
UML computer project 2

• Handed out: April 14 (Thu)

• Hand in: May 2 (Mo) noon the latest,
by email to michael.gutmann@helsinki.fi

• You can do the exercises in pairs. Submit in that case only one report.
Please write in the report the names and the student numbers of both
of you.

• Submit your report as a single pdf containing figures and discussion.
In the report, explain what you are doing and why you are doing it.
Don’t put figures in the report without explaining the result they show.
The report should be enjoyable to read; remember that the grading
will be based on the report.

• Submit the source code as well (separate attachment, not as appendix
in the report). The code needs to be such that running it for every
exercise will produce the figures in the report.

• Each exercise in the project gives you points. They will, at the end,
determine your grade for the computer project. Each exercise in all
the assignments gives you an equal amount of points.
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Exercise 1: Basics of ICA

Figure 1 shows data which follows a uniform distribution of mean zero and
variance one, as well as that data after the linear transformations A1 and
A2,

A1 =

(

0.4483 −1.6730
2.1907 −1.4836

)

, A2 =

(

0 −1.7321
1.7321 −2.0

)

. (1)

The data contains 5000 data points. In the following, we denote by s the ran-
dom vector corresponding to the original data (left plot in the figure) and by
x1 = A1s and x2 = A2s the random vectors after the linear transformation.

1. For a random vector n ∈ R
2 which follows a standard Gaussian dis-

tribution (mean zero, identity covariance matrix), make scatter plots
showing y1 = A1n and y2 = A2n (use again 5000 data points). De-
scribe the data after the linear transformations (distribution, mean,
covariance matrix).

2. Whiten the four data sets corresponding to x1, x2, y1 and y2, and
show scatter plots of the whitened data. Compare the whitened data
to the original data before the linear transformations. How do the
whitening matrices relate to the matrices Ai? (p. 34, section 4.5 in
the lecture notes is about whitening. After whitening, the uniform
data should look like the data in Fig.6.7 in the lecture notes.)

3. For all four data sets: project the data onto the unit vector w which
forms an angle α, 0 ≤ α ≤ π, with the x-axis, and compute the kurtosis
of the projection in function of α (You should get four curves, each like
the curve shown in Fig.7.11). For which angles is the absolute value
of the kurtosis maximized? Explain the qualitative difference in the
curves for uniform data and Gaussian data.

4. How can you obtain an estimate for the Ai using the whitening ma-
trices and the optimal projection vectors (those which maximize the
absolute value of the kurtosis)? What are the estimates you obtain for
A1 and A2?

5. Explain why finding an estimate for A1 and A2 is possible for the
uniform data but not for the Gaussian data.
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Figure 1: For exercise 1. Left: data points that follow a uniform distribution
of mean zero and variance one. Middle: The data points after transformation
with A1. Right: The data points after transformation with A2. In each of
the three figures, 5000 data points are shown.

Exercise 2: Kurtosis based ICA

Let s = (s1, . . . , s32)
T be a random vector which consists of 32 independent

random variables, all of which follow a Laplacian distribution of mean zero
and variance one (s = 1/

√
2∗sign(u)∗log(1−2|u|) follows such a distribution

if u is a uniform random variable on [−0.5 0.5)).

1. Generate 10000 samples of s. Compute an estimate of the probability
density function (pdf) of ym

ym =
ỹm

√

Var(ỹ)
ỹm =

m
∑

i=1

si (2)

for m = 1, 2, 4, 8, 16, 32. The variable ym is the sum of the m first si,
normalized to unit variance. Show the logarithm of the six pdfs and
compare the curves to the log-distribution of a Gaussian. (Hint: the
estimates for the pdfs can be obtained via a histogram.)

2. Compute the kurtosis of ym in function of m ∈ {1, . . . , 32}. Explain
the behavior of the curve. Relate it also to the log-pdfs which you
obtained in the previous question.

3. Implement the kurtosis-based ICA algorithm in section 7.4.3 in the
lecture notes. Test it on one of the data sets of Exercise 1. The algo-
rithm should return the demixing matrix as well as the values of the
objective function during the optimization. Take care to implement a
proper stop criterion in the optimization.

4. Let y = (y1, . . . , y32)
T . The transformation s → y can be written as

linear transformation A. What is the formula to obtain A ?
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5. Use ICA to get an estimate Â of A from the observations of y and
s alone. What is the average squared error 1/(322)

∑

ij(Aij − Âij)
2?

How large is the error if you use 20000 samples instead of 10000?
(Note: to compute the error, you must take into account that ICA
delivers only results up to a permutation matrix and sign flips of the
columns of Â, see Section 6.3.3 in the lecture notes)

Exercise 3: Separating mixtures of images

In this exercise, we work with the ICA model x = As for s ∈ R
6 and x ∈ R

6:
I took 6 different images and mixed them randomly together. The size of
each image was 300px×300px, and for the mixing, I stacked the columns of
each image on each other to form a long 90000 dimensional (row) vector. The
file mixed_images.txt contains the resulting mixture. The data matrix X
has dimension 6× 90000. The goal of this exercise is to recover the original
images from the mixture.

1. Load the data and visualize each mixture as an image of size 300px×
300px. In ICA, the observations (data points) are assumed identically
distributed (see likelihood based ICA, section 8.1). How well do we
respect this assumption in this exercise? Explain what the random
vector s is representing.

2. Visualize the whitened data. Compared to the mixture, can you al-
ready better guess what the original images are like?

3. Implement the ICA algorithm below. It is a modified version of the one
in Table 8.1 in the lecture notes. Test it on some data from Exercise
1 (show also the values of F during the optimization and the values of
γi after the optimization).
ICA algorithm:

(a) Whiten the data (the corresponding random vector is denoted by
z ∈ R

n below).

(b) Initialization: random for the n×n matrix B, γi = 0 (i = 1 . . . n),
µg = 0.8, µ = 0.2 (this are just possible values which worked fine
for me).

(c) Compute y = Bz.

(d) Update γi:

γi ← (1− µg)γi + µg E(− tanh(yi)yi + (1− tanh(yi))
2)

If γi > 0 define gi(u) = −2 tanh(u) , else as gi(u) = tanh(u)− u

(e) Compute the objective F = −∑

i γi E(log cosh(yi))
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(f) Update B by

B ← B + µ(I + E(g(y)yT ))B

where g(y) = (g1(y1), . . . , gn(yn))
T and I is the identity matrix.

(g) Orthonormalize B.

(h) Check convergence: If the change in F is smaller than some small
threshold go back to step (c). Else return B and all the values of
F .

4. Apply the ICA algorithm to demix the images. Show the resulting
images and comment on the quality of the demixing (Note: you may
need to flip the signs of the obtained images). Look at the values of
the learned γi: what does this imply for the six different distributions
of the sources si ?
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