MATLAB ® / R Reference November 24, 2009

David Hiebeler Dept. of Mathematics and Statistics University of Maine Orono, ME 04469-5752 http://www.math.umaine.edu/~hiebeler

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching my course "MAT400, Modeling & Simulation" at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in a computer lab where students work through modeling & simulation exercises. When I taught earlier versions of the course, it was based on MATLAB only. In Spring 2007, some biology graduate students in the class who had learned R in statistics courses asked if they could use R in my class as well, and I said yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went, every time I learned how to do something in R for the course, I added it to this reference, so that I wouldn't forget it later. Some items took a huge amount of time searching for a simple way to do what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do in MATLAB had an equivalent in R. I was also inspired to do this after seeing the "R for Octave Users" reference written by Robin Hankin. I've continued to add to the document, with many additions based on topics that came up while teaching courses on Advanced Linear Algebra and Numerical Analysis.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful will be appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language; I often tried to do things in a similar way in both languages. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors; and Thomas Clerc, Richard Cotton, Stephen Eglen, Andreas Handel, David Khabie-Zeitoune, Michael Kiparsky, Andy Moody, Lee Pang, Manas A. Pathak, Rune Schjellerup Philosof, and Corey Yanofsky for contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Copyright ©2007–2009 David Hiebeler

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Contents

1	Help	3
2	Entering/building/indexing matrices 2.1 Cell arrays and lists 2.2 Structs and data frames	3 6 6
3	Computations 3.1 Basic computations 3.2 Complex numbers 3.3 Matrix/vector computations 3.4 Root-finding 3.5 Function optimization/minimization 3.6 Numerical integration / quadrature 3.7 Curve fitting	6 7 8 14 14 15 16
4	Conditionals, control structure, loops	17
5	Functions, ODEs	21
6	Probability and random values	23
7	Graphics 7.1 Various types of plotting	27 27 35 36
8	Working with files	37
9	Miscellaneous 9.1 Variables 9.2 Strings and Misc.	38 38 39
10	Spatial Modeling	42
In	dex of MATLAB commands and concepts	43
In	dex of R commands and concepts	48

1 Help

No.	Description	Matlab	R
1	Show help for a function (e.g.	help sqrt, or helpwin sqrt to see	help(sqrt) or ?sqrt
	$\mathbf{sqrt})$	it in a separate window	
2	Show help for a built-in key-	help for	help('for') or ?'for'
	word (e.g. for)		
3	General list of many help top-	help	library() to see available libraries,
	ics		or library(help='base') for very
			long list of stuff in base package which
			you can see help for
4	Explore main documentation	doc or helpbrowser (previously it	help.start()
	in browser	was helpdesk, which is now being	
		phased out)	
5	Search documentation for	lookfor binomial	help.search('binomial')
	keyword or partial keyword		
	(e.g. functions which refer to		
	"binomial")		

2 Entering/building/indexing matrices

No.	Description	Matlab	R
6	Enter a row vector $\vec{v} =$	v=[1 2 3 4]	v=c(1,2,3,4) or alternatively
	$\left[\begin{array}{rrrrr}1 & 2 & 3 & 4\end{array}\right]$		v=scan() then enter "1 2 3 4" and
			press Enter twice (the blank line
	[1]		terminates input)
7	Enter a column vector $\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}$	[1; 2; 3; 4]	c(1,2,3,4)
			(R does not distinguish between row and column vectors.)
8	Enter a matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	[1 2 3 ; 4 5 6]	To enter values by row: matrix(c(1,2,3,4,5,6), nrow=2, byrow=TRUE) To enter values by column: matrix(c(1,4,2,5,3,6), nrow=2)
9	Access an element of vector ${\bf v}$	v(3)	v[3]
10	Access an element of matrix	A(2,3)	A[2,3]
	A		
11	Access an element of matrix	A(5)	A[5]
	A using a single index: in-		
	dices count down the first col-		
	umn, then down the second		
	column, etc.		
12	Build the vector $\begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix}$	2:7	2:7
13	Build the vector $[7\ 6\ 5\ 4\ 3\ 2]$	7:-1:2	7:2
14	Build the vector $\begin{bmatrix} 2 & 5 & 8 & 11 & 14 \end{bmatrix}$	2:3:14	seq(2,14,3)

No.	Description	Matlab	R
15	Build a vector containing n equally-spaced values be- tween a and b inclusive	linspace(a,b,n)	<pre>seq(a,b,length.out=n) or just seq(a,b,len=n)</pre>
16	Build a vector containing n logarithmically equally- spaced values between 10^a and 10^b inclusive	logspace(a,b,n)	10 ^{seq(a,b,len=n)}
17	Build a vector of length k containing all zeros	<pre>zeros(k,1) (for a column vector) or zeros(1,k) (for a row vector)</pre>	rep(0,k)
18	Build a vector of length k containing the value j in all positions	<pre>j*ones(k,1) (for a column vector) or j*ones(1,k) (for a row vector)</pre>	rep(j,k)
19	Build an $m \times n$ matrix of zeros	zeros(m,n)	<pre>matrix(0,nrow=m,ncol=n) or just matrix(0,m,n)</pre>
20	Build an $m \times n$ matrix con- taining j in all positions	j*ones(m,n)	<pre>matrix(j,nrow=m,ncol=n) or just matrix(j,m,n)</pre>
21	$n \times n$ identity matrix I_n	eye(n)	diag(n)
22	Build diagonal matrix A us- ing elements of vector \mathbf{v} as di- agonal entries	diag(v)	<pre>diag(v,nrow=length(v)) (Note: if you are sure the length of vector v is 2 or more, you can simply say diag(v).)</pre>
23	Extract diagonal elements of matrix A	v=diag(A)	v=diag(A)
24	"Glue" two matrices a1 and a2 (with the same number of rows) side-by-side	[a1 a2]	cbind(a1,a2)
25	"Stack" two matrices a1 and a2 (with the same number of columns) on top of each other	[a1; a2]	rbind(a1,a2)
26	Reverse the order of elements in vector \mathbf{v}	v(end:-1:1)	rev(v)
27	Column 2 of matrix \mathbf{A}	A(:,2)	A[,2] Note: that gives the result as a vector. To make the result a $m \times 1$ matrix instead, do A[,2,drop=FALSE]
28	Row 7 of matrix \mathbf{A}	A(7,:)	A[7,] Note: that gives the result as a vector. To make the result a $1 \times n$ matrix instead, do A[7,,drop=FALSE]
29	All elements of A as a vector, column-by-column	A(:) (gives a column vector)	c(A)
30	Rows 2–4, columns 6–10 of \mathbf{A} (this is a 3×5 matrix)	A(2:4,6:10)	A[2:4,6:10]
31	A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)	A([7 7 6], [2 1])	A[c(7,7,6),c(2,1)]

No.	Description	Matlab	R
32	Given a single index ind into an $m \times n$ matrix A , compute the row r and column c of that position (also works if ind is a vector)	<pre>[r,c] = ind2sub(size(A), ind)</pre>	r = ((ind-1) %% m) + 1 c = floor((ind-1) / m) + 1
33	Given the row \mathbf{r} and column \mathbf{c} of an element of an $m \times n$ matrix \mathbf{A} , compute the single index ind which can be used to access that element of \mathbf{A} (also works if \mathbf{r} and \mathbf{c} are vectors)	<pre>ind = sub2ind(size(A), r, c)</pre>	ind = (c-1)*m + r
34	Given equal-sized vectors \mathbf{r} and \mathbf{c} (each of length k), set elements in rows (given by \mathbf{r}) and columns (given by \mathbf{c}) of matrix \mathbf{A} equal to 12. That is, k elements of A will be modified.	<pre>inds = sub2ind(size(A),r,c); A(inds) = 12;</pre>	inds = cbind(r,c) A[inds] = 12
35	Truncate vector \mathbf{v} , keeping only the first 10 elements	v = v(1:10)	v = v[1:10], or length(v) = 10 also works
36	Extract elements of vector \mathbf{v} from position \mathbf{a} to the end	v(a:end)	v[a:length(v)]
37	All but the k^{th} element of vector v	v([1:(k-1) (k+1):end])	v[-k]
38	All but the j^{th} and k^{th} elements of vector \mathbf{v}	No simple way? Generalize the pre- vious item	v[c(-j,-k)]
39	Reshape matrix A , making it an $m \times n$ matrix with ele- ments taken columnwise from the original A (which must have mn elements)	A = reshape(A,m,n)	$\dim(A) = c(m,n)$
40	Extract the lower-triangular portion of matrix A	L = tril(A)	L = A; L[upper.tri(L)]=0
41	Extract the upper-triangular portion of matrix A	U = triu(A)	U = A; U[lower.tri(U)]=0
42	Enter $n \times n$ Hilbert matrix H where $H_{ij} = 1/(i+j-1)$	hilb(n)	Hilbert(n), but this is part of the Matrix package which you'll need to install (see item 316 for how to install/load packages).
43	Enter an <i>n</i> -dimensional array, e.g. a $3 \times 4 \times 2$ array with the values 1 through 24	reshape(1:24, 3, 4, 2) or reshape(1:24, [3 4 2])	array(1:24, c(3,4,2)) (Note that a matrix is 2-D, i.e. rows and columns, while an array is more gen- erally <i>N</i> -D)

2.1 Cell arrays and lists

No.	Description	Matlab	R
44	Build a vector \mathbf{v} of length \mathbf{n} , capable of containing differ- ent data types in different el- ements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R)	v = cell(1,n) In general, cell(m,n) makes an $m \times n$ cell array. Then you can do e.g.: v{1} = 12 v{2} = 'hi there' v{3} = rand(3)	<pre>v = vector('list',n) Then you can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>
45	Extract the i^{th} element of a cell/list vector \mathbf{v}	<pre>w = v{i} If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre>	<pre>w = v[[i]] If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the ith element of v.</pre>
46	Set the name of the i^{th} element in a list.	(MATLAB does not have names asso- ciated with elements of cell arrays.)	<pre>names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.</pre>

2.2 Structs and data frames

No.	Description	Matlab	R
47	Create a matrix-like object	<pre>avals=2*ones(1,6);</pre>	v=c(1,5,3,2,3,7); d=data.frame(
	with different named columns	yvals=6:-1:1; v=[1 5 3 2 3 7];	cbind(a=2, yy=6:1), v)
	(a <i>struct</i> in MATLAB, or a	d=struct('a',avals,	
	data frame in R)	'yy', yyvals, 'fac', v);	

Note that I (surprisingly) don't use R for statistics, and therefore have very little experience with data frames (and also very little with MATLAB structs). I will try to add more to this section later on.

3 Computations

3.1 Basic computations

No.	Description	Matlab	R
48	a+b, a-b, ab, a/b	a+b, a-b, a*b, a/b	a+b, a-b, a*b, a/b
49	\sqrt{a}	sqrt(a)	sqrt(a)
50	a^b	aîb	a^b
51	a (note: for complex ar-	abs(a)	abs(a)
	guments, this computes the		
	modulus)		
52	e^a	exp(a)	exp(a)
53	$\ln(a)$	log(a)	log(a)
54	$\log_2(a), \log_{10}(a)$	log2(a), log10(a)	log2(a), log10(a)
55	$\sin(a), \cos(a), \tan(a)$	sin(a), cos(a), tan(a)	<pre>sin(a), cos(a), tan(a)</pre>
56	$\sin^{-1}(a), \cos^{-1}(a), \tan^{-1}(a)$	asin(a), acos(a), atan(a)	asin(a), acos(a), atan(a)
57	$\sinh(a), \cosh(a), \tanh(a)$	<pre>sinh(a), cosh(a), tanh(a)</pre>	<pre>sinh(a), cosh(a), tanh(a)</pre>
58	$\sinh^{-1}(a), \qquad \cosh^{-1}(a),$	asinh(a), acosh(a), atanh(a)	asinh(a), acosh(a), atanh(a)
	$\tanh^{-1}(a)$		

No.	Description	Matlab	R
59	$n \mod k$ (modulo arithmetic)	mod(n,k)	n %% k
60	Round to nearest integer	round(x)	 round(x) (Note: R uses IEC 60559 standard, rounding 5 to the even digit — so e.g. round(0.5) gives 0, not 1.)
61	Round down to next lowest integer	floor(x)	floor(x)
62	Round up to next largest in- teger	ceil(x)	<pre>ceiling(x)</pre>
63	Sign of x (+1, 0, or -1)	<pre>sign(x) (Note: for complex values, this computes x/abs(x).)</pre>	<pre>sign(x) (Does not work with com- plex values)</pre>
64	Error function $\operatorname{erf}(x) = (2/\sqrt{\pi}) \int_0^x e^{-t^2} dt$	erf(x)	2*pnorm(x*sqrt(2))-1
65	Complementary er- ror function $\operatorname{cerf}(x) =$ $(2/\sqrt{\pi}) \int_x^\infty e^{-t^2} dt = 1\operatorname{-erf}(x)$	erfc(x)	2*pnorm(x*sqrt(2),lower=FALSE)
66	Inverse error function	erfinv(x)	qnorm((1+x)/2)/sqrt(2)
67	Inverse complementary error function	erfcinv(x)	<pre>qnorm(x/2,lower=FALSE)/sqrt(2)</pre>
68	Binomial coefficient $\binom{n}{k} = n!/(n!(n-k)!)$	nchoosek(n,k)	choose(n,k)

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No.	Description	Matlab	R
69	Enter a complex number	1+2i	1+2i
70	Modulus (magnitude)	abs(z)	abs(z) or Mod(z)
71	Argument (angle)	angle(z)	Arg(z)
72	Complex conjugate	conj(z)	Conj(z)
73	Real part of z	real(z)	Re(z)
74	Imaginary part of z	<pre>imag(z)</pre>	Im(z)

