
UML Exercise Session 5 (Math)

Handed out: April 21 (Wed)

Hints for solution: Exercise class on April 23 (Fr)

Hand in: April 28 (Wed), the latest, @ Room A348

This assignment gives you maximally 5% worth of extra points for the
computer assignments and the final exam. Note: Not all exercises have
equal weight. This is the last assignment!

Ex. 1 — More on the general form of EM for Mixture of Gaussians
(gives 1 %)
In the lecture hand-out, we needed to calculate the integral in Eq. 10.20
for the E-step of the EM algorithm. This form is the general case where
the data might not be iid. Here, we derive an expression for the simpler
case of iid data.

1. With the notation of Eq. 10.20, assume that

p(X,S; θ) =
∏

t

p(xt|st; θ)p(st; θ) (1)

where the T observations are X = (x1 . . .xT ) and the latent
variables are S = (s1 . . . sT ). This is the iid assumption. Show that
p(X; θ) =

∏
t p(xt; θ).

2. Show that Eq. 10.20 becomes

J(θ) =

T∑
t=1

Et log p(xt, st; θ) (2)

where the expectation Et is taken with respect to the posterior
p(st|xt; θk−1). For continuous data J is thus

J(θ) =
T∑

t=1

∫
log p(xt, st; θ)p(st|xt; θk−1)dst (3)

while for discrete data it is

J(θ) =

T∑
t=1

∑
st

log p(xt, st; θ)p(st|xt; θk−1). (4)

3. In the lecture hand-out the posterior p(st|xt; θk−1) is given by q∗t,c
with st ≡ r(t). Rederive it from the definition of p(x(t), r(t)) in Eq.
10.9.
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Ex. 2 — Clustering for binary data (gives 1% for question 1-3 and 3%
for 4 to 9)
Assume that the binary random vector u ∈ {0, 1}n has the distribution

p(u;µ) =

n∏
i=1

p(ui;µi) (5)

with µ = (µ1 . . . µn), where

p(ui;µi) = µ
ui

i (1 − µi)
1−ui . (6)

That is, the elements ui of the random vector u = (u1, . . . un) are all
independent from each other.

1. Calculate the mean and variance of ui.

2. Calculate the mean and covariance matrix of u.

3. A binary random vector x = (x1, . . . xn) is said to follow a mixture
of multivariate Bernoulli distributions if its distribution q(x) is

q(x;µc, πc, c = 1 . . . C) =

C∑
c=1

πcp(x;µc). (7)

where
∑C

c=1
πc = 1. Show that the mean is

Ex =
C∑

c=1

πcµc (8)

and calculate the covariance matrix of x. Are the xi still
uncorrelated?

4. Assume now that you are given a sample (x(1), . . . x(T )) of size T of
the random vector x. What is the log-likelihood for the sample?
(Give an expression similar to Eq. 10.13 in case of Gaussian
mixtures).

5. We consider now the distribution q(x) in Eq. (7) to be the marginal
of the joint distribution q(x, r) where r ∈ {1, . . . , C} is a hidden
variable which denotes a cluster. The joint distribution q(x, r) is

q(x, r) = p(x;µr)πr, (9)

and the conditional distribution q(x|r) is p(x;µr), defined in Eq.
(5). What is the log-likelihood ℓ(µc, πc) assuming that for each data
point x(t) we also observe the class membership r(t)?

6. Calculate the posterior probability that a sample x(t) belongs to
cluster c, i.e. calculate q(r(t) = c|x(t)). Show that it equals

q(r(t) = c|x(t)) =
πcp(x(t);µc)∑C

k=1
πkp(x(t);µk)

, (10)
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with

p(x;µc) =
n∏

i=1

p(xi;µci) (11)

=

n∏
i=1

µ
xi

ci (1 − µci)
1−xi (12)

from Eq. (5) and (6). (We derive here a formula that corresponds
to Eq. 10.14 in case of a gaussian mixture.)

7. What is the expected log-likelihood J(µc, πc) = E(ℓ(µc, πc)), as
calculated in Equation (4) of the exercise 1. That is, for each
sample t we replace log q(x(t), r(t)) by its expected value where the
expectation is taken with respect to the posterior q(r(t) = c|x(t))?
(This corresponds to Eq. 10.21 for the case mixture of Gaussians)

8. Calculate the derivative of J(µc, πc) with respect to µc, considering
the posteriors q(r(t) = c|x(t)) to be fixed. Show that setting the
derivative to zero gives

µc = x̄c (13)

where

x̄c =

∑T
t=1

q(r(t) = c|x(t))x(t)∑T
t=1

q(r(t) = c|x(t))
. (14)

9. Calculate the derivative of J(µc, πc) with respect to πc under the
contraint that

∑
c πc = 1, i.e. that πc gives a proper probability

distribution. The technique to include the constraint is to formulate
the Lagrangian J̃ ,

J̃(πc, λ) = J + λ(1 −

C∑
c=1

πc). (15)

Calculate then the derivatives with respect to πc and λ. Show that
setting this gradient to zero gives

πc =

∑T
t=1

q(r(t) = c|x(t))

T
, (16)

This is the final step in the EM algorithm. Hurra! Putting all
together, the algorithm is follows (see next page):
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Bernoulli-EM:
First initialize the parameters µc and πc. Then

1. Calculate the posteriors q(r = c|x) in Eq. (10) with the current
set of parameters. (E-step)

2. Update the parameters µc and πc according the formula in Eq
(13) and (16). (M-step)

till either the parameters don’t change any more, or the objective J

does not increase any more.


