
Appendix B

Solutions

Ex. 1 Gram Schmidt

1. Two vectors u1 and u2 of Rn are orthogonal if their inner product equals zero. If either one of the vectors is a zero
vector, the vectors are trivially orthogonal to each other. Hence, assume that both u1 and u2 are nonzero. Because

u
T
1 u2 = u

T
1 (a2 − uT

1 a2

uT
1 u1

u1)

= u
T
1 a2 − uT

1 a2

uT
1 u1

u
T
1 u1

= u
T
1 a2 − u

T
1 a2

= 0,

the vectors u1 and u2 are orthogonal.

Let v be a linear combination of a1 and a2, i.e. v = αa1 + βa2 for some real numbers α and β. Since u1 and u2

were defined in terms of a1 and a2, we can write v as

v = αa1 + βa2

= αu1 + β(u2 +
uT
1 a2

uT
1 u1

u1)

= αu1 + βu2 + β
uT
1 a2

uT
1 u1

u1

= (α+ β
uT
1 a2

uT
1 u1

)u1 + βu2,

where α+ β((uT
1 a2)/(u

T
1 u1)) and β are real numbers, so v can be written in terms of u1 and u2.

2. Recall that when showing things by induction, one has first to show that the claim holds for the first possible value,
and then, that, if the claim holds for some value k, it holds also for value k+1. Since orthogonality is a property of two
vectors, the first possible value is two, which was proved in part 1 of this exercise. So we assume that u1,u2, . . . ,uk

are orthogonal vectors and prove that, given this assumption, the vectors u1,u2, . . . ,uk,uk+1 are orthogonal as well:

uk+1 = ak+1 −
uT
1 ak+1

uT
1 u1

u1 −
uT
2 ak+1

uT
2 u2

u2 − . . .− uT
k ak+1

uT
kuk

uk, (B.1)

and for all i = 1, 2, . . . , k

u
T
i uk+1 = u

T
i ak+1 −

uT
1 ak+1

uT
1 u1

u
T
i u1 − . . .− uT

k ak+1

uT
k uk

u
T
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By assumption uT
i uj = 0 if i 6= j, so

u
T
i uk+1 = u

T
i ak+1 − 0− . . .− uT

i ak+1

uT
i ui

u
T
i ui . . .− 0

= u
T
i ak+1 − u

T
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= 0,
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which proves the claim. Notice that if vector aj is a linear combination of a1, a2, . . . ,aj−1, the vector uj given by
Gram Schmidt process is zero vector and the process cannot be applied for the other vectors aj+1,aj+2, . . . ,ak. If
k > n, the vector an+1 is automatically a linear combination of a1,a2, . . . ,an, since there cannot exist a set of k > n
linearly independent vectors. On the other hand, if k = n and a1,a2, . . . ,ak are linearly independent, Gram Schmidt
process gives an orthogonal basis of Rn.

For the other part, notice that the case of one vector is trivial and the case of two vectors was prover in part 1
of the exercise. Using induction, we assume that the claim holds for k vectors and we will prove it for k + 1 vectors:
Let v be a linear combination of a1,a2, . . . ,ak+1, ie. v = α1a1 +α2a2 + . . .+αkak +αk+1ak+1 for some real numbers
α1, α2, . . . , αk+1. Using the induction assumption, v can be written as

v = β1u1 + β2u2 + . . .+ βkuk + αk+1ak+1,

for some real numbers β1, β2, . . . , βk Furthermore, using equation (B.1), v can be written as

v = β1u1 + . . .+ βkuk + αk+1uk+1 + αk+1
uT
1 ak+1

uT
1 u1

u1

+ . . .+ αk+1
uT
k ak+1

uT
k uk

uk.

Denoting γi = βi + αk+1(u
T
i ak+1)/(u

T
i ui), v is then

v = γ1u1 + γ2u2 + . . .+ γkuk + αk+1uk+1,

which proves the claim.

Ex. 2 Linear Transforms

1. Let a1 and a2 be vectors that span a parallelogram. From geometry we know that the area of parallelogram is base
times height, which is equivalent to length of the base vector times length of the height vector. Denote this by
S2 = ||a1||2||u2||2, where is a1 is the base vector and u2 is the height vector which is orthogonal to the base vector.
Using Gram Schmidt process for vectors a1 and a2 in that order, we get the vector u2 as the second output.
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Therefore ||u2||2 can be written as
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=

(
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.

Thus, S2 is:

S2 = ||a1||2||u2||2
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1 a1)(u

T
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T
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2. As requested, let

A =
(
a1 a2

)
=

(
a11 a12

a21 a22

)

.

The determinant of A is |A| = a11a22 − a12a21. By multiplying out (aT
2 a2), (a

T
1 a1) and (aT

1 a2)
2, we get

a
T
2 a2 = a2

12 + a2
22

a
T
1 a1 = a2

11 + a2
21

(aT
1 a2)

2 = (a11a12 + a21a22)
2 = a2

11a
2
12 + a2

21a
2
22 + 2a11a12a21a22.

Therefore the area equals

S2 = (a2
12 + a2

22)(a
2
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21)− (aT
1 a2)

2

= a2
12a

2
11 + a2

12a
2
21 + a2

22a
2
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22a
2
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(a2
12a

2
11 + a2

21a
2
22 + 2a11a12a21a22)

= a2
12a

2
21 + a2

22a
2
11 + 2a11a12a21a22

= (a11a22 − a12a21)
2,

which equals |A|2.
3. Denote A = (a1 a2). A rectangle with the same area as Ux is spanned by vectors (∆1 0)T and (0 ∆2)

T. Under the
linear transform A these spanning vectors become ∆1a1 and ∆2a2. Therefore a parallelogram with the same area as
Uy is spanned by ∆1a1 and ∆2a2.

Ux

x2

x1 +∆1

x2 +∆2

x1

x1

x1 +∆1

x2 +∆2

x2

a1

a2

Uy

Using the part 2 of this exercise it is easy to calculate the area AUy of Uy as the determinant of (∆1a1 ∆2a2):

AUy = det

(
∆1a11 ∆2a12

∆1a21 ∆2a22

)

= ∆1∆2a11a22 −∆1∆2a12a21

= ∆1∆2(a11a22 − a12a21)

= ∆1∆2|A|

Therefore the area of Uy is the area of Ux times |A|.
4. This explanation is intuitive and doesn’t contain any real proof. On the left hand side of the change of variables

formula, y runs over the region Uy . On the right hand side of the formula, x runs over the set Ux = A−1(Uy) so that
Ax runs also over Uy . Hence, the functions on both sides of the equations take on the same values. In part 3 of this
exercise it was shown that the area of Uy is the area of Ux times |A|. Hence, we need to use the compensating factor
|A| when we integrate over A−1(Uy).

Ex. 3 Eigenvalue Decomposition
This exercise is very important and will be used many times in the future exercises.

1. Let A be an n× n matrix and u1 and u2 be such vectors of Rn that Au1 = λu1 and Au2 = λu2 for some real number
λ. Denote u = αu1 + βu2, where α and β are arbitrary real numbers. Now

Au = αAu1 + βAu2

= αλu1 + βλu2

= λ(αu1 + βu2)

= λu,

so u is an eigenvector of A with the same eigenvalue as u1 and u2.
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2. Let Λ be a diagonal n × n matrix with the eigenvalues of A on its diagonal: The elements of Λ are zero everywhere
but on its diagonal where the elements are the λ1, λ2, . . . , λn,. Denote by U the matrix with has as column vectors
the linearly independent eigenvectors of A: U = (u1 u2 . . . un). Using Aui = λiui for all i = 1, 2, . . . , n, and the
properties of matrix multiplication we have

AU = (Au1 Au2 . . . Aun) = (λ1u1 λ2u2 . . . λnun) = UΛ.

3. (i) Since the columns of U are linearly independent, U is invertible. Because AU = UΛ, multiplying from the right
with the inverse of U gives A = UΛU−1 = UΛV T.

(ii) Denote by u[i] the ith row of U , v(j) the jth column of V T and v[j] the jth row of V and denote B =
∑n

i=1 λiuiv
T
i .

Let e[i] be a row vector with 1 in the ith place and 0 elsewhere and e(j) be a column vector with 1 in the jth place
and 0 elsewhere. Notice that because A = UΛV T, the element in the ith row and jth column is

Aij = u
[i]Λv(j)

= u
[i]Λ(v[j])

T

= u
[i]






λ1Vj1

...
λnVjn






=
n∑

k=1

λkVjkUik.

On the other hand, for matrix B the element in the ith row and jth column is

Bij =
n∑

k=1

λke
[i]
ukv

T
k e

(j)

=
n∑

k=1

λkUikVjk,

which is the same as Aij . Therefore A = B.

(iii) Since Λ is a diagonal matrix with no zeros as diagonal elements, it is invertible (the inverse matrix of Λ is just
a diagonal matrix with inverse elements of the eigenvalues of A as diagonal elements in the same order as in Λ).
We have thus

A−1 = (UΛU−1)−1 = (U(ΛU−1))−1 = (ΛU−1)−1U−1

= (U−1)−1Λ−1U−1 = UΛ−1V T.

(iv) The calculation is the same as in part 4 of this exercise when the element λi is substituted by 1/λi for every
i = 1, 2, . . . , n.

Ex. 4 Trace, Determinants and Eigenvalues

1. Since Tr(AB) = Tr(BA) and A = UΛU−1

Tr(A) = Tr(UΛU−1) = Tr((U)(ΛU−1))

= Tr(ΛU−1U) = Tr(Λ) =
n∑

i=1

λi.