3.3 Matrix/vector computations

No.	Description	Matlab	R
75	Matrix multiplication AB	A * B	A %*% B
76	Element-by-element multiplication of A and B	A .* B	A * B
77	Transpose of a matrix, A^T	A' (This is actually the complex con- jugate (i.e. Hermitian) transpose; use A.' for the non-conjugate trans- pose if you like; they are equivalent for real matrices.)	t(A) for transpose, or Conj(t(A)) for conjugate (Hermitian) transpose
78	Solve $A\vec{x} = \vec{b}$	A\b Warning: if there is no solution, MATLAB gives you a least-squares "best fit." If there are many solu- tions, MATLAB just gives you one of them.	solve(A,b) Warning: this only works with square invertible matrices.
79	Reduced echelon form of A	rref(A)	R does not have a function to do this
80	Compute inverse of \mathbf{A}	inv(A)	solve(A)
81	Compute AB^{-1}	A/B	A %*% solve(B)
82	Element-by-element division of A and B	A ./ B	A / B
83	Compute $A^{-1}B$	A∖B	solve(A,B)
84	Square the matrix A	A^2	A %*% A
85	Raise matrix A to the k^{th} power	A^k	(No easy way to do this in R other than repeated multiplication A %*% A %*% A)
86	Raise each element of A to the k^{th} power	A.^k	A^k
87	Rank of matrix A	rank(A)	qr(A)\$rank
88	Set \mathbf{w} to be a vector of eigenvalues of \mathbf{A} , and \mathbf{V} a matrix containing the corresponding eigenvectors	[V,D]=eig(A) and then w=diag(D) since MATLAB returns the eigenvalues on the diagonal of D	<pre>tmp=eigen(A); w=tmp\$values; V=tmp\$vectors</pre>
89	Permuted <i>LU</i> factorization of a matrix	[L,U,P]=lu(A) then the matrices satisfy $PA = LU$. Note that this works even with non-square matrices	tmp=expand(lu(Matrix(A))); L=tmp\$L; U=tmp\$U; P=tmp\$P then the matrices satisfy $A = PLU$, i.e. $P^{-1}A = LU$. Note that the lu and expand functions are part of the Ma- trix package (see item 316 for how to install/load packages). Also note that this doesn't seem to work correctly with non-square matrices. L , U , and P will be of class Matrix rather than class matrix; to make them the latter, instead do L=as.matrix(tmp\$L), U=as.matrix(tmp\$U), and P=as.matrix(tmp\$P) above.

No.	Description	Matlab	R
90	Singular-value decomposi- tion: given $m \times n$ matrix A with rank r , find $m \times r$ matrix P with orthonormal columns, diagonal $r \times r$ matrix S , and $r \times n$ matrix Q^T with orthonormal rows so that $PSQ^T = A$	[P,S,Q]=svd(A,'econ')	<pre>tmp=svd(A); U=tmp\$u; V=tmp\$v; S=diag(tmp\$d)</pre>
91	Schur decomposi- tion of square matrix, $A = QTQ^{H} = QTQ^{-1}$ where Q is unitary (i.e. $Q^{H}Q = I$) and T is upper triangular; $Q^{H} = \overline{Q^{T}}$ is the Hermitian (conjugate) transpose	[Q,T]=schur(A)	<pre>tmp=Schur(Matrix(A)); T=tmp@T; Q=tmp@Q Note that Schur is part of the Matrix package (see item 316 for how to install/load packages). T and Q will be of class Matrix rather than class matrix; to make them the latter, instead do T=as.matrix(tmp@T) and Q=as.matrix(tmp@Q) above.</pre>
92	Cholesky factorization of a square, symmetric, positive definite matrix $A = R^T R$, where R is upper-triangular	R = chol(A)	R = chol(A) Note that chol is part of the Matrix package (see item 316 for how to install/load packages).
93	QR factorization of matrix A , where Q is orthogonal (sat- isfying $QQ^T = I$) and R is upper-triangular	[Q,R]=qr(A) satisfying $QR = A$, or [Q,R,E]=qr(A) to do permuted $QRfactorization satisfying AE = QR$	<pre>z=qr(A); Q=qr.Q(z); R=qr.R(z); E=diag(n)[,z\$pivot] (where n is the number of columns in A) gives permuted QR factorization satisfying AE = QR</pre>
94	Vector norms	norm(v,1) for 1-norm $\ \vec{v}\ _1$, norm(v,2) for Euclidean norm $\ \vec{v}\ _2$, norm(v,inf) for infinity-norm $\ \vec{v}\ _{\infty}$, and norm(v,p) for <i>p</i> -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$	R does not have a norm func- tion for vectors; only one for matrices. But the following will work: norm(matrix(v),'1') for 1-norm $\ \vec{v}\ _1$, norm(matrix(v),'1') for infinity-norm $\ \vec{v}\ _{\infty}$, and $\operatorname{sum}(\operatorname{abs}(v)^p)^{(1/p)}$ for <i>p</i> -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$
95	Matrix norms	norm(A,1) for 1-norm $ A _1$, norm(A) for 2-norm $ A _2$, norm(A,inf) for infinity-norm $ A _{\infty}$, and norm(A,'fro') for Frobenius norm $(\sum_i (A^T A)_{ii})^{1/2}$	norm(A, '1') for 1-norm $ A _1$, max(svd(A)\$d) for 2-norm $ A _2$, norm(A, 'i') for infinity-norm $ A _{\infty}$, and norm(A, 'f') for Frobenius norm $\left(\sum_i (A^T A)_{ii}\right)^{1/2}$
96	Condition number $\operatorname{cond}(A) = A _1 A^{-1} _1$ of A , using 1- norm	<pre>cond(A,1) (Note: MATLAB also has a function rcond(A) which computes reciprocal condition estimator using the 1-norm)</pre>	1/rcond(A,'1')
97	Condition number $\operatorname{cond}(A) = \ A\ _2 \ A^{-1}\ _2$ of A , using 2- norm	cond(A,2)	<pre>kappa(A, exact=TRUE) (leave out the "exact=TRUE" for an esti- mate)</pre>
98	Condition number $\operatorname{cond}(A) = A _{\infty} A^{-1} _{\infty}$ of A , using infinity-norm	<pre>cond(A,inf)</pre>	1/rcond(A,'I')

No.	Description	Matlab	R
99	Compute mean of all ele-	<pre>mean(v) for vectors, mean(A(:)) for</pre>	mean(v) or mean(A)
00	ments in vector or matrix	matrices	
100	Compute means of columns	mean(A)	colMeans(A)
	of a matrix		
101	Compute means of rows of a	mean(A,2)	rowMeans(A)
	matrix		
102	Compute standard deviation	<pre>std(v) for vectors, std(A(:)) for</pre>	sd(v) for vectors, sd(c(A)) for ma-
	of all elements in vector or	matrices. This normalizes by $n-1$.	trices. This normalizes by $n-1$.
	matrix	Use $std(v,1)$ to normalize by n .	
103	Compute standard deviations	std(A). This normalizes by $n-1$.	sd(A). This normalizes by $n-1$.
	of columns of a matrix	Use std(A,1) to normalize by n	
104	Compute standard deviations	std(A,0,2) to normalize by $n-1$,	apply(A,1,sd). This normalizes by
	of rows of a matrix	std(A,1,2) to normalize by n	n-1.
105	Compute variance of all ele-	<pre>var(v) for vectors, var(A(:)) for</pre>	<pre>var(v) for vectors, var(c(A)) for</pre>
	ments in vector or matrix	matrices. This normalizes by $n-1$.	matrices. This normalizes by $n-1$.
		Use var(v,1) to normalize by n .	
106	Compute variance of columns	var(A) . This normalizes by $n - 1$.	apply(A,2,var). This normalizes by
	of a matrix	Use var(A,1) to normalize by n	n-1.
107	Compute variance of rows of	var(A,0,2) to normalize by $n-1$,	apply(A,1,var). This normalizes by
	a matrix	var(A,1,2) to normalize by n	n-1.
108	Compute covariance for two	cov(v,w) computes the 2 × 2 co-	cov(v,w)
	vectors of observations	variance matrix; the off-diagonal ele-	
100	a	ments give the desired covariance	
109	Compute covariance matrix,	cov(A)	var(A) or cov(A)
	giving covariances between		
110	columns of matrix A	T 1 1 1 C 1	
110	Given matrices A and B ,	I don't know of a direct way to	cov(A,B)
	build covariance matrix C	do this in Matlab. But one way is $[Y, Y]$ = a characteristic (c+d(P)) c+d(A)):	
	where c_{ij} is the covariance be- tween column i of A and col-	<pre>[Y,X]=meshgrid(std(B),std(A)); X.*Y.*corr(A,B)</pre>	
	j of B	X.*I.*COII(A,B)	
111	Compute Pearson's linear	corr(v,w) Note: v and w must	cor(v,w)
111	correlation coefficient be-	be column vectors. To make it	
	tween elements of vectors \mathbf{v}	work regardless of whether they	
	and \mathbf{w}	are row or column vectors, do	
		corr(v(:),w(:))	
112	Compute Kendall's tau corre-	<pre>corr(v,w,'type','kendall')</pre>	<pre>cor(v,w,method='kendall')</pre>
	lation statistic for vectors \mathbf{v}		
	and \mathbf{w}		
113	Compute Spearman's rho	<pre>corr(v,w,'type','spearman')</pre>	<pre>cor(v,w,method='spearman')</pre>
	correlation statistic for	_	
	vectors ${\bf v}$ and ${\bf w}$		
114	Compute pairwise Pearson's	corr(A) The 'type' argument may	cor(A) The method argument may
	correlation coefficient be-	also be used as in the previous two	also be used as in the previous two
	tween columns of matrix	items	items
	A		
115	Compute matrix C of pair-	corr(A,B) The 'type' argument	cor(A,B) The method argument
	wise Pearson's correlation co-	may also be used as just above	may also be used as just above
	efficients between each pair of		
	columns of matrices A and B ,		
	i.e. so c_{ij} is the correlation		
	between column i of A and		
	column j of B		

No.	Description	Matlab	R
116	Compute sum of all elements in vector or matrix	<pre>sum(v) for vectors, sum(A(:)) for matrices</pre>	<pre>sum(v) or sum(A)</pre>
117	Compute sums of columns of matrix	sum(A)	colSums(A)
118	Compute sums of rows of ma- trix	<pre>sum(A,2)</pre>	rowSums(A)
119	Compute matrix exponential $e^A = \sum_{k=0}^{\infty} A^k / k!$	expm(A)	expm(Matrix(A)), but this is part of the Matrix package which you'll need to install (see item 316 for how to in- stall/load packages).
120	Compute cumulative sum of values in vector	cumsum(v)	cumsum(v)
121	Compute cumulative sums of columns of matrix	cumsum(A)	apply(A,2,cumsum)
122	Compute cumulative sums of rows of matrix	cumsum(A,2)	<pre>t(apply(A,1,cumsum))</pre>
123	Compute cumulative sum of all elements of matrix (column-by-column)	<pre>cumsum(A(:))</pre>	cumsum(A)
124	Cumulative product of ele-	cumprod(v) (Can also be used in the	cumprod(v) (Can also be used in the
	ments in vector \mathbf{v}	various ways cumsum can)	various ways cumsum can)
125	Cumulative minimum or maximum of elements in vector \mathbf{v}	I don't know of an easy way to do this in MATLAB	<pre>cummin(v) or cummax(v)</pre>
126	Compute differences between consecutive elements of vec- tor \mathbf{v} . Result is a vector \mathbf{w} 1 element shorter than \mathbf{v} , where element i of \mathbf{w} is ele- ment $i+1$ of \mathbf{v} minus element i of \mathbf{v}	diff(v)	diff(v)
127	Make a vector \mathbf{y} the same size as vector \mathbf{x} , which equals 4 everywhere that \mathbf{x} is greater than 5, and equals 3 every- where else (done via a vector- ized computation).	z = [3 4]; y = z((x > 5)+1)	y = ifelse(x > 5, 4, 3)
128	Compute minimum of values in vector \mathbf{v}	min(v)	min(v)
129	Compute minimum of all values in matrix \mathbf{A}	min(A(:))	min(A)
130	Compute minimum value of each column of matrix \mathbf{A}	<pre>min(A) (returns a row vector)</pre>	<pre>apply(A,2,min) (returns a vector)</pre>
131	Compute minimum value of each row of matrix \mathbf{A}	<pre>min(A, [], 2) (returns a column vector)</pre>	<pre>apply(A,1,min) (returns a vector)</pre>

No.	Description	Matlab	R
132	Given matrices \mathbf{A} and \mathbf{B} ,	min(A,B)	pmin(A,B)
	compute a matrix where each		
	element is the minimum of		
	the corresponding elements of		
	\mathbf{A} and \mathbf{B}		
133	Given matrix \mathbf{A} and scalar	min(A,c)	<pre>pmin(A,c)</pre>
	\mathbf{c} , compute a matrix where		
	each element is the minimum		
	of ${\bf c}$ and the corresponding el-		
	ement of \mathbf{A}		
134	Find minimum among all val-	min([A(:) ; B(:)])	min(A,B)
	ues in matrices ${\bf A}$ and ${\bf B}$		
135	Find index of the first time	[y,ind] = min(v)	<pre>ind = which.min(v)</pre>
	min(v) appears in \mathbf{v} , and		
	store that index in ind		
L	Notor		1

Notes:

- MATLAB and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both MATLAB and R, doing the computations for each element of the matrix.

