind
of image compression is called vector quantization. (30 %)
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4. The pixels in the original image were encoded in 8 = log2(256) bits,
so that 256 different gray levels were used. How many bits are thus
needed to encode the whole image like that? How many bits do you
need to encode the image after vector quantization if the block size
is d× d and you use K different means? Calculate the ratio between
the number of bits needed for the original image and the vector
quantizised image for the values of d and k above.(10 %)

Ex. 2 — Clustering for binary data
We implement here a clustering algorithm for binary data. The algorithm
“Bernoulli-EM” is summarized at the very end of math exercise 2.

1. Generate T = 10000 samples from a mixture of C = 2 multivariate
Bernoulli distributions with the parameters

mu1 =

0.3542

0.3328

0.2199

0.8008

0.7973

mu2 =

0.5073

0.6762

0.7672

0.2749

0.8812

and π1 = 0.3, π2 = 0.7. Sampling from this kind of mixture is done
in similar way as sampling from a Gaussian mixture (p. 111, lecture
hand-out): First decide from which cluster c ∈ 1 . . . C you sample,
then sample from the multivariate Bernoulli distribution describing
that cluster. A multivariate Bernoulli distribution for the binary
random vector x = (x1 . . . xn)T with mean µc = (µc1 . . . µcn)T is
defined as

p(x;µc) =

n∏

i=1

p(xi;µci) (1)

=

n∏

i=1

µxi

ci
(1 − µci)

1−xi . (2)

The binary xi are thus independent form each other, being
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distributed according to p(xi;µci) = µxi

ci
(1 − µci)

1−xi . Sampling x

can thus be done by sampling each xi independently. Hint: The
probability that xi = 1 is µci.
Check your sampling process by calculation of the sample mean of
your data and comparison with the theoretical mean

E(x) =
C∑

c=1

πcµc. (3)

(20 %)

2. Implement the algorithm “Bernoulli-EM”. It should return an
estimate for the πc and µc, c = 1 . . . C. Apply it to the data. Does
the algorithm find the correct values for πc and µc? Hint: We
initialized the πc all with 1/C (0.5 here) and the µci uniformly in
[0.25 0.75]. (40 %)

3. Load the file binDigits.txt and extract all the samples showing
the digits 0 and 1 (the first 200 data points). Run your algorithm
on that data for C = 2 and C = 4. Visualize the cluster means µc

as an 28px × 28px image and for each µc, indicate on the plot the
cluster probability πc. Comment on your results! Show us at least
two different runs of the algorithm since the point of convergence of
the algorithm depends on the initialization. (20 %)

4. Run the algorithm on the whole data with C = 10. Show us the
estimates as before. (10 %)

5. Run the algorithm on the digits of your choice with the number of
clusters of your choice. Show us the estimates as before. (10 %)

Ex. 3 — MDS and Kernel PCA

1. Load the two dimensional data data_ex3.txt and make a scatter
plot. Check that the variables are zero mean.(5 %)

2. Perform MDS on the data by calculation of the eigenvectors of
XT X where X = (x1 . . .xN ) and xi is two dimensional and
N = 1000. The first eigenvector contains projections of all the data
points. Visualize this projection by coloring each data point by the
value of its projection. (Make a color plot as Fig.11.2) How well
does the projection encode the structure of the data? (30 %)

3. Perform MDS on the data via PCA and visualize the projection in
the same way as above. Why is it the same? (20 %)

4. Perform Kernel PCA on the data, and visualize it in the same way
as above. Define the projection by using the eigenvector with the
eigenvalue which has the largest absolute value. For us, σ2 = 1 in
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Eq. 11.8 worked fine. How does this projection encode the data?
What are the differences to the previous cases? (45 %)