2. The determinant of a diagonal matrix is just the product of its diagonal elements and the determinant of an inverse
matrix is just the inverse of the determinant of the original matrix. In addition since det(AB) = det(A) det(B), we
get

det(A) = det(UΛU−1) = det(U)det(Λ)det(U−1)

=
det(U)det(Λ)

det(U)
= det(Λ) =

n∏

i=1

λi.

Ex. 5 Eigenvalue Decomposition for Symmetric Matrices
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1. Since Au1 = λ1u1 and Au2 = λ2u2, we also have

u
T
1 Au2 = λ2u

T
1 u2.

Taking the transpose of uT
1 Au2 gives us

(uT
1 Au2)

T = (Au2)
T(uT

1 )
T = u

T
2 A

T
u1 = u

T
2 Au1 = λ1u

T
2 u1

because A is symmetric. On the other hand, the same operation gives us

(uT
1 Au2)

T = (λ2u
T
1 u2)

T = λ2u
T
2 u1

Therefore λ1u
T
2 u1 = λ2u

T
2 u1, which is equivalent to uT

2 u1(λ1 − λ2) = 0. Because λ1 6= λ2, the only possibility is that
uT
2 u1 = 0. Therefore u1 and u2 are orthogonal to each other.

2. Part 1 of this exercise showed that for distinct eigenvalues the corresponding eigenvectors are orthogonal, so in this
case the only thing left to do is normalize each of them by multiplying the vector with the inverse of its norm. If
A has some equal eigenvalues, the fact that A is symmetric tells us that there exists a set of n linearly independent
eigenvectors. Applying Gram Schmidt to the set of the eigenvectors with the same eigenvalue, we can thus obtain
a set of orthogonal vectors. A generalization of part one of exercise 3 (Eigenvalue Decomposition) tells us that the
vectors obtained via Gram Schmidt are still eigenvectors. After normalizing the vectors, we have a set of eigenvectors
that are orthogonal and of unit length.

3. Assume that vTAv > 0 for all v 6= 0. Since eigenvectors are not zero vectors, the assumption holds also for eigenvector
uk with corresponding eigenvalue λk. Now

u
T
kAuk = u

T
k λkuk = λk(u

T
kuk) = λk||uk|| > 0

and because ||uk|| > 0, we obtain λk > 0.

Assume now that all the eigenvalues of A, λ1, λ2, . . . , λn, are positive and nonzero. In part 2 of this exercise it
was shown that there exists an orthogonal basis consisting of eigenvectors u1,u2, . . . ,un and therefore every vector
v can be written as a linear combination of those vectors. Hence for a nonzero vector v and for some real numbers
α1, α2, . . . , αn holds that

v
TAv

= (α1u1 + α2u2 + . . .+ αnun)
TA(α1u1 + α2u2 + . . .+ αnun)

= (α1u1 + . . .+ αnun)
T(α1Au1 + . . .+ αnAun)

= (α1u1 + . . .+ αnun)
T(α1λ1u1 + . . .+ αnλnun)

=
∑

i,j

αiu
T
i αjλjuj

=
∑

i

αiαiλiu
T
i ui

=
∑

i

(αi)
2||ui||2λi,

because uT
i uj = 0 if i 6= j due to orthogonality of the basis. Since (αi)

2 > 0, ||ui||2 > 0 and λi > 0 for all i, vTAv > 0.

Since every eigenvalue of A is nonzero, we can use the last part of exercise 3 (Eigenvalue Decomposition) to
conclude that inverse of A exists.

Ex. 6 Gaussian Distribution

1. The best thing is to start with the cumulative distribution function (cdf) F (y) = P (Y ≤ y). Assume that Y has a
density f and therefore equation

F (y) =

∫ y

−∞
f(u) du (B.2)

holds. Now F (y) can be written as

F (y) = P (Y ≤ y)

= P (X1 +X2 ≤ y)

=

∫

P (X1 +X2 ≤ y|X2 = x)f2(x) dx

=

∫

P (X1 ≤ y − x|X2 = x)f2(x) dx

=

∫

P (X1 ≤ y − x)f2(x) dx,
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because X1 and X2 are independent. On the other hand

P (X1 ≤ y − x) =

∫ y−x

−∞
f1(u) du,

and therefore

F (y) =

∫ ∞

−∞

∫ y−x

−∞
f1(u)f2(f) dudx

ũ=u+x
=

∫ ∞

−∞

∫ y

−∞
f1(ũ− x)f2(x) dũdx

=

∫ y

−∞

[∫ ∞

−∞
f1(ũ− x)f2(x)dx

]

dũ.

Now comparison with equation (B.2) shows that

f(y) =

∫ ∞

−∞
f1(y − u)f2(u) du.

2. Denote again the densities of X1 and X2 by f1 and f2:

f1(x) =
1

√

2πσ2
1

exp

[

− x2

2σ2
1

]

,

f2(x) =
1

√

2πσ2
2

exp

[

− x2

2σ2
2

]

.

Using the formula that was derived in the previous part of this exercise, we get

f(y) =

∫

f1(y − u)f2(u) du

=

∫
1

√

2πσ2
1

exp

[

− (y − u)2

2σ2
1

]
1

√

2πσ2
2

exp

[

− u2

2σ2
2

]

du

=
1

√

2πσ2
1

1
√

2πσ2
2

∫

exp

[

− (y − u)2

2σ2
1

− u2

2σ2
2

]

du.

Furthermore,

(y − u)2

2σ2
1

+
u2

2σ2
2

=
y2

2σ2
1

+ u2

(
1

2σ2
1

+
1

2σ2
2

)

− 2uy

2σ2
1

= u2 σ
2
1 + σ2

2

2σ2
1σ

2
2

− 2u
yσ2

2

2σ2
1σ

2
2

+
y2

2σ2
1

=
σ2
1 + σ2

2

2σ2
1σ

2
2

(

u2 − 2u
yσ2

2

σ2
1 + σ2

2

)

+
y2

2σ2
1

=
σ2
1 + σ2

2

2σ2
1σ

2
2

(

u− yσ2
2

σ2
1 + σ2

2

)2

− y2σ2
2

2(σ2
1 + σ2

2)σ
2
1

+
y2(σ2

1 + σ2
2)

2(σ2
1 + σ2

2)σ
2
1

=

(

u− yσ2
2

σ2
1
+σ2

2

)2

2
σ2
1
σ2
2

σ2
1
+σ2

2

+
y2

2(σ2
1 + σ2

2)
,
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Hence, we can write f(y) as follows:

1
√

2πσ2
1

1
√

2πσ2
2

∫

exp

[

− (y − u)2

2σ2
1

− u2

2σ2
2

]

du

=
1

√

2π(σ2
1 + σ2

2)

1
√

2π
σ2
1
σ2
2

σ2
1
+σ2

2

·

∫

exp




−

(

u− yσ2
2

σ2
1
+σ2

2

)2

2
σ2
1
σ2
2

σ2
1
+σ2

2

− y2

2(σ2
1 + σ2

2)






=
1

√

2π(σ2
1 + σ2

2)

1
√

2π
σ2
1
σ2
2

σ2
1
+σ2

2

∫

exp




−

(

u− yσ2
2

σ2
1
+σ2

2

)2

2
σ2
1
σ2
2

σ2
1
+σ2

2




 du

︸ ︷︷ ︸

= 1

·

exp

[

− y2

2(σ2
1 + σ2

2)

]

=
1

√

2π(σ2
1 + σ2

2)
exp

[

− y2

2(σ2
1 + σ2

2)

]

.

The last lines defines a Gaussian random variable with variance σ2
1 + σ2

2 , which completes the proof.

3. Recall that if X is a Gaussian random variable with mean µ and variance σ2, then for any constant c holds that X + c
is a Gaussian random variable with mean µ+ c and variance σ2. Now we can write X1 = X̃1 + µ1 and X2 = X̃2 + µ2,
where X̃i ∼ N(0, σ2

i ) for i = 1, 2, and furthermore

Y = X1 +X2 = X̃1 + X̃2 + µ1 + µ2.

In part 2 of this exercise it was shown that X̃1 + X̃2 is a Gaussian random variable with zero mean and variance
σ2
1 + σ2

2 . Thus Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Ex. 7 Bivariate Gaussian

1. Recall that if A is a 2× 2 matrix with A =

(
a b
c d

)

, then the inverse of A is

A−1 = 1/det(A)

(
d −b
−c a

)

.

Since the determinant of Σ is

|Σ| = σ2
1σ

2
2 + σ2

1σ
2
2ρ

2 = σ2
1σ

2
2(1− ρ2),

the inverse of Σ is

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2
2 −σ1σ2ρ

−σ1σ2ρ σ2
1

)

.

Therefore

x
TΣ−1

x = (x1 x2)
1

σ2
1σ

2
2(1− ρ2)

(
σ2
2 −σ1σ2ρ

−σ1σ2ρ σ2
1

)(
x1

x2

)

=
1

σ2
1σ

2
2(1− ρ2)

(x1 x2)

(
σ2
2x1 − σ1σ2ρx2

−σ1σ2ρx1 + x2σ
2
1

)

=
σ2
2x

2
1 − σ1σ2ρx1x2 − σ1σ2ρx1x2 + x2

2σ
2
1

σ2
1σ

2
2(1− ρ2)

=
1

1− ρ2

(
x2
1

σ2
1

− 2ρ
x1x2

σ1σ2
+

x2
2

σ2
2

)

= q(x1, x2)

and thus

f(x1, x2) =
1

2π
√

σ2
1σ

2
2(1− ρ2)

exp

[

−1

2
q(x1 − µ1, x2 − µ2)

]

.
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2. Write first q(x1, x2) in a different form:

q(x1, x2)

=
1

1− ρ2

(
x2
1

σ2
1

− 2ρ
x1x2

σ1σ2
+

x2
2

σ2
2

)

=
1

1− ρ2

(

x2
2

σ2
2

− 2ρ
x1x2

σ1σ2
+ ρ2

(
x1

σ1

)2

− ρ2
(
x1

σ1

)2

+
x2
1

σ2
1

)

=
1

1− ρ2

((
x2

σ2
− ρ

x1

σ1

)2

+

(
x1

σ1

)2

(1− ρ2)

)

=
1

1− ρ2

(
x2

σ2
− ρ

x1

σ1

)2

+

(
x1

σ1

)2

.