No.	Description	Matlab	R
	Number of rows in A		
136		size(A,1)	nrow(A)
137	Number of columns in A	<pre>size(A,2)</pre>	ncol(A)
138	Dimensions of A , listed in a vector	size(A)	dim(A)
139	Number of elements in vector \mathbf{v}	length(v)	length(v)
140	Total number of elements in matrix A	numel(A)	length(A)
141	Max. dimension of A	length(A)	<pre>max(dim(A))</pre>
142	Sort values in vector \mathbf{v}	sort(v)	sort(v)
143	Sort values in \mathbf{v} , putting sorted values in \mathbf{s} , and indices in \mathbf{idx} , in the sense that $\mathbf{s}[\mathbf{k}]$ = $\mathbf{x}[\mathbf{idx}[\mathbf{k}]]$	[s,idx]=sort(v)	<pre>tmp=sort(v,index.return=TRUE); s=tmp\$x; idx=tmp\$ix</pre>
144	Sort the order of the rows of matrix m	<pre>sortrows(m) This sorts according to the first col- umn, then uses column 2 to break ties, then column 3 for remaining ties, etc. Complex numbers are sorted by abs(x), and ties are then broken by angle(x).</pre>	<pre>m[order(m[,1]),] This only sorts according to the first column. To use column 2 to break ties, and then column 3 to break fur- ther ties, do m[order(m[,1], m[,2], m[,3]),] Complex numbers are sorted first by real part, then by imaginary part.</pre>
145	Sort order of rows of matrix m, specifying to use columns c1, c2, c3 as the sorting "keys"	sortrows(m, [c1 c2 c2])	<pre>m[order(m[,c1], m[,c2], m[,c3]),]</pre>

No.	Description	Matlab	R
146	Same as previous item, but sort in decreasing order for columns c1 and c2	sortrows(m, [-c1 -c2 c2])	<pre>m[order(-m[,c1], -m[,c2], m[,c3]),]</pre>
147	Sort order of rows of matrix m , and keep indices used for sorting	[y,i] = sortrows(m)	<pre>i=order(m[1,]); y=m[i,]</pre>
148	To count how many values in the vector \mathbf{v} are between 4 and 7 (inclusive on the upper end)	<pre>sum((v > 4) & (v <= 7))</pre>	<pre>sum((v > 4) & (v <= 7))</pre>
149	Given vector \mathbf{v} , return list of indices of elements of \mathbf{v} which are greater than 5	find(v > 5)	which(v > 5)
150	Given matrix A , return list of indices of elements of A which are greater than 5, us- ing single-indexing	find(A > 5)	which(A > 5)
151	Given matrix A , generate vectors r and c giving rows and columns of elements of A which are greater than 5	<pre>[r,c] = find(A > 5)</pre>	<pre>w = which(A > 5, arr.ind=TRUE); r=w[,1]; c=w[,2]</pre>
152	Given vector \mathbf{x} (of presum- ably discrete values), build a vector \mathbf{v} listing unique val- ues in \mathbf{x} , and corresponding vector \mathbf{c} indicating how many times those values appear in \mathbf{x}	<pre>v = unique(x); c = hist(x,v);</pre>	<pre>w=table(x); c=as.numeric(w); v=as.numeric(names(w))</pre>
153	Given vector \mathbf{x} (of presum- ably continuous values), di- vide the range of values into k equally-sized bins, and build a vector \mathbf{m} containing the midpoints of the bins and a corresponding vector \mathbf{c} con- taining the counts of values in the bins	[c,m] = hist(x,k)	<pre>w=hist(x,seq(min(x),max(x), length.out=k+1), plot=FALSE); m=w\$mids; c=w\$counts</pre>
154	Convolution / polynomial multiplication (given vectors \mathbf{x} and \mathbf{y} containing polyno- mial coefficients, their convo- lution is a vector containing coefficients of the product of the two polynomials)	conv(x,y)	convolve(x,rev(y),type='open') Note: the accuracy of this is not as good as MATLAB; e.g. doing v=c(1,-1); for (i in 2:20) v=convolve(v,c(-i,1), type='open') to generate the 20^{th} -degree Wilkinson polynomial $W(x) = \prod_{i=1}^{20} (x-i)$ gives a coefficient of ≈ -780.19 for x^{19} , rather than the correct value -210.

3.4 Root-finding

No.	Description	Matlab	R
155	Find roots of polynomial	roots(v)	<pre>polyroot(rev(v)) (This function</pre>
	whose coefficients are stored		really wants the vector to have the
	in vector \mathbf{v} (coefficients in \mathbf{v}		constant coefficient first in v; rev re-
	are highest-order first)		verses their order to achieve this.)
156	Find zero (root) of a function	Define function $f(\mathbf{x})$, then do	Define function $f(x)$, then do
	f(x) of one variable	<pre>fzero(f,x0) to search for a root</pre>	uniroot(f, c(a,b)) to find a root
		near $x0$, or fzero(f,[a b]) to find	between a and b , assuming the sign
		a root between a and b , assuming	of $f(x)$ differs at $x = a$ and $x = b$.
		the sign of $f(x)$ differs at $x = a$	Default forward error tolerance (i.e.
		and $x = b$. Default forward error	error in x) is fourth root of machine
		tolerance (i.e. error in x) is machine	epsilon, $(\epsilon_{\rm mach})^{0.25}$. To specify e.g.
		epsilon $\epsilon_{\rm mach}$.	a tolerance of 2^{-52} , do uniroot(f,
			c(a,b), tol=2^-52).

3.5 Function optimization/minimization

NT			D
No.	Description	MATLAB	R
157	Find value m which mini-	Define function $f(x)$, then do	Define function $f(\mathbf{x})$, then do
	mizes a function $f(x)$ of one	<pre>m = fminbnd(f, a, b)</pre>	<pre>m = optimize(f,c(a,b))\$minimum</pre>
	variable within the interval	m = ImInDia(1, a, b)	m = optimize(1, c(a, b))\$minimum
	from a to b		
158	Find value m which mini-	Define function $f(x,p1,p2)$, then use	Define function $f(x,p1,p2)$, then:
	mizes a function $f(x, p_1, p_2)$	an "anonymous function":	
	with given extra parameters		<pre># first define values for p1</pre>
	(but minimization is only oc-	% first define values for p1	<pre># and p2, and then do:</pre>
	curing over the first argu-	% and p2, and then do:	<pre>m = optimize(f, c(a,b), p1=p1,</pre>
	ment), in the interval from a	m=fminbnd(@(x) f(x,p1,p2),a,b)	p2=p2)\$minimum
	to b .		
159	Find values of x, y, z which	First write function $f(v)$ which ac-	First write function $f(v)$ which ac-
100	minimize function $f(x, y, z)$,	cepts a vector argument \mathbf{v} containing	cepts a vector argument \mathbf{v} containing
	using a starting guess of $x =$	values of x, y , and z , and returns the	values of x, y , and z , and returns the
	1, $y = 2.2$, and $z = 3.4$.	scalar value $f(x, y, z)$, then do:	scalar value $f(x, y, z)$, then do:
	1, $y = 2.2$, and $z = 5.4$.	Scalar value $f(x, y, z)$, then do.	Scalar value $f(x, y, z)$, then do.
		fminsearch(@f,[1 2.2 3.4])	optim(c(1,2.2,3.4),f)\$par
		. ,	
160	Find values of x, y, z	First write function f(v,p1,p2)	First write function f (v , p1 , p2) which
	which minimize function	which accepts a vector argument	accepts a vector argument \mathbf{v} contain-
	$f(x, y, z, p_1, p_2)$, using a	v containing values of x, y , and	ing values of x, y , and z , along with
	starting guess of $x = 1$,	z, along with the extra parame-	the extra parameters, and returns the
	y = 2.2, and $z = 3.4$, where	ters, and returns the scalar value	scalar value $f(x, y, z, p_1, p_2)$, then do:
	y = 2.2, and $z = 5.4$, where the function takes some extra	$f(x, y, z, p_1, p_2)$, then do:	scalar value $f(x, y, z, p_1, p_2)$, then do.
		$J(x, y, z, p_1, p_2),$ then do.	optim(c(1,2.2,3.4), f, p1=p1,
	parameters (useful e.g. for	fminsearch(@f,[1 2.2 3.4],	p2=p2)\$par
	doing things like nonlinear	[], p1, p2)	I I / T
	least-squares optimization	, F-, F-/	
	where you pass in some data	Or use an anonymous function:	
	vectors as extra parameters).		
		$fminsearch(@(x) f(x,p1,p2), \ldots$	
		[1 2.2 3.4])	

No.	Description	Matlab	R
161	Numerically integrate func- tion $f(x)$ over interval from a to b	quad(f,a,b) uses adaptive Simp- son's quadrature, with a default absolute tolerance of 10 ⁻⁶ . To specify absolute tolerance, use quad(f,a,b,tol)	integrate(f,a,b) uses adaptive quadrature with default absolute and relative error tolerances being the fourth root of machine epsilon, $(\epsilon_{\rm mach})^{0.25} \approx 1.22 \times 10^{-4}$. Tol- erances can be specified by using integrate(f,a,b, rel.tol=tol1, abs.tol=tol2). Note that the func- tion f must be written to work even when given a vector of x values as its
			argument.
162	Simple trapezoidal numerical integration using (x, y) values in vectors x and y	<pre>trapz(x,y)</pre>	<pre>sum(diff(x)*(y[-length(y)]+ y[-1])/2)</pre>

3.6 Numerical integration / quadrature

3.7 Curve fitting

No.	Description	Matlab	R
163	Fit the line $y = c_1 x + c_0$ to data in vectors x and y .	<pre>p = polyfit(x,y,1)</pre>	p = coef(lm(y ~ x))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_1 , and $\mathbf{p(2)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , and $\mathbf{p}[2]$ is c_1 .
164	Fit the quadratic polynomial $y = c_2 x^2 + c_1 x + c_0$ to data in vectors x and y .	<pre>p = polyfit(x,y,2)</pre>	$p = coef(lm(y ~ x + I(x^2)))$
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_2 , $\mathbf{p(2)}$ is c_1 , and $\mathbf{p(3)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , $\mathbf{p}[2]$ is c_1 , and $\mathbf{p}[3]$ is c_2 .
165	Fit n^{th} degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors x	<pre>p = polyfit(x,y,n)</pre>	There isn't a simple function built into the standard R distribution to do this, but see the polyreg function in
	and y .	The return vector \mathbf{p} has the coefficients in descending order, $\mathbf{p(1)}$ is c^n , $\mathbf{p(2)}$ is c^{n-1} , etc.	the mda package (see item 316 for how to install/load packages).
166	Fit the quadratic polynomial with zero intercept, $y = c_2 x^2 + c_1 x$ to data in vectors x and y .	(I don't know a simple way do this in MATLAB, other than to write a function which computes the sum of squared residuals and use fmin -	p=coef(lm(y ~ -1 + x + I(x^2)))
	x and y.	search on that function. There is likely an easy way to do it in the Statistics Toolbox.)	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_1 , and $\mathbf{p}[2]$ is c_2 .
167	Fit natural cubic spline $(S''(x) = 0$ at both endpoints) to points (x_i, y_i) whose coordinates are in vectors x and y ; evaluate at points whose x coordinates	<pre>pp=csape(x,y,'variational'); yy=ppval(pp,xx) but note that csape is in MATLAB's Spline Toolbox</pre>	<pre>tmp=spline(x,y,method='natural', xout=xx); yy=tmp\$y</pre>
168	are in vector $\mathbf{x}\mathbf{x}$, storing corresponding y's in $\mathbf{y}\mathbf{y}$ Fitcubiccubicsplineusing	I'm not aware of a function to do this	<pre>tmp=spline(x,y,xout=xx);</pre>
100	Forsythe, Malcolm and Moler method (third deriva- tives at endpoints match third derivatives of exact cu-		yy=tmp\$y
	bics through the four points at each end) to points (x_i, y_i) whose coordinates are in vectors x and y ; evaluate at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing corresponding y 's in $\mathbf{y}\mathbf{y}$		

No.	Description	Matlab	R
169	Fit cubic spline such that	<pre>pp=csape(x,y); yy=ppval(pp,xx)</pre>	I'm not aware of a function to do this
	first derivatives at endpoints	but csape is in MATLAB's Spline	in R
	match first derivatives of ex-	Toolbox	
	act cubics through the four		
	points at each end) to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		
170	Fit cubic spline with periodic	<pre>pp=csape(x,y,'periodic');</pre>	<pre>tmp=spline(x,y,method=</pre>
	boundaries, i.e. so that first	yy=ppval(pp,xx) but csape is in	'periodic', xout=xx); yy=tmp\$y
	and second derivatives match	MATLAB's Spline Toolbox	
	at the left and right ends		
	(the first and last y values		
	of the provided data should		
	also agree), to points (x_i, y_i)		
	whose coordinates are in vec-		
	tors \mathbf{x} and \mathbf{y} ; evaluate at		
	points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		
171	Fit cubic spline with "not-	<pre>yy=spline(x,y,xx)</pre>	I'm not aware of a function to do this
	a-knot" conditions (the first		in R
	two piecewise cubics coincide,		
	as do the last two), to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		

4 Conditionals, control structure, loops

No.	Description	Matlab	R
172	"for" loops over values in a vector v (the vector v is of- ten constructed via a:b)	for i=v command1 command2 end	<pre>If only one command inside the loop: for (i in v) command or for (i in v) command If multiple commands inside the loop: for (i in v) { command1 command2 }</pre>

No.	Description	Matlab	R
173	"if" statements with no else clause	if cond command1 command2 end	<pre>If only one command inside the clause: if (cond) command or if (cond) command If multiple commands: if (cond) { command1 command2 }</pre>
174	"if/else" statement	<pre>if cond command1 command2 else command3 command4 end Note: MATLAB also has an "elseif" statement, e.g.: if cond1 command1 elseif cond2 command2 elseif cond3 command3 else command4 end</pre>	<pre>If one command in clauses: if (cond) command1 else command2 or if (cond) cmd1 else cmd2 If multiple commands: if (cond) { command1 command2 } else { command3 command3 command4 } Warning: the "else" must be on the same line as command1 or the "}" (when typed interactively at the com- mand prompt), otherwise R thinks the "if" statement was finished and gives an error. R does not have an "elseif" state- ment.</pre>

Logical comparisons which can be used on scalars in "if" statements, or which operate element-byelement on vectors/matrices:

MATLAB	R	Description
x < a	x < a	True if x is less than a
x > a	x > a	True if x is greater than a
x <= a	x <= a	True if x is less than or equal to a
x >= a	x >= a	True if x is greater than or equal to a
$\mathbf{x} == \mathbf{a}$	$\mathbf{x} == \mathbf{a}$	True if x is equal to a
x ~= a	x != a	True if x is not equal to a

Scalar logical operators:

Description	Matlab	R
a AND b	a && b	a && b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

The && and || operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and || stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description	Matlab	R
a AND b	a & b	a & b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

No.	Description	Matlab	R
175	To test whether a scalar value	if ((x > 4) && (x <= 7))	if ((x > 4) && (x <= 7))
	${\bf x}$ is between 4 and 7 (inclu-		
	sive on the upper end)		
176	To count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector ${\bf x}$ are between 4		
	and 7 (inclusive on the upper		
	end)		
177	Test whether all values in	all(v)	all(v)
	a logical/boolean vector are		
	TRUE		
178	Test whether any values in	any(v)	any(v)
	a logical/boolean vector are		
	TRUE		

No.	Description	Matlab	R
179	"while" statements to do iter- ation (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform ran- dom numbers between 0 and 1 (and their squares) until their sum is greater than 20:	<pre>mysum = 0; mysumsqr = 0; while (mysum < 20) r = rand; mysum = mysum + r; mysumsqr = mysumsqr + r^2; end</pre>	<pre>mysum = 0 mysumsqr = 0 while (mysum < 20) { r = runif(1) mysum = mysum + r mysumsqr = mysumsqr + r^2 } (As with "if" statements and "for" loops, the curly brackets are not nec- essary if there's only one statement in- side the "while" loop.)</pre>
180	More flow control: these com- mands exit or move on to the next iteration of the inner- most while or for loop, re- spectively.	break and continue	break and next
181	"Switch" statements for inte- gers	<pre>switch (x) case 10 disp('ten') case {12,13} disp('dozen (bakers?)') otherwise disp('unrecognized') end</pre>	<pre>R doesn't have a switch statement ca- pable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic ex- ample of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1, 2, mystr = switch(x, 'one', 'two', 'three'); print(mystr) Note that switch returns NULL if x is larger than 3 in the above case. Also, continuous values of x will be trun- cated to integers.</pre>

5 Functions, ODEs

No.	Description	Matlab	R
182	Implement a function add(x,y)	Put the following in add.m: function retval=add(x,y) retval = x+y; Then you can do e.g. add(2,3)	<pre>Enter the following, or put it in a file and source that file: add = function(x,y) { return(x+y) } Then you can do e.g. add(2,3). Note, the curly brackets aren't needed if your function only has one line. Also, the return keyword is optional in the above example, as the value of the last expression in a function gets returned, so just x+y would work too.</pre>
183	Implement a function $f(x,y,z)$ which returns mul- tiple values, and store those return values in variables u and v	<pre>Write function as follows: function [a,b] = f(x,y,z) a = x*y+z; b=2*sin(x-z); Then call the function by doing: [u,v] = f(2,8,12)</pre>	<pre>Write function as follows: f = function(x,y,z) { a = x*y+z; b=2*sin(x-z) return(list(a,b)) } Then call the function by do- ing: tmp=f(2,8,12); u=tmp[[1]]; v=tmp[[2]]. The above is most gen- eral, and will work even when u and v are different types of data. If they are both scalars, the function could simply return them packed in a vec- tor, i.e. return(c(a,b)). If they are vectors of the same size, the func- tion could return them packed to- gether into the columns of a matrix, i.e. return(cbind(a,b)).</pre>

No.	Description	Matlab	R
184	Numerically solve ODE	First implement function	First implement function
	dx/dt = 5x from $t = 3$ to t = 12 with initial condition x(3) = 7	<pre>function retval=f(t,x) retval = 5*x;</pre>	<pre>f = function(t,x,parms) { return(list(5*x))</pre>
		Then do $ode45(@f,[3,12],7)$ to plot solution, or [t,x]=ode45(@f,[3,12],7) to get back vector t containing time values and vector x containing correspond- ing function values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do $[t,x]=ode45(@f,3:0.1:12,7)$. Note: in older versions of MATLAB, use 'f' instead of @f.	<pre>} Then do y=lsoda(7, seq(3,12, 0.1), f,NA) to obtain solution values at times 3, 3.1, 3.2,, 11.9, 12. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corre- sponding function values. Note: lsoda is part of the deSolve package (see item 316 for how to install/load packages).</pre>
185	Numerically solve system of ODEs $dw/dt = 5w$, $dz/dt = 3w + 7z$ from $t = 3$ to $t = 12$ with initial conditions $w(3) = 7$, $z(3) = 8.2$	<pre>First implement function function retval=myfunc(t,x) w = x(1); z = x(2); retval = zeros(2,1); retval(1) = 5*w; retval(2) = 3*w + 7*z;</pre>	<pre>First implement function myfunc = function(t,x,parms) { w = x[1]; z = x[2]; return(list(c(5*w, 3*w+7*z))) } Then do y=lsoda(c(7,8.2),</pre>
		Then do ode45(@myfunc,[3,12],[7; 8.2]) to plot solution, or [t,x]=ode45(@myfunc,[3,12],[7; 8.2]) to get back vector t contain- ing time values and matrix x, whose first column containing correspond- ing $w(t)$ values and second column contains $z(t)$ values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do [t,x]=ode45(@myfunc,3:0.1:12,[7; 8.2]). Note: in older versions of MATLAB, use 'f' instead of @f.	seq(3,12, 0.1), myfunc,NA) to obtain solution values at times $3, 3.1, 3.2, \ldots, 11.9, 12$. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corresponding values of $w(t)$; and the third column contains $z(t)$. Note: lsoda is part of the deSolve package (see item 316 for how to install/load packages).
186	Pass parameters such as $r = 1.3$ and $K = 50$ to an ODE function from the command line, solving $dx/dt = rx(1 - x/K)$ from $t = 0$ to $t = 20$ with initial condition $x(0) = 2.5$.	<pre>First implement function function retval=func2(t,x,r,K) retval = r*x*(1-x/K) Then do ode45(@func2,[0 20], 2.5, [], 1.3, 50). The empty matrix is necessary between the ini- tial condition and the beginning of your extra parameters.</pre>	<pre>First implement function func2=function(t,x,parms) { r=parms[1]; K=parms[2] return(list(r*x*(1-x/K))) } Then do y=lsoda(2.5,seq(0,20,0.1), func2,c(1.3,50))</pre>
			Note: lsoda is part of the deSolve package (see item 316 for how to install/load packages).

6 Probability and random values

No.	Description	Matlab	R
187	Generate a continuous uni- form random value between 0 and 1	rand	<pre>runif(1)</pre>
188	Generate vector of n uniform random vals between 0 and 1	<pre>rand(n,1) or rand(1,n)</pre>	runif(n)
189	Generate $m \times n$ matrix of uni- form random values between 0 and 1	rand(m,n)	<pre>matrix(runif(m*n),m,n) or just matrix(runif(m*n),m)</pre>
190	Generate $m \times n$ matrix of con- tinuous uniform random val- ues between a and b	a+rand(m,n)*(b-a) or if you have the Statistics toolbox then unifrnd(a,b,m,n)	<pre>matrix(runif(m*n,a,b),m)</pre>
191	Generate a random integer between 1 and k	floor(k*rand) + 1	<pre>floor(k*runif(1)) + 1 Note: sample(k)[1] would also work, but I believe in general will be less efficient, because that actually generates many random numbers and then just uses one of them.</pre>
192	Generate $m \times n$ matrix of dis- crete uniform random inte- gers between 1 and k	<pre>floor(k*rand(m,n))+1 or if you have the Statistics toolbox then unidrnd(k,m,n)</pre>	<pre>floor(k*matrix(runif(m*n),m))+1</pre>
193	Generate $m \times n$ matrix where each entry is 1 with probabil- ity p , otherwise is 0	<pre>(rand(m,n)<p)*1 (true="" 1="" also="" back="" by="" could="" do="" double(rand(m,n)<p)<="" false)="" into="" logical="" multiplying="" note:="" numeric="" pre="" re-="" sult="" the="" turns="" values.="" you=""></p)*1></pre>	<pre>(matrix(runif(m,n),m)<p)*1 (note:="" (true="" 1="" as.numeric()="" back="" by="" do="" false)="" into="" it="" logical="" lose="" matrix.)<="" multiplying="" numeric="" of="" pre="" result="" shape="" the="" to="" turns="" using="" values;="" would=""></p)*1></pre>
194	Generate $m \times n$ matrix where each entry is a with probabil- ity p , otherwise is b	b + (a-b)*(rand(m,n) <p)< td=""><td><pre>b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre></td></p)<>	<pre>b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre>
195	Generate a random integer between a and b inclusive	<pre>floor((b-a+1)*rand)+a or if you have the Statistics toolbox then unidrnd(b-a+1)+a-1</pre>	<pre>floor((b-a+1)*runif(1))+a</pre>
196	Flip a coin which comes up heads with probability p , and perform some action if it does come up heads	<pre>if (rand < p) some commands end</pre>	<pre>if (runif(1) < p) { some commands }</pre>
197	Generate a random permutation of the integers $1, 2, \ldots, n$	randperm(n)	<pre>sample(n)</pre>
198	Generate a random selection of k unique integers between 1 and n (i.e. sampling with- out replacement)	<pre>[s,idx]=sort(rand(n,1)); ri=idx(1:k) or another way is ri=randperm(n); ri=ri(1:k). Or if you have the Statistics Toolbox, then randsample(n,k)</pre>	ri=sample(n,k)
199	Choose k values (with replacement) from the vector \mathbf{v} , storing result in \mathbf{w}	L=length(v); w=v(floor(L*rand(k,1))+1) Or, if you have the Statistics Toolbox, w=randsample(v,k,replace=true)	w=sample(v,k,replace=TRUE)

No.	Description	Matlab	R
200	Choose k values (without re-	L=length(v); ri=randperm(L);	<pre>w=sample(v,k,replace=FALSE)</pre>
	placement) from the vector \mathbf{v} ,	ri=ri(1:k); w=v(ri) Or, if	
	storing result in \mathbf{w}	you have the Statistics Toolbox,	
		<pre>w=randsample(v,k,replace=false)</pre>	
201	Set the random-number gen-	rand('state', 12) Note: begin-	set.seed(12)
	erator back to a known state	ning in Matlab 7.7, use this in-	
	(useful to do at the beginning	stead: RandStream('mt19937ar',	
	of a stochastic simulation	'Seed', 12) though the previous	
	when debugging, so you'll get	method is still supported for now.	
	the same sequence of random		
	numbers each time)		

Note that the "*rnd," "*pdf," and "*cdf" functions described below are all part of the MATLAB Statistics Toolbox, and not part of the core MATLAB distribution.

No.	Description	MATLAB	R
202	Generate a random value	<pre>binornd(n,p)</pre>	rbinom(1,n,p)
	from the $binomial(n, p)$ dis-	- -	
	tribution		
203	Generate a random value	poissrnd(lambda)	rpois(1,lambda)
	from the Poisson distribution		
	with parameter λ		
204	Generate a random value	<pre>exprnd(mu) or -mu*log(rand) will</pre>	rexp(1, 1/mu)
	from the exponential distri-	work even without the Statistics	
	bution with mean μ	Toolbox.	
205	Generate a random value	unidrnd(k) or floor(rand*k)+1	<pre>sample(k,1)</pre>
	from the discrete uniform dis-	will work even without the Statistics	
	tribution on integers $1 \dots k$	Toolbox.	
206	Generate n iid random values	unidrnd(k,n,1) or	<pre>sample(k,n,replace=TRUE)</pre>
	from the discrete uniform dis-	<pre>floor(rand(n,1)*k)+1 will work</pre>	
	tribution on integers $1 \dots k$	even without the Statistics Toolbox.	
207	Generate a random value	unifrnd(a,b) or (b-a)*rand + a	<pre>runif(1,a,b)</pre>
	from the continuous uniform	will work even without the Statistics	
	distribution on the interval	Toolbox.	
	(<i>a</i> , <i>b</i>)		
208	Generate a random value	normrnd(mu,sigma) or	rnorm(1,mu,sigma)
	from the normal distribution	mu + sigma*randn will work	
	with mean μ and standard	even without the Statistics Toolbox.	
	deviation σ		
209	Generate a random vector	mnrnd(n,p)	rmultinom(1,n,p)
	from the multinomial distri-		
	bution, with \mathbf{n} trials and		
010	probability vector p		
210	Generate j random vectors	mnrnd(n,p,j)	rmultinom(j,n,p)
	from the multinomial distri-	The vectors are returned as rows of	The vectors are returned as columns
	bution, with \mathbf{n} trials and	a matrix	of a matrix
	probability vector p		

Notes:

• The MATLAB "*rnd" functions above can all take additional **r**,**c** arguments to build an $r \times c$ matrix of iid random values. E.g. poissrnd(3.5,4,7) for a 4×7 matrix of iid values from the Poisson distribution with mean $\lambda = 3.5$. The unidrnd(k,n,1) command above is an example of this, to generate a $k \times 1$ column vector.