The marginal distribution f(x1) is

f(x1) =

∫

f(x1, x2)dx2

=
1

2π
√

σ2
1σ

2
2(1− ρ2)

∫

exp

[

− 1

2(1− ρ2)

(
x2 − µ2

σ2
− ρ

x1 − µ1

σ1

)2
]

dx2

exp

[

−1

2

(x1 − µ1)
2

σ2
1

]

=
1

√

2πσ2
2(1− ρ2)

∫

exp

[

− 1

2σ2
2(1− ρ2)

(

x2 − µ2 − ρ
σ2

σ1
(x1 − µ1)

)2
]

dx2

︸ ︷︷ ︸

= 1

1
√

2πσ2
1

exp

[

− (x1 − µ1)
2

2σ2
1

]

=
1

√
2πσ2

1

exp

[

− (x1 − µ1)
2

2σ2
1

]

,

which defines a Gaussian random variable with variance V (x1) = σ2
1 .

3. The covariance cov(x1, x2) is

cov(x1, x2) = E((x1 − µ1)(x2 − µ2))

=

∫ ∫

(x1 − µ1)(x2 − µ2)
1

2π
√

σ2
1σ

2
2(1− ρ2)

exp

[

−1

2
q(x1 − µ1, x2 − µ2)

]

dx1dx2

=

∫ ∫

x1x2
1

2π
√

σ2
1σ

2
2(1− ρ2)

exp

[

−1

2
q(x1, x2)

]

dx1dx2

part 2
=

∫

x1











∫

x2
1

√
2πσ2

2(1− ρ2)
exp




−

(

x2 − ρσ2

σ1
x1

)2

2σ2
2(1− ρ2)




 dx2

︸ ︷︷ ︸

= mean of a Gaussian pdf











exp

[

−x2
1

σ2
1

]

dx1 ·
1

√

2πσ2
1

The mean that is marked in the previous equation chain is (ρσ2x1)/σ1, which can be seen by comparison with the
common form of Gaussian density function. Hence

cov(x1, x2) =
1

√

2πσ2
1

∫

ρ
σ2

σ1
x2
1 exp

[

− x2
1

2σ2
1

]

dx1

= ρ
σ2

σ1

1
√

2πσ2
1

∫

x2
1 exp

[

−x2
1

σ2
1

]

dx1

︸ ︷︷ ︸

the variance V (x1) = σ2
1

= ρ
σ2

σ1
σ2
1

= ρσ1σ2.
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4. Using the part 2 of this exercise it holds that

−q(x1, x2) +
x2
1

σ2
1

= − 1

1− ρ2

(
x2

σ2
− ρ

x1

σ1

)2

− x2
1

σ2
1

+
x2
1

σ2
1

= − 1

σ2
2(1− ρ2)

(

x2 − ρ
x1σ2

σ1

)2

.

Therefore

f(x2|x1) =
f(x1, x2)

f(x1)

=

√
2πσ2

1

2π
√

σ2
1σ

2
2(1− ρ2)

·

exp

[

−1

2
q(x1 − µ1, x2 − µ2) +

(x1 − µ1)
2

2σ2
1

]

=
1

√
2πσ2

2(1− ρ2)
·

exp

[

− 1

2σ2
2(1− ρ2)

(

x2 − µ2 − ρ
σ2

σ1
(x1 − µ1)

)2
]

.

Hence, f(x2|x1) is a Gaussian probability density function with

mean : µx2|x1
= µ2 + ρ

σ2

σ1
(x1 − µ1) and

variance : σ2
x2|x1

= σ2
2(1− ρ2).

5. If ρ = 0, then µx2|x1
= µ2 and σ2

x2|x1
= σ2

2 . Hence, if cov(x1, x2) = ρσ1σ2 = 0, then x1 and x2 are also independent.
Note that this isn’t generally true for random variables.

6. Assume that fx is the density function of X with mean vector µx and covariance matrix Σx and fy is the density
function of Y . Let Uy be a rectangle and Ux = H−1Uy . Integrating over Ux may be hard, so making a change of
variables (see exercise 2: Linear Transforms) to integrate over the rectangle Uy gives us

∫

Uy

fy(y)dy = P (y ∈ Uy)

= P (x ∈ H−1(Uy))

=

∫

Ux=H−1(Uy)

fxdx

=

∫

Uy

fx(H
−1

y)|H−1|dy.

Hence,

fy(y) = fx(H
−1

y)|H−1|

= fx(H
−1

y)
1

|H |

=
1

2π|Σx|1/2|H |
exp

[

(H−1
y − µx)

TΣ−1
x (H−1

y − µx)
]

.

Therefore µy = Hµx, and because

(H−1
y − µx)

TΣ−1
x (H−1

y − µx)

= (y −Hµx)
T(HT)−1Σ−1

x H−1(y −Hµx),

we have Σ−1
y = (HT)−1Σ−1

x H−1, or Σy = HΣxH
T.

Ex. 8 Maximum Likelihood for a Gaussian
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1. The likelihood L(µ, σ) is the joint density of the data, treated as a function of the parameters µ and σ. Because of the
iid assumption of the data, the likelihood is the product of the probability density functions f(Xi;µ, σ). The random
variable being Gaussian, the likelihood is

L(µ, σ) =
N∏

i

f(Xi;µ, σ)

=
N∏

i

(
1√
2πσ2

exp

[

− (Xi − µ)2

2σ2

])

=
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

i=1

(Xi − µ)2
]

.

2. To make the answer to the third part of the exercise simpler, write the sum in the first part differently:

N∑

i=1

(Xi − µ)2 =
N∑

i=1

(Xi − X̄ + X̄ − µ)2

=
N∑

i=1

[(Xi − X̄)2 + 2(Xi − X̄)(X̄ − µ) + (X̄ − µ)2]

=

N∑

i=1

(Xi − X̄)2 + 2(X̄ − µ)

N∑

i=1

(Xi − X̄)

︸ ︷︷ ︸

= 0

+

N(X̄ − µ)2

=
N∑

i=1

(Xi − X̄)2 +N(X̄ − µ)2

= NS2 +N(X̄ − µ)2,

where X̄ is the sample mean and S2 is the sample variance. Using this form of the sum, the log-likelihood is

ℓ(µ, σ) = log L(µ, σ)

= log

(
1

(2πσ2)N/2
exp

[

−NS2 +N(X̄ − µ)2

2σ2

])

= −N

2
log(2πσ2)− N

2σ2
S2 − N

2σ2
(X̄ − µ)2.

Using the original form of the sum, the log-likelihood would be

ℓ(µ, σ) = log L(µ, σ)

= log

(

1

(2πσ2)N/2
exp

[

−
N∑

i=1

(Xi − µ)2

2σ2

])

= log

(
1

(2πσ2)N/2

)

+ log

(

exp

[

−
N∑

i=1

(Xi − µ)2

2σ2

])

= −N

2
log(2πσ2)−

N∑

i=1

(Xi − µ)2

2σ2
.

3. Calculating the maximum likelihood estimate means calculating the value of the parameter that maximizes the likeli-
hood. Because the logarithm function is strictly monotonically increasing, it doesn’t change the argument where the
likelihood is maximized. Since finding the maximum likelihood estimates for the log-likelihood function is simpler than
finding them for the original likelihood function, it is convenient to start with the log-likelihood function. Finding the
estimates is done by taking derivatives with respect to µ and σ

∂ℓ

∂µ
=

N(X̄ − µ)

σ2

∂ℓ

∂σ
= −N

σ
+

NS2

σ3
+

N(X̄ − µ)2

σ3
.

Now, the only value of µ which makes the derivative with respect to µ zero is the sample mean X̄. Setting µ to X̄ in
the derivative with respect to σ, we get

−N

σ
+

NS2

σ3
= 0 ⇐⇒ 1

σ
=

S2

σ3
⇐⇒ σ2 = S2.
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This is the only value of σ2 that makes the derivative zero. Furthermore, it is the global maximum we were looking
for (this can be shown by calculating second derivatives). Therefore the maximum likelihood estimates are X̄ and S2.

Ex. 9 Gradient of vector-valued functions
This exercise is useful for the later exercise sessions, so remember it if you have to calculate gradients in later exercises.

1. Gradient of J(w) = aTw using both methods.

1. First method

J(w) = a
T
w =

n∑

i=1

aiwi

=⇒ ∂J(w)

∂wi
= ai

=⇒ ∇J(w) =








a1

a2

...
an








= a.

2. Second method

J(w + ǫh) = a
T(w + ǫh) = a

T
w

︸ ︷︷ ︸

J(w)

+ǫ a
T

︸︷︷︸

∇J(w)T

h

=⇒ ∇J(w) = a.

2. Gradient of J(w) = wTAw using both methods. Notice that for every real number x holds that x equals its own
transpose.