- D. Hiebeler, MATLAB / R Reference
 - The first parameter of the R "r*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No.	Description	Matlab	R
211	Compute probability that	binopdf(x,n,p) or	dbinom(x,n,p)
	a random variable from the	nchoosek(n,x)*p^x*(1-p)^(n-x)	
	Binomial (n, p) distribution	will work even without the Statistics	
	has value \mathbf{x} (i.e. the density,	Toolbox, as long as \mathbf{n} and \mathbf{x} are	
	or pdf).	non-negative integers and $0 \leq \mathbf{p}$	
	or par).	$\leq 1.$	
212	Compute probability that a	poisspdf(x,lambda) or	dpois(x,lambda)
	random variable from the	exp(-lambda)*lambda^x /	
	Poisson(λ) distribution has	factorial(x) will work even	
	value \mathbf{x} .	without the Statistics Toolbox, as	
		long as \mathbf{x} is a non-negative integer	
		and lambda ≥ 0 .	
213	Compute probability density		dexp(x,1/mu)
	function at \mathbf{x} for a random	(x>=0)*exp(-x/mu)/mu will work	
	variable from the exponential	even without the Statistics Toolbox,	
	distribution with mean μ .	as long as mu is positive.	
214	Compute probability density	normpdf(x,mu,sigma) or	dnorm(x,mu,sigma)
	function at \mathbf{x} for a random	exp(-(x-mu)^2/(2*sigma^2))/	-
	variable from the Normal dis-	(sqrt(2*pi)*sigma) will work even	
	tribution with mean μ and	without the Statistics Toolbox.	
	standard deviation σ .		
215	Compute probability density	unifpdf(x,a,b) or	dunif(x,a,b)
	function at ${\bf x}$ for a random	((x>=a)&&(x<=b))/(b-a) will	
	variable from the continuous	work even without the Statistics	
	uniform distribution on inter-	Toolbox.	
	val (a, b) .		
216	Compute probability that a	<pre>unidpdf(x,n) or ((x==floor(x))</pre>	((x==round(x)) && (x >= 1) &&
	random variable from the dis-	&& (x>=1)&&(x<=n))/n will work	(x <= n))/n
	crete uniform distribution on	even without the Statistics Toolbox,	
	integers $1 \dots n$ has value x .	as long as \mathbf{n} is a positive integer.	
217	Compute probability that	<pre>mnpdf(x,p)</pre>	dmultinom(x,prob=p)
	a random vector from the	Note: vector \mathbf{p} must sum to one.	
	multinomial distribution	Also, \mathbf{x} and \mathbf{p} can be vectors of	
	with probability vector \vec{p} has	length k, or if one or both are $m \times k$	
	the value \vec{x}	matrices then the computations are	
		performed for each row.	

Note: one or more of the parameters in the above "*pdf" (MATLAB) or "d*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

	The corresponding CDF funct		
No.	Description	Matlab	R
218	Compute probability that a random variable from the Binomial (n, p) distribution is	binocdf(x,n,p). Without the Statistics Toolbox, as long as n is a non-negative in-	pbinom(x,n,p)
	less than or equal to \mathbf{x} (i.e.	teger, this will work: $\mathbf{r} =$	
	the cumulative distribution	0:floor(x); sum(factorial(n)./	
	function, or cdf).	(factorial(r).*factorial(n-r))	
		.*p.^r.*(1-p).^(n-r)). (Un-	
		fortunately, MATLAB's nchoosek function won't take a vector argu-	
		ment for \mathbf{k} .)	
219	Compute probability that a	poisscdf(x,lambda). With-	ppois(x,lambda)
	random variable from the	out the Statistics Toolbox, as	
	Poisson(λ) distribution is less	long as lambda ≥ 0 , this	
	than or equal to \mathbf{x} .	<pre>will work: r = 0:floor(x); sum(exp(-lambda)*lambda.^r</pre>	
		./factorial(r))	
220	Compute cumulative distri-	expcdf(x,mu) or	pexp(x,1/mu)
	bution function at ${\bf x}$ for a	(x>=0)*(1-exp(-x/mu)) will	
	random variable from the ex-	work even without the Statistics	
	ponential distribution with mean μ .	Toolbox, as long as mu is positive.	
221	Compute cumulative distri-	normcdf(x,mu,sigma) or 1/2 -	pnorm(x,mu,sigma)
	bution function at ${\bf x}$ for a ran-	erf(-(x-mu)/(sigma*sqrt(2)))/2	
	dom variable from the Nor-	will work even without the Statis-	
	mal distribution with mean μ	tics Toolbox, as long as sigma is	
222	and standard deviation σ . Compute cumulative distri-	positive. unifcdf(x,a,b) or	<pre>punif(x,a,b)</pre>
	bution function at \mathbf{x} for a ran-	unifcdf(x,a,b) or (x>a)*(min(x,b)-a)/(b-a) will	puntr(x,a,b)
	dom variable from the contin-	work even without the Statistics	
	uous uniform distribution on	Toolbox, as long as $\mathbf{b} > \mathbf{a}$.	
	interval (a, b) .		
223	Compute probability that a	unidcdf(x,n) or	<pre>(x>=1)*min(floor(x),n)/n</pre>
	random variable from the dis-	(x>=1)*min(floor(x),n)/n will	
	crete uniform distribution on	work even without the Statistics	
	integers $1 \dots n$ is less than or equal to \mathbf{x} .	Toolbox, as long as \mathbf{n} is a positive integer.	
	equal 10 x.	integer.	

7 Graphics

7.1 Various types of plotting

	various types of pr		-
No.	Description	Matlab	R
224	Create a new figure window	figure	dev.new() Notes: internally, on Win-
			dows this calls windows(), on MacOS
			it calls quartz(), and on Linux it
			calls x11(). x11() is also available
			on MacOS. In R sometime after 2.7.0,
			X11 graphics started doing antialising
			by default, which makes plots look
			smoother but takes longer to draw.
			If you are using R on Linux (which
			uses X11 graphics by default) or
			X11 graphics on MacOS and notice
			that figure plotting is extremely slow
			(especially if making many plots),
			do this before calling dev.new() :
			X11.options(type='Xlib') or X11.options(antialias='none').
			Or just use e.g. x11(type='Xlib')
			to make new figure windows. They
			are uglier (lines are more jagged), but
			render much more quickly.
225	Select figure number n	figure(n) (will create the figure if it	dev.set(n) (returns the actual de-
	0	doesn't exist)	vice selected; will be different from n
		,	if there is no figure device with num-
			ber n)
226	Determine which figure win-	gcf	dev.cur()
	dow is currently active		
227	List open figure windows	get(0,'children') (The 0 handle	dev.list()
		refers to the root graphics object.)	
228	Close figure window(s)	close to close the current figure win-	dev.off() to close the currently ac-
		dow, close(n) to close a specified	tive figure device, dev.off(n) to close
		figure, and close all to close all fig-	a specified one, and graphics.off()
		ures	to close all figure devices.
229	Plot points using open circles	plot(x,y,'o')	plot(x,y)
230	Plot points using solid lines	<pre>plot(x,y)</pre>	plot(x,y,type='1') (Note: that's a lower case, 'L', not the number 1)
991	Platting: color point mark	nlot (y y oth) where strike a	lower-case 'L', not the number 1)
231	Plotting: color, point mark- ers, linestyle	<pre>plot(x,y,str) where str is a string specifying color, point marker,</pre>	
	cro, inicotyre	and/or linestyle (see table below)	<pre>plot(x,y,type=str1,</pre>
		(e.g. 'gs' for green squares with	pch=arg2,col=str3,
		dashed line)	lty=arg4)
			See tables below for possible values of
			the 4 parameters
232	Plotting with logarithmic	semilogx, semilogy, and loglog	plot(, log='x'), plot(,
202	axes	functions take arguments like plot ,	log='y'), and plot(,
	unos	and plot with logarithmic scales for	log='xy') plot with logarithmic
		x, y, and both axes, respectively	scales for x, y , and both axes,
		a, g, and boon axes, respectively	respectively

No.	Description	Matlab	R
233	Make bar graph where the x coordinates of the bars are in x , and their heights are in y	bar (\mathbf{x} , \mathbf{y}) Or just bar (\mathbf{y}) if you only want to specify heights. Note: if A is a matrix, bar (A) interprets each column as a separate set of observa- tions, and each row as a different ob- servation within a set. So a 20 × 2 matrix is plotted as 2 sets of 20 ob- servations, while a 2 × 20 matrix is plotted as 20 sets of 2 observations.	Can't do this in R; but barplot(y) makes a bar graph where you specify the heights, barplot(y,w) also spec- ifies the widths of the bars, and hist can make plots like this too.
234	Make histogram of values in \mathbf{x}	hist(x)	hist(x)
235	Given vector \mathbf{x} containing integer values, make a bar graph where the x coordi- nates of bars are the values, and heights are the counts of how many times the values appear in \mathbf{x}	<pre>v=unique(x); c=hist(x,v); bar(v,c)</pre>	<pre>barplot(table(x))</pre>
236	Given vector \mathbf{x} containing continuous values, lump the data into k bins and make a histogram / bar graph of the binned data	<pre>[c,m] = hist(x,k); bar(m,c) or for slightly different plot style use hist(x,k)</pre>	<pre>hist(x,seq(min(x), max(x), length.out=k+1))</pre>
237	Make a plot containing error- bars of height s above and be- low (x, y) points	errorbar(x,y,s)	errbar(x,y,y+s,y-s) Note: errbar is part of the Hmisc package (see item 316 for how to install/load pack- ages).
238	Make a plot containing error- bars of height a above and b below (x, y) points	errorbar(x,y,b,a)	errbar(x,y,y+a,y-b) Note: errbar is part of the Hmisc package (see item 316 for how to install/load pack- ages).
239	Other types of 2-D plots	<pre>stem(x,y) and stairs(x,y) for other types of 2-D plots. polar(theta,r) to use polar coordinates for plotting.</pre>	pie(v)

No.	Description	Matlab	R
240	Make a 3-D plot of some data points with given x, y, z co- ordinates in the vectors \mathbf{x}, \mathbf{y} , and \mathbf{z} .	<pre>plot3(x,y,z) This works much like plot, as far as plotting symbols, line- types, and colors.</pre>	<pre>cloud(z^xx*y) You can also use arguments pch and col as with plot. To make a 3-D plot with lines, do cloud(z^xx*y,type='l', panel.cloud=panel.3dwire)</pre>
241	Surface plot of data in matrix \mathbf{A}	<pre>surf(A) You can then click on the small curved arrow in the figure window</pre>	<pre>persp(A) You can include shading in the im- age via e.g. persp(A,shade=0.5).</pre>
		(or choose "Rotate 3D" from the "Tools" menu), and then click and drag the mouse in the figure to ro- tate it in three dimensions.	There are two viewing angles you can also specify, among other pa- rameters, e.g. persp(A, shade=0.5, theta=50, phi=35).
242	Surface plot of $f(x, y) = sin(x + y)\sqrt{y}$ for 100 values of x between 0 and 10, and 90 values of y between 2 and 8	<pre>x = linspace(0,10,100); y = linspace(2,8,90); [X,Y] = meshgrid(x,y); Z = sin(X+Y).*sqrt(Y); surf(X,Y,Z) shading flat</pre>	<pre>x = seq(0,10,len=100) y = seq(2,8,len=90) f = function(x,y) return(sin(x+y)*sqrt(y)) z = outer(x,y,f) persp(x,y,z)</pre>
243	Other ways of plotting the data from the previous command	<pre>mesh(X,Y,Z), surfc(X,Y,Z), surfl(X,Y,Z), contour(X,Y,Z), pcolor(X,Y,Z), waterfall(X,Y,Z). Also see the slice command.</pre>	<pre>contour(x,y,z) Or do s=expand.grid(x=x,y=y), and then wireframe(z~x*y,s) or wireframe(z~x*y,s,shade=TRUE) (Note: wireframe is part of the lattice package; see item 316 for how to load packages). If you have vectors x, y, and z all the same length, you can also do symbols(x,y,z).</pre>
244	Set axis ranges in a figure window	axis([x1 x2 y1 y2])	You have to do this when you make the plot, e.g. plot(x,y,xlim=c(x1,x2), ylim=c(y1,y2))
245	Add title to plot	<pre>title('somestring')</pre>	<pre>title(main='somestring') adds a main title, title(sub='somestring') adds a subtitle. You can also include main= and sub= arguments in a plot command.</pre>
246	Add axis labels to plot	<pre>xlabel('somestring') and ylabel('somestring')</pre>	<pre>title(xlab='somestring', ylab='anotherstr'). You can also include xlab= and ylab= arguments in a plot command.</pre>

No.	Description	Matlab	R
247	Include Greek letters or sym-	You can use basic TeX com-	<pre>plot(x,y,xlab=</pre>
	bols in plot axis labels	mands, e.g. plot(x,y);	<pre>expression(phi^2 + mu['i,j']))</pre>
		<pre>xlabel('\phi^2 + \mu_{i,j}')</pre>	or plot(x,y,xlab=expression(
		or xlabel('fecundity \phi')	<pre>paste('fecundity ', phi)))</pre>
		See also help tex and parts of	See also help(plotmath) and p.
		$\mathbf{doc} \ \mathbf{text_props}$ for more about	98 of the R Graphics book by Paul
		building labels using general LaTeX	Murrell for more.
		commands	
248	Change font size to 16 in plot	For the legends and numerical axis	For on-screen graphics, do
	labels	labels, use set(gca, 'FontSize',	par(ps=16) followed by e.g. a plot
		16), and for text labels on axes	command. For PostScript or PDF
		do e.g. xlabel('my x var',	plots, add a pointsize=16 argument,
		'FontSize', 16)	e.g. pdf('myfile.pdf', width=8,
			height=8, pointsize=16) (see
249	Add grid lines to plot	grid on (and grid off to turn off)	items 264 and 265) grid() Note that if you'll be
249	Add grid lines to plot	grid on (and grid off to turn on)	printing the plot, the default style
			for grid-lines is to use gray dot-
			ted lines, which are almost invis-
			ible on some printers. You may
			want to do e.g. grid(lty='dashed',
			col='black') to use black dashed
			lines which are easier to see.
250	Add a text label to a plot	<pre>text(x,y,'hello')</pre>	<pre>text(x,y,'hello')</pre>
251	Add set of text labels to a	<pre>s={'hi', 'there'};</pre>	<pre>s=c('hi', 'there');</pre>
	plot. xv and yv are vectors.	text(xv,yv,s)	text(xv,yv,s)
252	Add an arrow to current plot,	annotation('arrow', [xt xh],	arrows(xt, yt, xh, yh)
	with tail at (xt, yt) and head	[yt yh]) Note: coordinates should	
	at (xh, yh)	be normalized figure coordinates, not	
		coordinates within your displayed	
		axes. Find and download from The	
		Mathworks the file dsxy2figxy.m which converts for you, then do this:	
		<pre>[fx,fy]=dsxy2figxy([xt xh],</pre>	
		[yt yh]); annotation('arrow',	
		fx, fy)	
253	Add a double-headed arrow	annotation('doublearrow', [x0	arrows(x0, y0, x1, y1, code=3)
	to current plot, with coordi-	x1], [y0 y1]) See note in previ-	
	nates $(x0, y0)$ and $(x1, y1)$	ous item about normalized figure	
		coordinates.	
254	Add figure legend to top-left	<pre>legend('first', 'second',</pre>	legend('topleft',
	corner of plot	'Location', 'NorthWest')	<pre>legend=c('first', 'second'),</pre>
			<pre>col=c('red', 'blue'),</pre>
			pch=c('*','o'))
1	MARE AD water as we there are	u build a graph piece-by-piece, and then	

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

No.	Description	Matlab	R
255	Adding more things to a fig- ure	hold on means everything plotted from now on in that figure window is added to what's already there. hold off turns it off. clf clears the figure and turns off hold.	<pre>points() and lines() work like plot, but add to what's already in the figure rather than clearing the figure first. points and lines are basically identical, just with different default plotting styles. Note: axes are not recalculated/redrawn when adding more things to a figure.</pre>
256	Plot multiple data sets at once	plot(x,y) where x and y are 2-D matrices. Each column of x is plot- ted against the corresponding col- umn of y. If x has only one column, it will be re-used.	<pre>matplot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.</pre>
257	Plot $\sin(2x)$ for x between 7 and 18	fplot('sin(2*x)', [7 18])	<pre>curve(sin(2*x), 7, 18, 200) makes the plot, by sampling the value of the function at 200 values between 7 and 18 (if you don't specify the number of points, 101 is the default). You could do this manually yourself via commands like tmpx=seq(7,18,len=200); plot(tmpx, sin(2*tmpx)).</pre>
258	Plot color image of integer values in matrix A	<pre>image(A) to use array values as raw indices into colormap, or imagesc(A) to automatically scale values first (these both draw row 1 of the matrix at the top of the image); or pcolor(A) (draws row 1 of the matrix at the bottom of the image). After using pcolor, try the commands shading flat or shading interp.</pre>	image(A) (it rotates the matrix 90 de- grees counterclockwise: it draws row 1 of A as the left column of the im- age, and column 1 of A as the bottom row of the image, so the row number is the x coord and column number is the y coord). It also rescales colors. If you are using a colormap with k en- tries, but the value k does not appear in A, use image(A,zlim=c(1,k)) to avoid rescaling of colors. Or e.g. image(A,zlim=c(0,k-1)) if you want values 0 through $k-1$ to be plot- ted using the k colors.
259	Add colorbar legend to image plot	colorbar, after using image or pcolor.	Use filled.contour(A) rather than image(A), although it "blurs" the data via interpolation, or use levelplot(A) from the lat- tice package (see item 316 for how to load packages). To use a colormap with the latter, do e.g. levelplot(A,col.regions= terrain.colors(100)).
260	Set colormap in image	<pre>colormap(hot). Instead of hot, you can also use gray, flag, jet (the default), cool, bone, copper, pink, hsv, prism. By default, the length of the new colormap is the same as the currently-installed one; use e.g. colormap(hot(256)) to specify the number of entries.</pre>	<pre>image(A, col=terrain.colors(100)). The parameter 100 specifies the length of the colormap. Other colormaps are heat.colors(), topo.colors(), and cm.colors().</pre>

No.	Description	Matlab	R
261	Build your own colormap us-	Use an $n \times 3$ matrix; each row	Use a vector of hexadecimal strings,
	ing Red/Green/Blue triplets	gives R,G,B intensities between 0	each beginning with '#' and giving
		and 1. Can use as argument with	R,G,B intensities between 00 and FF.
		colormap. E.g. for 2 colors: mycmap	E.g. c('#80CC33','#3333B3'); can
		= [0.5 0.8 0.2 ; 0.2 0.2 0.7]	use as argument to $\mathbf{col} =$ parameter
			to image. You can build such a
			vector of strings from vectors of Red,
			Green, and Blue intensities (each
			between 0 and 1) as follows (for a
			2-color example): $r=c(0.5,0.2);$
			g=c(0.8,0.2); b=c(0.2,0.7);
			<pre>mycolors=rgb(r,g,b).</pre>

MATLAB plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:

Symbol	Color	Symbol	Marker	Symbol	Linestyle
b	blue	•	point (.)	-	solid line
g	green	0	circle (\circ)	:	dotted line
r	red	x	$cross(\times)$		dash-dot line
С	cyan	+	plus sign $(+)$		dashed line
m	magenta	*	asterisk (*)		
у	yellow	S	square (\Box)		
k	black	d	diamond (\Diamond)		
W	white	v	triangle (down) (∇)		
		^	triangle (up) (\triangle)		
		<	triangle (left) (\triangleleft)		
		>	triangle (right) (\triangleright)		
		р	pentragram star		
		h	hexagram star		

R plotting specifications for **col** (color), **pch** (plotting character), and **type** arguments, for use with **plot**, **matplot**, **points**, and **lines**:

col	Description	pch	Description	type	Description
'blue'	blue' Blue		a (similarly for other	р	points
			characters, but see '.'		
			below for an exception		
'green'	Green	19	solid circle	1	lines
'red'	Red	20	bullet (smaller circle)	b	both
'cyan'	Cyan	21	open circle	с	lines part only of "b"
'magenta'	Magenta	22	square	0	lines, points overplotted
'yellow'	Yellow	23	diamond	h	histogram-like lines
'black'	Black	24	triangle point-up	s	steps
'#RRGGBB'	hexadecimal specifica-	25	triangle point-down	S	another kind of steps
	tion of Red, Green,				
	Blue				
(Other names)	See colors() for list of	'.'	rectangle of size 0.01	n	no plotting
	available color names.		inch, 1 pixel, or 1 point		
			(1/72 inch) depending		
			on device		
			(See table on next page		
			for more)		

Rp	lotting	specifications	for lt	jy ((line-type)	argument,	for	use	with	plot,	matplot,	points,	and lin	es:
----	---------	----------------	---------------	-------------	-------------	-----------	-----	-----	------	-------	----------	---------	---------	-----

lty	Description
0	blank
1	solid
2	dashed
3	dotted
4	dotdash
5	longdash
6	twodash

R plotting characters, i.e. values for **pch** argument (from the book *R Graphics*, by Paul Murrell, Chapman & Hall / CRC, 2006)

No.	Description	Matlab	R
262	Divide up a figure window into smaller sub-figures	subplot(m,n,k) divides the current figure window into an $m \times n$ ar- ray of subplots, and draws in sub- plot number k as numbered in "read- ing order," i.e. left-to-right, top-to- bottom. E.g. subplot(2,3,4) se- lects the first sub-figure in the second row of a 2 × 3 array of sub-figures. You can do more complex things, e.g. subplot(5,5,[1 2 6 7]) se- lects the first two subplots in the first row, and first two subplots in the first row, and first two subplots in the second row, i.e. gives you a bigger subplot within a 5 × 5 array of sub- plots. (If you that command followed by e.g. subplot(5,5,3) you'll see what's meant by that.)	There are several ways to do this, e.g. using layout or split.screen, al- though they aren't quite as friendly as MATLAB 's. E.g. if you let $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, then layout(A) will divide the figure into 6 sub-figures: you can imagine the figure divide into a 3×3 matrix of smaller blocks; sub- figure 1 will take up the upper-left 2×2 portion, and sub-figures 2–6 will take up smaller portions, according to the positions of those numbers in the matrix A. Consecutive plotting com- mands will draw into successive sub- figures; there doesn't seem to be a way to explicitly specify which sub-figure to draw into next. To use split.screen, you can do e.g. split.screen(c(2,1)) to split into a 2×1 matrix of sub- figures (numbered 1 and 2). Then split.screen(c(1,3),2) splits sub- figure 2 into a 1×3 matrix of smaller sub-figures (numbered 3, 4, and 5). screen(4) will then select sub-figure number 4, and subsequent plotting commands will draw into it. A third way to accomplish this is via the commands par(mfrow=) or par(mfcol=) to split the figure win- dow, and par(mfg=) to select which sub-figure to draw into. Note that the above methods are all incompatible with each other.
263	Force graphics windows to update	drawnow (MATLAB normally only updates figure windows when a script/function finishes and returns control to the MATLAB prompt, or under a couple of other circum- stances. This forces it to update figure windows to reflect any recent plotting commands.)	R automatically updates graphics windows even before functions/scripts finish executing, so it's not neces- sary to explicitly request it. But note that some graphics functions (partic- ularly those in the lattice package) don't display their results when called from scripts or functions; e.g. rather than levelplot() you need to do print(levelplot()). Such func- tions will automatically display their plots when called interactively from the command prompt.

No.	Description	Matlab	R
264	To print/save to a PDF file	print -dpdf fname saves the con-	First do pdf('fname.pdf'). Then,
204	named fname.pdf	tents of currently active figure win- dow	do various plot('Indame.pdf'). Then, do various plotting commands to make your image, as if you were plotting in a window. Fi- nally, do dev.off() to close/save the PDF file. To print the con- tents of the active figure win- dow, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').)
265	To print/save to a PostScript file fname.ps or fname.eps	print -dps fname for black & white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsu- lated PostScript. The first two save to fname.ps, while the latter two save to fname.eps.	<pre>postscript('fname.eps'), followed by your plotting commands, fol- lowed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your fig- ure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').) You can also include the horizontal=FALSE argument with dev.copy().</pre>
266	To print/save to a JPEG file fname.jpg with jpeg qual- ity = 90 (higher quality looks better but makes the file larger)	print -djpeg90 fname	<pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>

7.2 Printing/saving graphics

No.	Description	Matlab	R
267	To display images of cellu-	Repeatedly use either pcolor or	If you simply call image repeatedly,
	lar automata or other lattice	image to display the data. Don't	there is a great deal of flicker-
	simulations while running in	forget to call drawnow as well, oth-	ing/flashing. To avoid this, after
	real time	erwise the figure window will not be	drawing the image for the first time
		updated with each image.	using e.g. image(A), from then
			on only use image(A,add=TRUE),
			which avoids redrawing the entire
			image (and the associated flicker).
			However, this will soon consume a
			great deal of memory, as all drawn
			images are saved in the image buffer.
			There are two solutions to that
			problem: (1) every k time steps, leave off the "add=TRUE" argument
			to flush the image buffer (and get
			occasional flickering), where you
			choose k to balance the flickering
			vs. memory-usage tradeoff; or
			(2) after drawing the first image,
			do dev.control(displaylist=
			'inhibit') to prohibit retaining the
			data. However, the latter solution
			means that after the simulation is
			done, the figure window will not be
			redrawn if it is resized, or temporarily
			obscured by another window. (A
			call to dev.control(displaylist=
			'enable') and then one final
			<pre>image(A) at the end of the sim-</pre>
			ulation will re-enable re-drawing
			after resizing or obscuring, without
			consuming extra memory.)