1. First method

J(w) = w
TAw =

n∑

i=1

n∑

j=1

wiAijwj

=⇒ ∂J(w)

∂wk
=

n∑

j=1

Akjwj +
n∑

i=1

wiAik

=⇒ ∇J(w) =






∑n
j=1 A1jwj +

∑n
i=1 wiAi1

...
∑n

j=1 Anjwj +
∑n

i=1 wiAin






=






∑n
j=1 A1jwj

...
∑n

j=1 Anjwj




+






∑n
i=1 wiAi1

...
∑n

i=1 wiAin






=






A11 . . . A1n

...
. . .

...
An1 . . . Ann











w1

...
wn




+






A11 . . . An1

...
. . .

...
A1n . . . Ann











w1

...
wn






= Aw +AT
w

2. Second method

J(w + ǫh) = (w + ǫh)TA(w + ǫh)

= w
TAw +w

TA(ǫh) + ǫhTAw + (ǫh)TAǫh
︸ ︷︷ ︸

= O(ǫ2)

= w
TAw + ǫ(wTAh+ (wTAT

h)
︸ ︷︷ ︸

∈ R

T
) +O(ǫ2)

= w
TAw + ǫ(wTAh+w

TAT
h) +O(ǫ2)

= w
TAw

︸ ︷︷ ︸

= J(w)

+ǫ(wTA+w
TAT

︸ ︷︷ ︸

= ∇J(w)T

)h+O(ǫ2)

=⇒ ∇J(w) = (wTA+w
TAT)T = AT

w + Aw.



130 APPENDIX B. SOLUTIONS

3. The easiest way to calculate gradient for J(w) = wTw is to use the previous part of this exercise by choosing A = I
(the identity matrix). Therefore

∇J(w) = Iw + ITw = w +w = 2w.

4. Recall the chain rule for gradients:

∇(h ◦ f)(x) = h′(f(x))∇f(x).

Using the chain rule and the part 2 of this exercise we can calculate the gradient for J(w) = ||w|| =
√
wTw:

∇J(w)
chain rule

=
∇(wTw)

2
√
wTw

part 2
=

2w

2||w|| =
w

||w|| .

Using the chain rule is, of course, just a shortcut. Calculating the partial derivatives without the chain rule is here
also possible without much more work.

5. Using the chain rule and previous part of this exercise we can calculate the gradient for J(w) = f(||w||):

∇J(w)
chain rule

= f ′(||w||)∇||w|| previous part
= f ′(||w||) w

||w|| .

6. Using the chain rule and first part of this exercise we can calculate the gradient for J(w) = f(wTa):

∇J(w)
chain rule

= f ′(wT
a)∇(wT

a)

w
T
a ∈ R
= f ′(wT

a)∇(aT
w)

part 1
= f ′(wT

a)a.

Ex. 10 Newton’s method

1. First, we write the function f in a different form:

f(w) = f(w0) + g
T(w −w0) +

1

2
(w −w0)

TH(w −w0)

= f(w0)− g
T
w0 +

1

2
w

T
0 Hw0

︸ ︷︷ ︸

= c (constant)

+g
T
w +

1

2
w

THw

−1

2
w

THw0 − 1

2
w

T
0 Hw

︸ ︷︷ ︸

∈ R

= c+ g
T
w +

1

2
w

THw−w
THw0.

Using the exercise 9 (Gradient of vector-valued functions) we can calculate the gradient (remember that H is symmet-
ric):

∇f(w) = g+
1

2
(HT

w +Hw)−Hw0

= g+Hw −Hw0.

2. Set the gradient to zero and solve for w (assuming that H is invertible):

∇f(w) = 0 ⇐⇒ g+Hw −Hw0 = 0

⇐⇒ H(w−w0) = −g
⇐⇒ w = w0 −H−1

g.

Here, w0 stands for the starting point of the iteration or, during the iteration, for the previously obtained value of w,
and w stands for the updated value. As g is ∇f(w0) and H is the Hessian at w0, we obtain the Newton iteration.

Ex. 11 Gradient of matrix-valued functions

1. Gradient of J(W ) = uTWv using both methods.
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1. First method

J(W ) =

n∑

i=1

m∑

j=1

uiWijvj

=⇒ ∂J(W )

Wkl
= ukvl = (uvT)kl

=⇒ ∇J(W ) = uv
T.

2. Second method

J(W + ǫe(i)]
e
[j]) = u

T(W + ǫe(i)]
e
[j])v

= u
TWv+ ǫuT

e
(i)

︸ ︷︷ ︸

∈ R

e
[j]
v

︸ ︷︷ ︸

∈ R

= J(W ) + ǫe[i]
uv

T
e
(j)

=⇒ ∇J(W ) = uv
T.

2. Notice that

J(W ) = u
T(W + A)v = u

TWv+ u
TAv,

and uTAv is a constant with respect to W . Therefore

∇J(W ) = ∇uTWv+∇uTAv = ∇uTWv+ 0
part 1
= uv

T.

3. Gradient of J(W ) =
∑

n f(wT
nv) using both methods.

1. First method.

∂J(W )

∂Wij
=

n∑

k=1

∂

∂Wij
f(wT

k v)

= f ′(wT
i v)

∂

∂Wij
w

T
i v

︸ ︷︷ ︸
∑m

j=1 Wijvj

= f ′(wT
i v)vj

=⇒ ∇J(W ) = f ′(Wv)vT,

where f ′(.) operates element-wise on the vector Wv.

2. Second method. Recall the theory of Taylor expansion (∗).

J(W ) =

n∑

k=1

f(wT
k v) =

n∑

k=1

f(e[k]Wv)

J(W + ǫe(i)
e
[j]) =

n∑

k=1

f(e[k](W + ǫe(i)
e
[j])v)

=
n∑

k=1

f(e[k]Wv + ǫe[k]
e
(i)
e
[j]
v)

(∗)
=

n∑

k=1

(f(e[k]Wv) +

ǫf ′(e[k]Wv) e
[k]
e
(i)

︸ ︷︷ ︸

= 0, unless k = i

e
[j]
v +O(ǫ2)

=

n∑

k=1

f(e[k]Wv) + ǫf ′(e[i]Wv) e[i]
e
(i)

︸ ︷︷ ︸

= 1

e
[j]
v +

O(ǫ2)

= J(W ) + ǫe[i]f ′(Wv)vT
e
(j) +O(ǫ2)

=⇒ ∇J(W ) = f ′(Wv)vT,

where f ′(.) operates element-wise on the vector Wv.
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4. Gradient of J(W ) = uTW−1v using only the second method. Notice that because W is symmetric, W−1 is also
symmetric (∗).

J(W + ǫe(i)
e
[j])

= u
T(W + ǫe(i)

e
[j])−1

v

hint
= u

T(W−1 − ǫW−1
e
(i)
e
[j]W−1 +O(ǫ2))v

= u
TW−1

v − ǫuTW−1
e
(i)

︸ ︷︷ ︸

∈ R

e
[j]W−1

v
︸ ︷︷ ︸

∈ R

+O(ǫ2)

= J(W )− ǫ(e(i))T(uTW−1)T(W−1
v)T(e[j])T +

O(ǫ2)

= J(W )− ǫe[i](W−1)TuvT(W−1)Te(j) +O(ǫ2)

(∗)
= J(W )− ǫe[i]W−1

uv
TW−1

e
(j) +O(ǫ2)

=⇒ ∇J(W ) = −W−1
uv

TW−1.

Ex. 12 Gradient of the Log-Determinant

1. As in exercise 3 (Eigenvalue Decomposition), let UΛV T be the eigenvalue decomposition of W (with V T = U−1).
Then Λ = V TWU and

λn = e
[n]Λe(n)

= e
[n]V TWUe

(n)

= (V e
(n))TW (Ue

(n)

= v
T
nWun,

where (as always) e[n] is the row vector with 1 in the nth slot and 0 elsewhere and e(n) is the corresponding column
vector.

2. Using the previous part of this exercise and the exercise 11 (Gradient of matrix-valued functions), we get:

∇Wλn(W ) = ∇Wv
T
nWun = vnu

T
n .

3. In exercise 4 (Trace, Determinants and Eigenvalues), we proved that det(W ) =
∏

i λi and hence |det(W )| =∏i |λi|.
(i) If W is positive definite, its eigenvalues are positive (as we proved in exercise sheet 1) and |det(W )| =

∏

i λi.

(ii) If W is a matrix with real entries, then Wu = λu implies W ū = λ̄ū, i.e. if λ is a complex eigenvalue, then λ̄ (the
complex conjugate of λ) is also an eigenvalue. Since |λ|2 = λλ̄,

|det(W )| =




∏

λi∈C

λi








∏

λj∈R

sign(λj)λj



 .

Now we can write J(W ) in terms of the eigenvalues:

J(W ) = log|det(W )|

= log




∏

λi∈C

λi








∏

λj∈R

sign(λj)λj





= log




∏

λi∈C

λi



+ log




∏

λj∈R

sign(λj)λj





=
∑

λi∈C

logλi +
∑

λj∈R

log(sign(λj)λj),

thus making calculating the gradient easier:

∇J(W ) = ∇W (
∑

λi∈C

logλi +
∑

λj∈R

log(sign(λj)λj))

=
∑

λi∈C

1

λi
∇Wλi +

∑

λi∈R

1

sign(λi)λi
∇W (sign(λi)λi

part 2
=

∑

λi∈C

viu
T
i

λi
+
∑

λi∈R

sign(λi)viu
T
i

sign(λi)λi

=
∑

i

viu
T
i

λi
.
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4. Using exercise 3 (Eigenvalue Decomposition) (∗), we get

∇J(W ) =
∑

i

viu
T
i

λi
=
∑

i

1

λi
(uiv

T
i )

T (∗)
= (W−1)T.

Ex. 13 Maximum Likelihood Estimation for Multivariate Gaussians

1. The likelihood function is

L(µ,Σx)

=
N∏

n=1

f(xn)

=

N∏

n=1

1

(2π)m/2|Σx|1/2
exp

[

−1

2
(xn − µ)TΣ−1

x (xn − µ)

]

=
1

((2π)m/2|Σ|1/2)N exp

[

−1

2

N∑

n=1

(xn − µ)TΣ−1
x (xn − µ)

]

.

The log-likelihood function is thus

ℓ(µ,Σx)

= logL(µ,Σx)

= −N log((2π)m/2|Σx|1/2)−
1

2

N∑

n=1

(xn − µ)TΣ−1
x (xn − µ)

= −N log(2π)m/2 − N

2
log|Σx| − 1

2

N∑

n=1

(xn − µ)TΣ−1
x (xn − µ).

2. Using the given hint (∗) we get

J(W + ǫe(i)
e
[j]) = u

T(W + ǫe(i)
e
[j])−1

v

(∗)
= u

T(W−1 − ǫW−1
e
(i)
e
[j]W−1) +O0(ǫ

2))v

= u
TW−1

v − ǫuTW−1
e
(i)

︸ ︷︷ ︸

∈ R

e
[j]W−1

v
︸ ︷︷ ︸

∈ R

+O(ǫ2)

= u
TW−1

v − ǫe[i](W−1)TuvT(W−1)Te(j) +

O(ǫ2),

so the second method for calculating gradients for matrix valued functions (introduced in exercise sheet 2) gives us

∇J(W ) = −(W−1)TuvT(W−1)T.

3. We can use the results from exercise 12 (Gradient of the Log-Determinant) (∗) and part 2 of this exercise to calculate
the gradient with respect to Σx. Remember that because Σx is symmetric, its inverse is also symmetric (∗∗).

∇Σx
ℓ(µ,Σx) = ∇Σx

(−N log(2π)m/2)
︸ ︷︷ ︸

= 0

−∇Σx
(
N

2
log|Σx|)

︸ ︷︷ ︸

(∗)

−

∇Σx
(
1

2

N∑

n=1

(xn − µ)TΣ−1
x (xn − µ))

︸ ︷︷ ︸

part 2

= −N

2
(Σ−1

x )T +

1

2

N∑

n=1

(Σ−1
x )T(xn − µ)(xn − µ)T(Σ−1

x )T

(∗∗)
= −N

2
Σ−1

x +
1

2

N∑

n=1

Σ−1
x (xn − µ)(xn − µ)TΣ−1

x .
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Calculating the gradient with respect to µ is easier since there is no need to use any special formulas:

∇µℓ(µ,Σx) = ∇µ(−N log(2π)m/2)
︸ ︷︷ ︸

= 0

−∇µ(
N

2
log|Σx|)

︸ ︷︷ ︸

= 0

−∇µ(
1

2

N∑

n=1

(xn − µ)TΣ−1
x (xn − µ))

= −1

2

N∑

n=1

∇µ(x
T
nΣ

−1
x xn − 2xT

nΣ
−1
x µ+ µTΣ−1

x µ)

= −1

2

N∑

n=1

(−2Σ−1
x xn + 2Σ−1

x µ)

=
N∑

n=1

(Σ−1
x xn − Σ−1

x µ)

=

N∑

n=1

(Σ−1
x xn)−NΣ−1

x µ.

4. Setting the gradient with respect to µ to zero gives us

∇µℓ(µ,Σx) = 0 ⇐⇒
N∑

n=1

(Σ−1
x xn)−NΣ−1

x µ = 0

⇐⇒ Σ−1
x Nµ = Σ−1

x

N∑

n=1

xn

⇐⇒ Nµ =
N∑

n=1

xn

⇐⇒ µ =
1

N

N∑

n=1

xn

=⇒ µ̂ =
1

N

N∑

n=1

xn = X̄.

Remember that if the Hessian is negative definite at a critical point, the function attains a local maximum in that
point. Because the Hessian in this case is (up to positive a scalar) −Σ−1

x , it is negative definite, since by assumption
Σx (and therefore also Σ−1

x ) is positive definite. Therefore µ̂ really maximizes ℓ(µ,Σx) and the maximum likelihood
estimate µ̂ is the sample mean. Setting µ = µ̂ gives us then

∇Σx
ℓ(µ,Σx) |

µ=µ̂

= 0

⇐⇒ −N

2
Σ−1

x +
1

2

N∑

n=1

Σ−1
x (xn − X̄)(xn − X̄)TΣ−1

x = 0

⇐⇒ Σ−1
x = Σ−1

x (
1

N

N∑

n=1

(xn − X̄)(xn − X̄)T)Σ−1
x

⇐⇒ Σx =
1

N

N∑

n=1

(xn − X̄)(xn − X̄)T

=⇒ Σ̂x =
1

N

N∑

n=1

(xn − X̄)(xn − X̄)T,

which is what we wanted.

Ex. 14 Derivation of the Power Method

1. Using the alternative, 2-step method:

(i) vk+1 ← wk + µΣwk

(ii) wk+1 ← vk+1

||vk+1||2
,
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we see that formula (i) looks like an update step of gradient ascent w ← w + µ∇J(w). Thus, Σw should be the
gradient of J(w). Using the exercise Gradient of vector-valued functions (∗) we get:

∇J(w) = ∇1

2
w

TΣw

(∗)
=

1

2
(ΣT

w + Σw)

Σ symmetric
=

1

2
2Σw

= Σw.

Hence, formula (i) is the gradient ascent method (for maximization) with

w as the value at previous iteration step,

µ as the step size,

Σwk as the gradient of objective function J, and

vk+1 as the updated value.

In formula (ii) we normalize the obtained vector vk+1 to unit norm by dividing the vector by its 2-norm, which is the
length of the vector in Euclidean space. This is a form of constraint optimization and is in this case necessary because
without the constraint of unit norm for wk+1, the maximum would be obtained when wk+1 is infinitely large.

To sum up, the update rule is a constraint gradient ascent update step to optimize the objective function J .

2. Write first wk+1 in different form to make taking the limit easier:

wk+1

=
wk + µΣwk

||wk + µΣwk||2

=
wk + µΣwk

√
(wk + µΣwk)T(wk + µΣwk)

=
wk + µΣwk

√

wT
k wk + µ(Σwk)Twk + µwT

k (Σwk) + µ2(Σwk)T(Σwk)

=
wk + µΣwk

√
wT

k wk + 2µwT
k Σwk + µ2(Σwk)T(Σwk)

=
µ
(

1
µ
wk + Σwk

)

µ

√
wT

k
wk

µ2 +
2wT

k
Σwk

µ
+ ||Σwk||22

=

1
µ
wk + Σwk

√
wT

k
wk

µ2 +
2wT

k
Σwk

µ
+ ||Σwk||22

.

Since 1/µ→ 0 when µ→∞, taking the limit is now easy.

lim
µ→∞

wk = lim
µ→∞

1
µ
wk +Σwk

√
wT

k
wk

µ2 +
2wT

k
Σwk

µ
+ ||Σwk||22

=
Σwk

√
||Σwk||22

=
Σwk

||Σwk||2
.

Ex. 15 Convergence of the Power Method

1. Since the columns of U are orthonormal (eigen)vectors, U is orthogonal, i.e. U−1 = UT. With Exercises 5 and 3, we
get

Σ = UΛUT,

where Λ is the diagonal matrix with eigenvalues λi of Σ as diagonal elements. Assume that λ1 > λ2 > . . . > λn.
(Remember that all eigenvalues are positive since Σ is symmetric)
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2. Notice that

vk+1 = Σwk = UΛUT
wk ⇐⇒ UT

vk+1 = ΛUT
wk,

so therefore ṽk+1 = Λw̃k. The norm of ṽk+1 is the same as the norm of vk+1:

||ṽk+1|| = ||UT
vk+1||

=
√

(UTvk+1)T(UTvk+1)

=
√

vT
k+1UUTvk+1

=
√

vT
k+1vk+1

= ||vk+1||.

Hence, in terms of ṽk and w̃k the vector iteration is

ṽk+1 = Λw̃k

w̃k+1 =
ṽk+1

||ṽk+1||
.

3. Let w̃0 = (α1 α2 . . . αn)
T. Because Λ is a diagonal matrix, we get

ṽ1 =








λ1α1

λ2α2

...
λnαn








= λ1α1









1
α2

α1

λ2

λ1

...
αn

α1

λn

λ1









,

and therefore

w̃1 =
λ1α1

c1









1
α2

α1

λ2

λ1

...
αn

α1

λn

λ1









,

where c1 is a normalization constant such that ‖w̃1‖ = 1 (i.e. c1 = ‖ṽ1‖). Hence, for w̃k it holds that

w̃k = c̃k











1

α2

α1

(
λ2

λ1

)k

...

αn

α1

(
λn

λ1

)k











,

where c̃k is again a normalization constant such that ||w̃k|| = 1. As λ1 is the dominant eigenvalue, |λj/λ1| < 1 for
j = 2, 3, . . . , n and

lim
k→∞

(
λj

λ1

)k

= 0.

For the normalization constant c̃k, we get

c̃k =
1

√

1 +
∑n

i=2

(
αi

α1

)2 (
λi

λ1

)2k
,

and therefore

lim
k→∞

c̃k =
1

√

1 +
∑n

i=2

(
αi

α1

)2

lim
k→∞

(
λi

λ1

)2k

=
1

√

1 +
∑n

i=2

(
αi

α1

)2

· 0

= 1.



137

Because w̃k = c̃kṽk, the limit

lim
k→∞

w̃k

exists. Hence

lim
k→∞

w̃k = lim
k→∞

c̃k lim
k→∞











1

α2

α1

(
λ2

λ1

)k

...