7.3 Animating cellular automata / lattice simulations

8 Working with files

No.	Description	Matlab	R
268	Create a folder (also known	mkdir dirname	dir.create('dirname')
	as a "directory")		
269	Set/change working directory	cd dirname	<pre>setwd('dirname')</pre>
270	See list of files in current	dir	dir()
	working directory		
271	Run commands in file 'foo.m'	foo	<pre>source('foo.R')</pre>
	or 'foo.R' respectively		
272	Read data from text file	A=load('data.txt') or	A=as.matrix(read.table(
	"data.txt" into matrix A	A=importdata('data.txt') Note	'data.txt')) This will ignore
		that both routines will ignore com-	comments (anything on a line
		ments (anything on a line following	following a "#" character). To ig-
		a "%" character)	nore comments indicated by "%",
			do A=as.matrix(read.table(
			'data.txt', comment.char='%'))
273	Write data from matrix A	save data.txt A -ascii	<pre>write(A, file='data.txt',</pre>
	into text file "data.txt"		<pre>ncolumn=dim(A)[2])</pre>

9 Miscellaneous

9.1 Variables

No.	Description	Matlab	R
274	Assigning to variables	x = 5	x <- 5 or $x = 5$ Note: for compatibility with S-plus, many people prefer the first form.
275	From within a function, as- sign a value to variable y in the base environment (i.e. the command prompt envi- ronment)	assignin('base', 'y', 7)	y <<- 7
276	From within a function, access the value of variable y in the base environment (i.e. the command prompt environment)	evalin('base', 'y')	get('y', envir=globalenv()) Though note that inside a function, if there isn't a local variable y, then just the expression y will look for one in the base environment, but if there is a local y then that one will be used instead.
277	Short list of defined variables	who	ls()
278	Long list of defined variables	whos	ls.str()
279	See detailed info about the variable ab	whos ab	str(ab)
280	See detailed info about all variables with "ab" in their name	whos *ab*	<pre>ls.str(pattern='ab')</pre>
281	Open graphical data editor, to edit the value of variable A (useful for editing values in a matrix, though it works for non-matrix variables as well)	openvar(A) , or double-click on the variable in the Workspace pane (if it's being displayed) of your MAT- LABdesktop	fix(A)
282	Clear one variable	clear x	rm(x)
283	Clear two variables	clear x y	rm(x,y)
284	Clear all variables	clear all	<pre>rm(list=ls())</pre>
285	See what type of object \mathbf{x} is	class(x)	class(x)
286	(Variable names)	Variable names must begin with a letter, but after that they may con- tain any combination of letters, dig- its, and the underscore character. Names are case-sensitive.	Variable names may contain letters, digits, the period, and the underscore character. They cannot begin with a digit or underscore, or with a period followed by a digit. Names are case- sensitive.
287	Result of last command	ans contains the result of the last command which did not assign its value to a variable. E.g. after 2+5; x=3, then ans will contain 7.	.Last.value contains the result of the last command, whether or not its value was assigned to a variable. E.g. after 2+5; x=3, then .Last.value will contain 3.

9.2 Strings and Misc.

No.	Description	Matlab	R
288	Line continuation	If you want to break up a MATLAB command over more than one line, end all but the last line with three periods: "". E.g.: x = 3 + 4 or x = 3 + 4	In R, you can spread commands out over multiple lines, and nothing ex- tra is necessary. R will continue read- ing input until the command is com- plete. However, this only works when the syntax makes it clear that the first line was not complete. E.g.: x = 3 + 4 works, but x = 3 + 4 does not treat the second line as a con- tinuation of the first.
289	Controlling formatting of output	format short g and format long g are handy; see help format	options(digits=6) tells R you'd like to use 6 digits of precision in values it displays (it is only a suggestion, not strictly followed)
290	Exit the program	quit or exit	q() or quit()
291	Comments	% this is a comment	# this is a comment
292	Display a string	disp('hi there') or to omit trailing newline use fprintf('hi there')	<pre>print('hi there')</pre>
293	Display a string containing single quotes	disp('It''s nice') or to omit trailing newline fprintf('It''s nice')	<pre>print('It\'s nice') or print("It's nice")</pre>
294	Give prompt and read numer- ical input from user	<pre>x = input('Enter data:')</pre>	print('Enter data:'); x=scan() But note: if in a script and you use the Edit \rightarrow Execute menu item to run it, the selected text after the scan statement will be used as source for the input, rather than keyboard.
295	Give prompt and read char- acter (string) input from user	<pre>x = input('Enter string:','s')</pre>	<pre>x = readline('Enter string:')</pre>
296	Concatenate strings	['two hal' 'ves']	<pre>paste('two hal', 'ves', sep='')</pre>
297	Concatenate strings stored in a vector	<pre>v={'two ', 'halves'}; strcat(v{:}) But note that this drops trailing spaces on strings. To avoid that, instead do strcat([v{:}])</pre>	<pre>v=c('two ', 'halves'); paste(v, collapse='')</pre>
298	Extract substring of a string	<pre>text1='hi there';</pre>	<pre>text1='hi there';</pre>
299	Determine whether elements of a vector are in a set, and give positions of correspond- ing elements in the set.	<pre>text2=text(2:6) x = {'a', 'aa', 'bc', 'c'}; y = {'da', 'a', 'bc', 'a', 'bc', 'aa'}; [tf, loc]=ismember(x,y) Then loc contains the locations of last occurrences of elements of x in the set y, and 0 for unmatched elements.</pre>	<pre>text2=substr(text1,2,6) x = c('a', 'aa', 'bc', 'c'); y = c('da', 'a', 'bc', 'a', 'bc', 'aa'); loc=match(x,y) Then loc contains the locations of first oc- curences of elements of x in the set y, and NA for unmatched elements.</pre>

No.	Description	Matlab	R
300	Convert number to string	num2str(x)	as.character(x)
301	Use sprintf to create a formatted string. Use %d for integers ("d" stands for "dec- imal", i.e. base 10), %f for floating-point numbers, %e for scientific-notation floating point, %g to automatically choose %e or %f based on the value. You can spec- ify field-widths/precisions, e.g. %5d for integers with padding to 5 spaces, or %.7f for floating-point with 7 digits of precision. There are many other options too; see the docs.	<pre>x=2; y=3.5; s=sprintf('x is %d, y=%g', x, y)</pre>	<pre>x=2; y=3.5 s=sprintf('x is %d, y is %g', x, y)</pre>
302	Machine epsilon ϵ_{mach} , i.e. difference between 1 and the next largest double-precision floating-point number	eps (See help eps for various other things eps can give.)	.Machine\$double.eps
303	Pause for x seconds	pause(x)	Sys.sleep(x)
304	Wait for user to press any key	pause	Don't know of a way to do this in R, but scan(quiet=TRUE) will wait until the user presses the Enter key
305	Measure CPU time used to do some commands	<pre>t1=cputime;commands ; cputime-t1</pre>	<pre>t1=proc.time();commands ; (proc.time()-t1)[1]</pre>
306	Measure elapsed ("wall- clock") time used to do some commands	<pre>tic;commands ; toc or t1=clock;commands ; etime(clock,t1)</pre>	<pre>t1=proc.time();commands ; (proc.time()-t1)[3]</pre>
307	Print an error message an in- terrupt execution	error('Problem!')	<pre>stop('Problem!')</pre>
308	Print a warning message	<pre>warning('Smaller problem!')</pre>	<pre>warning('Smaller problem!')</pre>
309	Putting multiple statements on one line	Separate statements by commas or semicolons. A semicolon at the end of a statement suppresses display of the results (also useful even with just a single statement on a line), while a comma does not.	Separate statements by semicolons.
310	Evaluate contents of a string \mathbf{s} as command(s).	eval(s)	<pre>eval(parse(text=s))</pre>
311	Get a command prompt for debugging, while executing a script or function. While at that prompt, you can type ex- pressions to see the values of variables, etc.	Insert the command keyboard in your file. Note that your prompt will change to K>>. When you are done debugging and want to continue ex- ecuting the file, type return.	Insert the command browser() in your file. Note that your prompt will change to Browse[1]>. When you are done debugging and want to continue executing the file, either type c or just press return (i.e. enter a blank line). Note, if you type n, you enter the step debugger.

No.	Description	Matlab	R
312	Show where a command is	which sqrt shows you where the file defining the sqrt function is (but note that many basic functions are "built in," so the MATLAB func- tion file is really just a stub con- taining documentation). This is use- ful if a command is doing something strange, e.g. sqrt isn't working. If you've accidentally defined a variable called sqrt, then which sqrt will tell you, so you can clear sqrt to erase it so that you can go back to using the function sqrt.	R does not execute commands directly from files, so there is no equivalent command.
313	Query/set the search path.	path displays the current search path (the list of places MATLAB searches for commands you enter). To add a directory ~/foo to the beginning of the search path, do addpath ~/foo -begin or to add it to the end of the path, do addpath ~/foo -end (Note: you should generally add the full path of a directory, i.e. in Linux or Mac OS-X something like ~/foo as above or of the form /usr/local/lib/foo, while under Windows it would be something like C:/foo)	R does not use a search path to look for files.
314	Startup sequence	If a file startup.m exists in the startup directory for MATLAB, its contents are executed. (See the MATLAB docs for how to change the startup directory.)	If a file .Rprofile exists in the current directory or the user's home directory (in that order), its contents are sourced; saved data from the file .RData (if it exists) are then loaded. If a function .First() has been defined, it is then called (so the obvious place to define this function is in your .Rprofile file).
315	Shutdown sequence	Upon typing quit or exit, MATLAB will run the script finish.m if present somewhere in the search path.	Upon typing q() or quit(), R will call the function .Last() if it has been de- fined (one obvious place to define it would be in the .Rprofile file)

No.	Description	Matlab	R
316	Install and load a package.	MATLAB does not have packages. It	To install e.g. the deSolve pack-
		has toolboxes, which you can pur-	age, you can use the command
		chase and install. "Contributed"	<pre>install.packages('deSolve').</pre>
		code (written by end users) can sim-	You then need to load the package
		ply be downloaded and put in a di-	in order to use it, via the command
		rectory which you then add to MAT-	library('deSolve'). When running
		LAB's path (see item 313 for how to	R again later you'll need to load the
		add things to MATLAB's path).	package again to use it, but you
			should not need to re-install it. Note
			that the lattice package is typically
			included with binary distributions of
			R, so it only needs to be loaded, not
			installed.

10 Spatial Modeling

No.	Description	Matlab	R
317	Take an $L \times L$ matrix A of	A = (A (rand(L) < p))*1;	$A = (A (matrix(runif(L^2),L))$
	0s and 1s, and "seed" frac-		< p))*1
	tion p of the 0s (turn them		
	into 1s), not changing entries		
	which are already 1.		
318	Take an $L \times L$ matrix A of 0s	A = (A & (rand(L) < 1-p))*1;	$A = (A \& (matrix(runif(L^2),L))$
	and 1s, and "kill" fraction p		< 1-p))*1
	of the 1s (turn them into 0s),		
	not changing the rest of the		
	entries		
319	Do "wraparound" on a coor-	<pre>mod(newx-1,L)+1 Note: for porta-</pre>	((newx-1) %% L) + 1 Note: for
	dinate \mathbf{newx} that you've al-	bility with other languages such as	portability with other languages such
	ready calculated. You can	C which handle MOD of negative	as C which handle MOD of nega-
	replace newx with $\mathbf{x} + \mathbf{dx}$ if	values differently, you may want to	tive values differently, you may want
	you want to do wraparound	get in the habit of instead doing	to get in the habit of instead doing
	on an offset x coordinate.	mod(newx-1+L,L)+1	((newx-1+L)%%L) + 1
320	Randomly initialize a portion	dx=ix2-ix1+1; dy=iy2-iy1+1;	dx=ix2-ix1+1; dy=iy2-iy1+1;
	of an array: set fraction p of	A(iy1:iy2,ix1:ix2) =	A[iy1:iy2,ix1:ix2] =
	sites in rows $\mathbf{iy1}$ through $\mathbf{iy2}$	(rand(dy,dx) < p0)*1;	<pre>(matrix(runif(dy*dx),dy) <</pre>
	and columns $\mathbf{ix1}$ through $\mathbf{ix2}$		p0)*1
	equal to 1 (and set the rest of		
	the sites in that block equal		
	to zero). Note: this assume		
	iy1 < iy2 and $ix1 < ix2$.		

Index of MATLAB commands and concepts

', 77 ,, 309 .*, 76 ..., 288 ./, 82 .^, 86 /, 81 :, 12–14 ;, 309 =, 274 [, 6-8 %, 291 &, 175, 176 [^], 50, 84, 85 1, 78, 83**{** 45 abs, 51, 70 acos, 56acosh, 58addpath, 313 all, 177 angle, 71 annotation, 252, 253 ans, 287 any, 178 arrows in plots, 252, 253 asin, 56 asinh, 58 assignin, 275 atan, 56atanh, 58 average, see mean axis, 244 bar, 233, 235, 236 binocdf, 218 binopdf, 211 binornd, 202 boolean tests scalar, 175 vector, 176-178 break, 180 cd, 269 ceil, 62 **cell**, 44 cell arrays, 44 extracting elements of, 45 cellular automata animation, 267 **chol**, 92

class, 285 clear. 282-284 clf, 255 clock, 306 close, 228 colon, see:colorbar, 259 colormap building your own, 261 colormap, 260, 261 column vector, 7 comments, 291 complex numbers, 69–74 cond, 96-98conj, 72 continue, 180 contour, 243 conv, 154 corr, 110-115 cos, 55 cosh, 57 cov, 108, 109 cputime, 305csape, 167, 169, 170 cubic splines, 168, 169 natural, 167 not-a-knot, 171 periodic, 170 cumprod, 124 cumsum, 120-123 cumulative distribution functions binomial, 218 continuous uniform on interval (a, b), 222 discrete uniform from 1..n, 223 exponential, 220 normal, 221 Poisson, 219 debugging, 311 diag, 22, 23 diff, 126 differential equations, see ode45 dir, 270 disp, 292, 293 doc. 4drawnow, 263, 267 echelon form, see matrix eig, 88

element-by-element matrix operations, see ma- trix else, 174 elseif, 174 end, 36eps, 302 erf, 64erfc. 65erfcinv, 67 erfinv, 66 error, 307errorbar, 237, 238 etime, 306 eval. 310 evalin, 276 exit, 290 **exp**, 52 expcdf, 220 expm, 119 exppdf, 213 exprnd, 204 eye, 21 figure, 224, 225 file reading data from, 273 running commands in, 271 text reading data from, 272 saving data to, 273 find, 149-151 finish.m, 315 floor, 61 fminbnd, 157, 158 fminsearch, 159, 160 font size in plots, 248 for, 172 format, 289 fplot, 257 fprintf, 292, 293 function multi-variable minimization, 159 minimization over first parameter only, 158 minimization over only some parameters, 160single-variable minimization, 157 user-written, 182 returning multiple values, 183 fzero, 156

gcf, 226 get, 227 Greek letters in plot labels, 247 grid, 249 help, 1-3helpbrowser, 4 helpdesk, 4 hilb. 42 hist, 152, 153, 234, 235 hold, 255 identity, see matrix if, 173-175 imag, 74 image, 258, 267 imagesc, 258 importdata, 272 ind2sub, 32 indexing matrix, 10 with a single index, 11 vector, 9 input, 294, 295 inv, 80 inverse, see matrix ismember, 299 keyboard, 311 legend, 254 length, 139, 141 linspace, 15 load, 272, 273 log, 53 log10, 54 log2, 54 loglog, 232 logspace, 16 lookfor, 5 lu, 89 matrix, 8 boolean operations on, 150, 151 changing shape of, 39 Cholesky factorization, 92 condition number, 96-98 containing all indentical entries, 20 containing all zeros, 19 converting row, column to single index, 33 converting single-index to row, column, 32 cumulative sums of all elements of, 123 cumulative sums of columns, 121