αn

α1

(
λn

λ1

)k











=








1
0
...
0








.

4. Because wk = Uw̃k, we get

lim
k→∞

wk = U








1
0
...
0








= u1,

which is the eigenvector with the largest eigenvalue (“dominant eigenvector”).

Ex. 16 Dimension Reduction by PCA

1. Direct calculations give

J(w) = E(‖x− x̂‖)

= E

(
n∑

j=1

(xj − wjz)
2

)

= E

(
n∑

j=1

(x2
j − 2xjwjz +w2

j z
2)

)

= E

(
n∑

j=1

x2
j

)

+E

(
n∑

j=1

−2xjwjz

)

+ E

(
n∑

j=1

w2
jz

2

)

=
n∑

j=1

E(x2
j)− 2

n∑

j=1

wjE(xjz) +

(
n∑

j=1

w2
j

)

E(z2).

By assumption, E(xj) = 0, so E(x2
j) = V(xj) and

z2 =
∑

i,k

wiwkxixk,

E(z2) =
∑

i,k

wiwkE(xixk) =
∑

i,k

cov(xi, xk),

E(xjz) =
n∑

i=1

wiE(xjxi) =
n∑

i=1

wicov(xj , xi).

Hence,

J(w) =
n∑

j=1

V(xj)− 2
n∑

j=1

wj

n∑

i=1

wicov(xj , xi) +

n∑

j=1

w2
j

∑

i,k

wiwkcov(xi, xk).

2. Since V(xj) is a constant, denote
∑n

j=1 V(xj) = c. Because ‖w‖ = 1, we get

J(w) = c− 2
n∑

j=1

wj

n∑

i=1

wicov(xj , xi) +
n∑

j=1

w2
j

∑

i,k

wiwkcov(xi, xk)

= c− 2
∑

i,j

wiwjcov(xj , xi) + 12
∑

i,j

wiwjcov(xi, xj)

= c−
∑

i,j

wiwjcov(xi, xj)

= c−w
TΣxw,
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where Σx is the covariance matrix of x, i.e. (Σx)ij = cov(xi, xj). This is the same as the PCA cost function up to the
additive constant and the sign.

Ex. 17 Signal Approximation with PCA

1. The outer vector product wwT is

ww
T =








w1

w2

...
wn








(
w1 w2 . . . wn

)

=








w2
1 w1w2 . . . w1wn

w2w1 w2
2 . . . w2wn

...
...

. . .
...

wnw1 wnw2 . . . w2
n








=⇒ Tr(ww
T) =

n∑

k=1

w2
k = ‖w‖2.

2.

Jmin = E(‖x− UmUT
mx‖2)

= E(Tr((x− UmUT
mx)(x− UmUT

mx)T))

= E(Tr(xxT − xx
TUmUT

m − UmUT
mxx

T +

UmUT
mxx

TUmUT
m))

= E(Tr(xxT))− E(Tr(xxTUmUT
m))− E(Tr(UmUT

mxx
T))

+E(Tr(UmUT
mxx

TUmUT
m))

= E(Tr(xxT))− E(Tr(UT
mxx

TUm))− E(Tr(UT
mxx

TUm))

+E(Tr(UT
mUm
︸ ︷︷ ︸

= I

UT
mxx

TUm))

= Tr(E(xxT))− Tr(E(UT
mxx

TUm))

= Tr(E(xxT)
︸ ︷︷ ︸

Σx

)− Tr(UT
m E(xxT)
︸ ︷︷ ︸

= Σx

Um)

= Tr(Σx)− Tr(UT
mΣxUm).

3. Let UΛUT be the eigenvalue decomposition of Σx. Now

UT
mΣxUm = UT

mUΛUTUm.

Find out piece by piece, what UT
mΣxUm looks like:

UT
mU =

(
u1 u2 . . . um

)T (
u1 . . . um um+1 . . . un

)

=








1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 1 0 . . . 0








(m× n matrix)

UTUm = (UT
mU)T =
















1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0
















(n×m matrix)
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ΛUTUm =













λ1 0 . . . 0 . . . 0
0 λ2 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . λm . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . λn




























1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0
















=
















λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

0 0 . . . 0
...

...
...

0 0 . . . 0
















(n×m matrix).

Therefore

UT
mΣxUm =








1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 1 0 . . . 0























λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

0 0 . . . 0
...

...
...

0 0 . . . 0
















=








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm








= Λm.

4. Using the fact that (∗) Tr(Σx) =
∑n

k=1 λk, we get

Jmin
part 2
= Tr(Σx)− Tr(UT

mΣxUm)
part 3
= Tr(Σx)− Tr(Λm)

(∗)
=

n∑

k=1

λk −
m∑

k=1

λk

=
n∑

k=m+1

λk.

Ex. 18 PCA and data representation

1. Since the matrix X can be written as

X =








X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

...
Xp1 Xp2 . . . Xpn








,

where Xij is the jth observation of the ith component of the random variable x, we see that the kth row of X contains
all n observations of the kth random variable.

2. Now cov(Xk, Xl) = E(XkXl) because the mean was assumed to be zero. The sample covariance matrix is thus

1

n

n∑

i=1

XkiXli =
1

n
v
T
k vl.



140 APPENDIX B. SOLUTIONS

Since for E(x) = 0 the covariance matrix C is C = E(xxT),

E(xxT) =








E(X1X1) E(X1X2) . . . E(X1Xp)
E(X2X1) E(X2X2) . . . E(X2Xp)

...
...

. . .
...

E(XpX1) E(XpX2) . . . E(XpXp)








,

the sample covariance matrix Ĉ is thus

Ĉ =
1

n








vT
1 v1 vT

1 v2 . . . vT
1 vp

vT
2 v1 vT

2 v2 . . . vT
2 vp

...
...

. . .
...

vT
p v1 vT

p v2 . . . vT
p vp








=
1

n
XXT.

3. We can write Z as

Z = UTX

= UT
(
x1 x2 . . . xn

)

=
(
UTx1 UTx2 . . . UTxn

)

=








uT
1 x1 uT

1 x2 . . . uT
1 xn

uT
2 x1 uT

2 x2 . . . uT
2 xn

...
...

. . .
...

uT
mx1 uT

mx2 . . . uT
mxn








.

Because zi = uT
i x is the ith principal component, the ith row of Z contains thus all the realizations of the ith principal

component. Notice that the row as a whole is also often called the ith principal component.

4. The ith row of Z is uT
i X. Let i 6= j. Taking the inner product of the ith and jth row gives us

u
T
i XXT

uj = nuT
i (

1

n
XXT)uj

part 2
= nuT

i Ĉuj .

Since U has the first m principal component weights as its columns, the sample covariance matrix Ĉ can be written
as UDUT, where D is a diagonal matrix (see Section 4.3.3 on page 4.3.3). Thus

u
T
i XXT

uj = nuT
i UDUT

uj

= n
(
0 . . . 1i . . . 0

)








d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dp


















0
...
1j
...
0











= n
(
0 . . . di . . . 0

)











0
...
1j
...
0











= 0,

i.e. the rows of Z are orthogonal.

5. Simply put: the principal components are an orthogonal basis for the data space.

Ex. 19 Correlations, linear dependence and small eigenvalues

1. The eigenvalues can be calculated as follows (as you may have seen in your linear algebra course):

det(C − λI) = det

(
1− λ ρ
ρ 1− λ

)

= (1− λ)2 − ρ2 = 0

=⇒ 1− λ = ±ρ
=⇒ λ = 1± ρ.

If |ρ| is close to 1, one of the eigenvalues is close to zero, i.e. if the random variables are highly correlated, we get one
small eigenvalue.
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2. The variance of x2 has to be 1, therefore

V(x2) = V(ax1 + n) = a2V(x1) + V(n) = a2 +V(n) = 1. (B.3)

Since the mean of x1 is zero, the variance of x1 equals E(x2
1), which is one. Because the covariance between x1 and x2

has to be ρ, we get

cov(x1, x2) = E(x1x2)

= E(x1(ax1 + n))

= aE(x2
1)

︸ ︷︷ ︸

= 1

+E(x1)
︸ ︷︷ ︸

= 0

E(n)

= ρ.

Therefore we have choose a = ρ. From equation (B.3) we see that the noise n has to have variance 1− ρ2, but that is
the only criterion it has to satisfy.

3. The variances for the given ρ and the corresponding plots for 5000 samples are:

(i) ρ = −1: V(n) = 0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

(ii) ρ = −0.25: V(n) = 0.9375

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

(iii) ρ = 0: V(n) = 1
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−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

(iv) ρ = 0.5: V(n) = 0.75

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

(v) ρ = 1: V(n) = 0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

Note that we used here a Gaussian random variable for x1 and n. But we could also haven chosen other distributions
as long as the conditions from the previous question are satisfied.

4. If |ρ| = 1, the variance of the noise variable is 0 and x2 is deterministically related to x1. Therefore v1 and v2 are
linearly dependent.

If |ρ| is close to 1, the vectors v1 and v2 are close to being linearly dependent. The conditioning number of C is
given by

λmax

λmin
=

1 + |ρ|
1− |ρ| ,

which becomes arbitrary large as |ρ| → 1.

The conditioning number of XT = (v1,v2) is a measure of the linear dependencies of v1 and v2. For any matrix M
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(not necessarily square) the conditioning number is defined as

cond(M) =

√

biggest eigenvalue of MTM

smallest eigenvalue of MTM
.

In our case M = XT and therefore MTM = XXT = nC, where C is the covariance matrix. The conditioning number
of XT is thus

cond(XT) =

√

nλmax

nλmin
=

√

λmax

λmin
=

√

1 + |ρ|
1− |ρ| =

√

cond(C).

If |ρ| → 1, we see that the conditioning number of XT and (therefore the conditioning number of C) goes up, i.e. v1

and v2 become more linearly dependent.

Ex. 20 Correlation and projection

1. Notice that for λ3 = 0 the columns of C are linearly dependent:

cos(α)





1
0

cos(α)





︸ ︷︷ ︸

1st column

+sin(α)





0
1

sin(α)





︸ ︷︷ ︸

2nd column

=





cos(α)
sin(α)

cos2(α) + sin2(α)





=





cos(α)
sin(α)

1





︸ ︷︷ ︸

3rd column

,

and therefore C is not invertible.

2. By mechanical calculation

Cu1 =
1√
2





1 0 cos(α)
0 1 sin(α)

cos(α) sin(α) 1









cos(α)
sin(α)

1





=
1√
2





2 cos(α)
2 sin(α)

cos2(α) + sin2(α) + 1





= 2
1√
2





cos(α)
sin(α)

1





= 2 · u1,

Cu2 =





1 0 cos(α)
0 1 sin(α)

cos(α) sin(α) 1









− sin(α)
cos(α)

0





=





− sin(α)
cos(α)

0





= 1 · u2,

Cu3 =
1√
2





1 0 cos(α)
0 1 sin(α)

cos(α) sin(α) 1









− cos(α)
− sin(α)

1





=
1√
2





− cos(α) + cos(α)
− sin(α) + sin(α)

− cos2(α) − sin2(α) + 1





= 0 · u3,

so the eigenvalues are λ1 = 2, λ2 = 1 and λ3 = 0.
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3. Recall the exercises about eigenvalue decomposition and the formula A =
∑n

i=1 λiuiv
T
i . Now C =

∑3
i=1 λiuiu

T
i :

λ3u3u
T
3 =

1

2
λ3





cos2(α) cos(α) sin(α) − cos(α)
cos(α) sin(α) sin2(α) − sin(α)
− cos(α) − sin(α) 1





︸ ︷︷ ︸

2nd part of C

,

λ1u1u
T
1 = 2 · 1

2





cos2(α) cos(α) sin(α) cos(α)
cos(α) sin(α) sin2(α) sin(α)

cos(α) sin(α) 1



 ,

λ2u2u
T
2 =





sin2(α) − sin(α) cos(α) 0
− sin(α) cos(α) cos2(α) 0

0 0 0



 ,

λ1u1u
T
1 + λ2u2u

T
2 =





1 0 cos(α)
0 1 sin(α)

cos(α) sin(α) 1





︸ ︷︷ ︸

1st part of C

.

4. The principal component directions correspond to the eigenvectors of the covariance matrix C. Since we want to
explain as much variance as possible, we would use the two principal components with the biggest eigenvalues, that
means s1 = uT

1 x and s2 = uT
2 x.

5. The proportion of variance explained is defined as

∑k
i=1 λi

∑n
i=1 λi

,

where k is the number of selected components and n the dimension of the data. Hence, for λ3 = 0.1 we get

λ1 + λ2

λ1 + λ2 + λ3
=

3

3.1
≈ 0.97,

meaning that approximately 97% of the variance is explained by the first two principal components.

6. In this case, the projection of a point x is a vector defined as
(
uT
1 x uT

2 x
)T

.

For y1 =
(
x1 0 0

)T
the projection is

p(y1) =

(
uT
1 y1

uT
2 y1

)

=

(
x1

1√
2
cos(α)

−x1 sin(α)

)

= x1

( 1√
2
cos(α)

− sin(α)

)

.

For y2 =
(
0 x2 0

)T
the projection is

p(y2) =

(
uT
1 y2

uT
2 y2

)

=

(
x2

1√
2
sin(α)

x2 cos(α)

)

= x2

( 1√
2
sin(α)

cos(α)

)

.

For y3 =
(
0 0 x3

)T
the projection is

p(y3) =

(
uT
1 y3

uT
2 y3

)

=

(
x3

1√
2

0

)

= x3

( 1√
2

0

)

.

From these formulas we see that projecting yi is the same as projecting the ith unit vector scaled by the value xi.
Thus, in the plots we only show the projection of the unit vectors ei. The projection of any other vector of the form
yi lies along the same axes.

7. From the covariance matrix we see that the correlation between the first and second variable is zero, and that the
correlation between the first and the third variable is given by cos(α), and between the second and the third variable
the correlation is given by sin(α). For the values of α in the previous part of this exercise we get:

(i) α = 0 : ρ13 = 1, ρ23 = 0,

(ii) α = π
4
: ρ13 = 1√

2
, ρ23 = 1√

2
,
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α = 0:

p(e1) =
(

1
√

2
0
)T

p(e2) =
(

0 1
)T

p(e3) =
(

1
√

2
0
)T

p(e1)

p(e3)

p(e2)

α = π

4
:

p(e1) =
(

1

2
−

1
√

2

)T

p(e2) =
(

1

2

1
√

2

)T

p(e3) =
(

1
√

2
0
)T

p(e3)

p(e1)

p(e2)

(iii) α = π
2
: ρ13 = 0, ρ23 = 0,

(iv) α = 5π
6

: ρ13 = −
√
3

2
, ρ23 = 1

2
.

Relating these numbers to the projections, we see that: (1) If the axis p(e3) is closer to the axis p(e1) than to p(e2),
then the third variable is more correlated to the first variable than to the second one. (2) If the arrows, i.e. the
projections, point to the same direction, the random variables are positively correlated (and otherwise negatively).

Ex. 21 PCA and linear regression

1. In matrix notation we have

ǫ =








ǫ1
ǫ2
...
ǫn








, X =
(
x1 x2 . . . xn

)
, y =








y1
y2
...
yn








= X
Tβ + ǫ.

Since only y and X are observed, minimizing J(β),

J(β) =
1

n
(y −X

Tβ)T(y −X
Tβ),

gives us an estimate β̂ = arg max
β

J(β) of the true value of β ∈ R
p. As usual, we calculate the gradient of J with

respect to β and solve for β after setting the gradient to zero. Recall exercise 9 (Gradient of vector-valued functions)
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α = π

2
:

p(e1) =
(

0 1
)T

p(e2) =
(

1
√

2
0
)T

p(e3) =
(

1
√

2
0
)T p(e3)

p(e2)

p(e1)

α = 5π

6
:

p(e1) ≈
(

−0.61 −0.5
)T

p(e2) ≈
(

0.35 −0.86
)T

p(e3) =
(

1
√

2
0
)T p(e3)

p(e2)

p(e1)

(∗).

J(β) =
1

n
(yT

y − y
T
X

Tβ − βT
Xy + βT

XX
Tβ)

=⇒ ∇βJ(β)
(∗)
=

1

n
(−2Xy + 2XX

Tβ).

∇βJ(β) = 0

⇐⇒ XX
Tβ = Xy

⇐⇒ β = (XX
T)−1

Xy =
1

n
(
1

n
XX

T)−1
Xy

hint
=

1

n
(ĈX)−1

Xy

=⇒ β̂ = (XX
T)−1

Xy = (Ĉx)
−1 1

n
Xy,

where Ĉx is the sample covariance matrix. For large n, β̂ converges to E(XXT)−1E(Xy). The first term corresponds
to the covariance matrix and the second term measures the correlation between X and y.

2. Since y = XTβ + ǫ, we can write

β̂ = (XX
T)−1

Xy

= (XX
T)−1(XX

T)β + (XX
T)−1

Xǫ

= β + (XX
T)−1

Xǫ,
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and because every ǫk has zero mean, we get

E(β̂|X) = E(β|X) + E((XX
T)−1

Xǫ|X)

= β + (XX
T)−1

XE(ǫ|X)
︸ ︷︷ ︸

= 0

= β,

V(β̂|X) = V( β
︸︷︷︸

constant

+(XX
T)−1

X
︸ ︷︷ ︸

constant

ǫ|X)

= (XX
T)−1

X)V(ǫ|X)(XX
T)−1

X)T

= (XX
T)−1

Xσ2I((XX
T)−1

X)T

= σ2(XX
T)−1(XX

T)(XX
T)−1

= σ2(XX
T)−1

=
σ2

n
(
1

n
XX

T)−1

=
σ2

n
Ĉ−1

X
.

3. By writing the norm ‖β − β̂‖ differently, we get

MSE = E(‖β − β̂‖|X)

= E(Tr[(β − β̂)(β − β̂)T]|X)

= E(Tr[(β −m+m− β̂)(β −m+m− β̂)T]|X),

where m = E(β̂|X). Notice that

(β −m+m− β̂)(β −m+m− β̂)T

= (β −m)(β −m)T + (β −m)(m− β̂)T +

(m− β̂)(β −m)T + (m− β̂)(m− β̂)T.

Because trace is a linear operation and it holds that Tr(A+ B) = Tr(A) + Tr(B), we can take the expectation inside
to get

MSE

= Tr[E((β −m)(β −m)T|X)] + Tr[E((β −m)(m− β̂)T|X)] +

Tr[E((m− β̂)(β −m)T)] + Tr[E((m− β̂)(m− β̂)T)].

Now notice that

E((β −m)(m− β̂)T|X) = (β −m)(m− E(β̂|X))T

= (β −m)(m−m)T

= 0,

which holds also for E((m− β̂)(β −m)T|X). Furthermore,

E((β −m)(β −m)T)|X) = (β −m)(β −m)T),

because everything is deterministic here, and

E((m− β̂)(m− β̂)T|X) = V(β̂|X),

by definition of the variance and the fact that m = E(β̂|X). Therefore

MSE = Tr[(β −m)(β −m)T] + TrV(β̂|X)

= ‖β − E(β̂|X)‖2 + TrV(β̂|X).