INDEX OF MATLAB COMMANDS AND CONCEPTS

cumulative sums of rows, 122 diagonal, 22 echelon form, 79 eigenvalues and eigenvectors of, 88 equation solving, 78 exponential of, 119 extracting a column of, 27 extracting a rectangular piece of, 30 extracting a row of, 28 extracting specified rows and columns of, 31 "gluing" together, 24, 25 identity, 21 inverse, 80 lower-triangular portion of, 40 LU factorization. 89 minimum of values of, 129 minimum value of each column of, 130 minimum value of each row of, 131 modifying elements given lists of rows and columns, 34 multiplication, 75 element-by-element, 76 N-dimensional, 43 norm, 95 powers of, 85 QR factorization, 93 rank, 87 re-shaping its elements into a vector, 29 Schur decomposition, 91 singular value decomposition, 90 size of, 136-138, 140, 141 sum of all elements, 116 of columns of, 117 of rows of, 118 transpose, 77 upper-triangular portion of, 41 max, see min mean, 99-101 mesh, 243 meshgrid, 110, 242 min, 128-131, 133-135 mind, 132 mkdir, 268 mnpdf, 217 mnrnd, 209, 210 mod. 59. 319 modulo arithmetic, 59, 319 multiple statements on one line, 309 nchoosek, 68 norm, 94, 95

normcdf, 221 normpdf, 214 normrnd. 208 num2str, 300 numel, 140 ode45, 184-186 ones, 18, 20 openvar, 281 optimization, 157-160 path, 313 pause, 303, 304 pcolor, 243, 258, 267 perform some commands with probability p, 196 permutation of integers 1..n, 197 plot, 229-231, 256 Greek letters in axis labels, 247 plot3, 240 poisscdf, 219 poisspdf, 212 poissrnd, 203 polar, 239 polyfit, 163-165 polynomial least-squares fitted, 164–166 multiplication, 154 roots of, 155 ppval, 167, 169, 170 print, 264-266 probability density functions binomial, 211 continuous uniform on interval (a, b), 215 discrete uniform from 1..n, 216 exponential, 213 multinomial, 217 normal, 214 Poisson, 212 qr, 93 quad, 161 quit, 290 rand, 187-195, 201 random values Bernoulli, 193 binomial, 202 continuous uniform distribution on interval (a, b), 190, 207continuous uniform distribution on interval (0,1), 187-189discrete uniform distribution from a..b, 195 discrete uniform distribution from 1..k, 192, 205, 206

INDEX OF MATLAB COMMANDS AND CONCEPTS

discrete uniform distribution, 191 exponential, 204 k unique values sampled from integers 1..n, 198multinomial, 209, 210 normal, 208 Poisson, 203 setting the seed, 201 randperm, 197, 198 randsample, 198-200 rank, 87 rcond, 96 real, 73 reshape, 39, 43 roots of general single-variable function, 156 polynomial, 155 roots, 155 round, 60row vector, 6 rref, 79sampling values from a vector, 199, 200 save, 273 schur, 91 semilogx, 232 semilogy, 232 set, 248 shading, 258sign, 63 sin, 55sinh, 57 size, 136-138 slice, 243 sort, 142, 143, 198 sortrows, 144-147 spline, 171 splines, see cubic splines sprintf, 301 sqrt, 49 stairs, 239 standard deviation, see std startup.m, 314 std, 102-104 stem, 239 stop, 307strcat, 297 string concatenation, 296 converting number to, 300 substrings, 298 struct, 47 sub2ind, 33, 34

subplot, 262 sum, 116-118, 176 surf, 241, 242 surfc, 243 surfl, 243 svd, 90 switch, 181 tan, 55 tanh. 57 text, 250, 251 tic, 306 title, 245 toc, 306 transpose, see matrix trapz, 162 tril, 40 triu, 41 unidcdf, 223 unidpdf, 216 unidrnd, 205, 206 unifcdf, 222 unifpdf, 215 unifrnd, 207 unique, 152, 235 var, 105-107 variables assigning, 274 assigning in base environment from function, 275 evaluating from base environment within function. 276 names, 286 variance, see var vector boolean operations on, 148, 149 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 153 counts of discrete values in, 152 cumulative sum of elements of, 120 differences between consecutive elements of, 126minimum of values of, 128 norm, 94 position of first occurance of minimum value in. 135 reversing order of elements in, 26 size of, 139sum of all elements, 116 truncating, 35

INDEX OF MATLAB COMMANDS AND CONCEPTS

warning, 308 waterfall, 243 which, 312 while, 179 who, 277 whos, 278-280 xlabel, 246-248

ylabel, 246, 247

zeros, 17, 19

Index of R commands and concepts

*, 84 1.82 :, 12, 13 ;, 309 <-, 274 <<-, 275 =, 274 ?, 1, 2 [[, 45] #, 291 %%, 59, 319 &, 175, 176 [^], 50, 86 abs, 51, 70 acos, 56acosh, 58 all, 177 any, 178 apply, 104, 106, 107, 130, 131 Arg, 71 array, 43 arrows, 252, 253 as.character, 300 as.numeric, 152 asin, 56 asinh, 58 atan, 56 atanh, 58 average, see mean barplot, 233, 235 boolean tests scalar, 175 vector, 176-178 break, 180 browser, 311 c, 6, 7 cbind, 24, 34 ceiling, 62 cellular automata animation, 267 chol, 92 choose, 68 class, 285 cloud, 240 coef, 163, 164, 166 colMeans, 100 colon, see:colormap building your own, 261

for image, 260 colSums, 117 column vector, 7 comments, 291 complex numbers, 69–74 Conj, 72 contour, 243 convolve, 154 cor, 111-115 cos, 55 cosh, 57 cov, 108-110 cubic splines, 168, 169, 171 natural, 167 periodic, 170 cummax, 125 cummin, 125 cumprod, 124 cumsum, 120-123 cumulative distribution functions binomial, 218 continuous uniform on interval (a, b), 222 discrete uniform from 1..n, 223 exponential, 220 normal, 221 Poisson, 219 curve, 257data.frame, 47 dbinom, 211 debugging, 311 dev.control, 264, 265, 267 dev.copy, 264, 265 dev.cur(), 226 dev.list, 227 dev.new, 224 dev.off, 228, 264-266 dev.set, 225 dexp, 213 diag, 21-23 diff, 126 differential equations, see lsoda dim, 39, 138, 141 dir, 270 dir.create, 268 dmultinom, 217 dnorm, 214 dpois, 212 dunif, 215

echelon form, see matrix eig, 88 element-by-element matrix operations, see ma- trix else, 174 errbar, 237, 238 eval, 310 exp. 52 expand, 89 expand.grid, 243 expm, 119 file reading data from, 273 running commands in, 271 text reading data from, 272 saving data to, 273 filled.contour, 259 .First, 314 fix. 281 floor, 61 font size in plots, 248 for, 172 function multi-variable minimization, 159 minimization over first parameter only, 158 minimization over only some parameters, 160single-variable minimization. 157 user-written, 182 returning multiple values, 183 get, 276 globalenv, 276 graphics not being displayed from scripts/functions,

not being displayed from scripts/funct 263 Greek letters in plot labels, 247 grid, 249 help, 1, 2 help.search, 5 help.start, 4 Hilbert, 42 hist, 153, 233, 234, 236 identity, see matrix if, 173-175 ifelse, 127 Im, 74

image, 258, 267 indexing matrix, 10 with a single index, 11 vector, 9 install.packages, 316 integrate, 161 inverse, see matrix jpeg, 266 kappa, 97 .Last, 315 .Last.value, 287 lattice package, 243, 259, 263, 316 layout, 262 legend, 254length, 35, 36, 139, 140 levelplot, 259, 263 library, 3, 316 lines, 255lists, 44 extracting elements of, 45 lm, 163, 164, 166 log, 53 log10, 54 log2, 54 lower.tri, 41 ls.277 ls.str, 278, 280 lsoda, 184-186 .Machine\$double.eps, 302 match, 299 matplot, 256 matrix, 8 boolean operations on, 150, 151 changing shape of, 39 Cholesky factorization, 92 condition number, 96–98 containing all indentical entries, 20 containing all zeros, 19 converting row, column to single index, 33 converting single-index to row, column, 32 cumulative sums of all elements of, 123 cumulative sums of columns, 121 cumulative sums of rows, 122 diagonal, 22 echelon form, 79 eigenvalues and eigenvectors of, 88 equation solving, 78 exponential of, 119

extracting a column of, 27 extracting a rectangular piece of, 30 extracting a row of, 28 extracting specified rows and columns of, 31 "gluing" together, 24, 25 identity, 21 inverse, 80 lower-triangular portion of, 40 LU factorization, 89 minimum of values of, 129 minimum value of each column of, 130 minimum value of each row of, 131 modifying elements given lists of rows and columns. 34 multiplication, 75 element-by-element, 76 N-dimensional, 43 norm, 95 powers of, 85 QR factorization, 93 rank, 87 re-shaping its elements into a vector, 29 Schur decomposition, 91 singular value decomposition, 90 size of, 136–138, 140, 141 sum of all elements, 116 of columns of, 117 of rows of, 118 transpose, 77 upper-triangular portion of, 41 matrix, 8, 19, 20 max, see min mean, 99 min, 128-131, 134 Mod. 70 modulo arithmetic, 59, 319 multiple statements on one line, 309 names, 46, 152 ncol, 137 next, 180 norm, 94, 95 nrow, 136 optim, 159, 160 optimization, 157–160 optimize, 157, 158 options digits=, 289 order, 144-147 outer, 242

packages

installing, 316 loading, 316 par, 248 par mfcol=, 262 mfrow=, 262 parse, 310 paste, 296, 297 pbinom, 218 pdf, 248, 264 perform some commands with probability p, 196 permutation of integers 1..n, 197 persp, 241, 242 pexp, 220 pie, 239 plot, 229-232 Greek letters in axis labels, 247 main=, 245 sub=, 245 xlab=, 246, 247 xlim=, 244 ylab=, 246, 247 vlim=, 244 pmin, 132, 133 pnorm, 64, 65, 221 points, 255polynomial least-squares fitted, 164–166 multiplication, 154 roots of, 155 polyreg, 165 polyroot, 155 postscript, 265 ppois, 219 print, 263, 292, 293 probability density functions binomial, 211 continuous uniform on interval (a, b), 215 discrete uniform from 1..n, 216 exponential, 213 multinomial, 217 normal, 214 Poisson, 212 proc.time, 305, 306 punif, 222q, 290 qnorm, 66, 67 gr, 87, 93 quartz, 224 quit, 290 **rand**, 194

random values Bernoulli, 193 binomial, 202 continuous uniform distribution on interval (a, b), 190, 207continuous uniform distribution on interval (0,1), 187, 189continuous uniform distribution on inteval (0,1), 188discrete uniform distribution from a..b, 195 discrete uniform distribution from 1..k, 192, 205, 206 discrete uniform distribution, 191 exponential, 204 k unique values sampled from integers 1..n, 198multinomial, 209, 210 normal, 208 Poisson, 203 setting the seed, 201 rbind, 25 rbinom, 202 rcond, 96, 98 .RData, 314 Re, 73 read.table, 272, 273 readline, 295 rep, 17, 18 rev, 26 rexp, 204 rgb, 261 rm, 282-284 rmultinom, 209, 210 rnorm, 208 roots of general single-variable function, 156 polynomial, 155 round, 60row vector, 6 rowMeans, 101 rpois, 203 .Rprofile, 314 runif, 187-193, 195, 207 sample, 197-200, 205, 206 sampling values from a vector, 199, 200 scan, 294, 304 Schur, 91 sd, 102-104 seq, 14-16 set.seed, 201 setwd, 269 sign, 63

sin. 55 sinh, 57 solve, 78, 80, 81, 83 sort, 142, 143 source, 271 spline, 167, 168, 170 splines, see cubic splines split.screen, 262 sprintf, 301 sqrt, 49 standard deviation, see sd str, 279 string concatenation, 296 converting number to, 300 substrings, 298 substr, 298 sum, 116, 118, 176 svd, 90 switch. 181 symbols, 243 Sys.sleep, 303 t, 77 table, 152, 235 $\tan, 55$ tanh, 57 text, 250, 251 title, 245, 246 transpose, see matrix uniroot, 156 upper.tri, 40 var, 105-107, 109 variables assigning, 274 assigning in base environment from function, 275 evaluating from base environment within function, 276 names, 286 variance, see var vector boolean operations on, 148, 149 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 153 counts of discrete values in, 152 cumulative sum of elements of, 120 differences between consecutive elements of, 126minimum of values of, 128 norm, 94

position of first occurance of minimum value in, 135 reversing order of elements in, 26 size of, 139sum of all elements, 116 truncating, 35 vector, 44warning, 308 which, 149 – 151which.max, see which.min $\texttt{which.min},\,135$ while, 179windows, 224wireframe, 243 write, 273**x11**, 224