4. Using the previous parts of this exercise and exercise 4 (Trace, Determinants and Eigenvalues) (∗), we get

MSE = Tr(V(β̂|X)) + ‖β − E(β̂|X)‖2

= Tr(
σ2

n
Ĉ−1

X
) + ‖β − β‖2

=
σ2

n
Tr(Ĉ−1

X
)

(*)
=

σ2

n

p
∑

i=1

1

di
,
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where di are the eigenvalues of ĈX. Hence, the small eigenvalues of ĈX cause the MSE to be large. In exercise 19
(Correlations, linear dependence and small eigenvalues) we showed that eigenvalues of ĈX are small if some random
variables xi are highly correlated. This means that some rows of X are, or are close to being, linearly dependent.

5. The vector UT
mxk is the kth observation of the principal components. Let zk = UT

mxk. Now

J(Umγ) =
1

n

n∑

k=1

(yk − x
T
kUmγ)2

=
1

n

n∑

k=1

(yk − (UT
mxk)

Tγ)2

=
1

n

n∑

k=1

(yk − z
T
k γ)

2

= Jpc(γ).

Since J(β) = (1/n)
∑n

k=1(yk − xT
k β)

2, the function Jpc really has the same form as J , but the principal components
are used instead of the original inputs.

6. Let U =
(
u1 u2 . . .um um+1 . . .up

)
and Z =

(
z1 z2 . . . zn

)
, where zk ∈ R

m is as in the solution to the

previous part of this exercise. Notice that Z = UT
mX. Just as in the first part (having just Z instead of X), we get:

γ̂ = (
1

n
ZZ

T)−1 1

n
Zy

= (Um(
1

n
XX

T

︸ ︷︷ ︸

= ĈX

)Um)−1 1

n
UT

mXy

= (UT
mUDUTUm)−1UT

m
1

n
Xy,

where UDUT is the eigenvalue decomposition of the sample covariance matrix ĈX. On the other hand,

UT
mU =






uT
1

...

uT
m






(
u1 . . . um um+1 . . . up

)

=








111 0 . . . 0 0 . . . 0
0 122 . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 1mm 0 . . . 0mp








,

and therefore UT
mUDUTUm = Dm, where Dm has the first m diagonal elements of D on its diagonal. Hence,

γ̂ = (UT
mUDUTUm)−1UT

m
1

n
Xy = D−1

m UT
m
1

n
Xy.

7. The solution follows the same steps as in part 3 of this exercise: Since

β̂pc = (UmD−1
m UT

m)
1

n
Xy

= (UmD−1
m UT

m)
1

n
X(XTβ + ǫ)

= (UmD−1
m UT

m)
1

n
XX

Tβ + (UmD−1
m UT

m)
1

n
Xǫ,
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we get

E(β̂pc) = (UmD−1
m UT

m)
1

n
XX

T

︸ ︷︷ ︸

= ĈX

β + (UmD−1
m UT

m)
1

n
X E(ǫ)
︸︷︷︸

= 0

= UmD−1
m UT

mUDUTβ

= UmD−1
m








d1 0 . . . 0 0 . . . 0
0 d2 . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . dm 0 . . . 0








UTβ

= Um








111 0 . . . 0 0 . . . 0
0 122 . . . 0 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 1mm 0 . . . 0mp








UT

︸ ︷︷ ︸

= UT
m

β

= UmUT
mβ,

V(β̂pc|X) =
1

n2
(UmD−1

m UT
m)XE(ǫǫT)

︸ ︷︷ ︸

= σ2I

X
T(UmD−1

m UT
m)T

=
σ2

n
(UmD−1

m UT
m)

1

n
XX

T

︸ ︷︷ ︸

= ĈX

(UmD−1
m UT

m)T

=
σ2

n
UmD−1

m UT
mUDUTUm
︸ ︷︷ ︸

= Dm

D−1
m UT

m

=
σ2

n
UmD−1

m UT
m.

8. Because Tr(cAB) = cTr(BA) for any constant c, the trace of V(β̂pc|X) equals

Tr(V(β̂pc|X)) = Tr(
σ2

n
(UmD−1

m )UT
m)

=
σ2

n
Tr(UT

mUmD−1
m )

=
σ2

n
Tr(D−1

m )

=
σ2

n

m∑

i=1

1

di
,

and therefore the MSE for β̂ is

MSEpc = Tr(V(β̂pc|X)) + ‖β − E((̂β)pc|X)‖2

=
σ2

n

m∑

i=1

1

di
+ ‖β − UmUT

mβ‖2

=
σ2

n

m∑

i=1

1

di
+ ‖β(Ip − UmUT

m)‖2.

If m = p, then Um = U and UUT = Ip, so MSEpc becomes (σ2/n)
∑p

i=1(1/di), i.e. it is equal to the MSE of β̂.

If m < p, then the variance is reduced by (σ2/n)
∑p

i=m+1(1/di) but we incur a bias since UmUT
m 6= Ip. This is

called the bias-variance trade-off: by choosing m, one can choose a certain reduction in variance, at the cost of more
bias. The best m is the one which leads to the smallest MSE. The formula for the MSEpc show that the best m is
essentially a function of di and ui, i.e. the covariance matrix of X.

Ex. 22 Least squares for factor analysis and PCA
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1. Direct calculations give

Tr(ATB) =
∑

i

[
∑

j

(AT)ij(B)ji

]

=
∑

i

[
∑

j

(A)ji(B)ji

]

=
∑

ij

(A)ji(B)ji

=
∑

ij

(A)ij(B)ij ,

Tr(ABT) =
∑

i

[
∑

j

(A)ij(B
T)ji

]

=
∑

i

[
∑

j

(A)ij(B)ij

]

=
∑

ij

(A)ij(B)ij .

2. Remember that, (a)Tr(A+B) = Tr(A) +Tr(B), (b) Tr(AB) = Tr(BA) and (c) Tr(A) = Tr(AT). Remember also that
the trace of a real number is just the number itself.

Jls(a) = ‖C − aa
T‖2

part 1
= Tr((C − aa

T)(C − aa
T)T)

= Tr((C − aa
T)(CT − aa

T))

= Tr(CCT −Caa
T + aa

T
aa

T − aa
TCT)

(a)&(c)
= Tr(CCT + aa

T
aa

T − 2Caa
T)

(a)
= Tr(CCT) + Tr(aaT

aa
T)− Tr(2Caa

T)

(b)&(c)
= Tr(CCT) + Tr( a

T
a

︸︷︷︸

= ‖a‖2

a
T
a)− 2Tr(aTCa

︸ ︷︷ ︸

∈ R

)

CT=C
= ‖a‖4 − 2aTCa+ Tr(CC).

3. Recall exercise 9 (Gradient of vector-valued functions):

Jls(a) = (aT
a)2 − 2aTCa+ Tr(CC)

=⇒ ∇Jls(a) = 2aT
a · 2a− 2Ca − 2 CT

︸︷︷︸

= C

a+ 0

= 4‖a‖2a− 4Ca.

4. Let v be such vector that ∇Jls(v) = 0. Now

∇Jls(v) = 0 ⇐⇒ Cv = ‖v‖2v.

Therefore v is an eigenvector by definition.

Let a∗ = αe, where α is a scalar and e is an eigenvector of C with unit norm and eigenvalue λ. Since

∇Jls(a
∗) = 0 ⇐⇒ ‖a∗‖2a∗ = Ca

∗

⇐⇒ α‖αe‖2e = αCe

⇐⇒ α2
e = λe

=⇒ α = ±
√
λ,

the only possible scalars α are ±
√
λ. Notice that because covariance matrices are positive-semidefinite, the eigenvalues

are non-negative.

5. Notice that

Jls(a
∗) = (±

√
λ)2 − 2(±

√
λ)2eTCe+ Tr(CC)

= λ2 − 2λλ+ Tr(CC)

= −λ2 + Tr(CC).
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Since Jls(a
∗
λ1
) < Jls(a

∗
λ2
) if λ2

1 > λ2
2 and all the eigenvalues of C are non-negative, we see that Jls(a

∗
λ1
) < Jls(a

∗
λ2
) if

λ1 > λ2. Therefore the eigenvector with the largest eigenvalue minimizes Jls.

Ex. 23 Derivation of quartimax update rule

1. For G(y) = y4 we have

J(U) =
∑

ij

G((AU)ij) =
∑

ij

((AU)ij)
4 =

∑

ij

(
∑

k

aikukj)
4.

We can use the gradient ascent to optimize the function J with the constraint that U must be orthogonal:

U ← U + µ∇J(U) (update step)

U ← (UUT)−1/2U (orthogonalization).

Thus, we have to compute the the gradient of J :

∇J(U) =









∂J
∂u11

∂J
∂u12

. . . ∂J
∂u1n

∂J
∂u21

∂J
∂u22

. . . ∂J
∂u2n

...
. . .

...
∂J

∂un1

∂J
∂un2

. . . ∂J
∂unn









.

By chain rule, we get:

∂J

∂upq
=

∂

∂upq

∑

ij

(
∑

k

aikukj)
4

=
∑

i

4(
∑

k

aikukq)
3 ∂

∂upq

∑

k

aikukq

︸ ︷︷ ︸

= aip

= 4
∑

i

((AU)iq)
3(A)ip,

so the gradient is:

∇J(U) = 4(AU)(3)A,

where (AU)(3) stands for taking the third power of matrix AU component wise.

2. Using exercise 22 (Least Squares for Factor Analysis and PCA) (∗), we get for G(y) = y2

J(U) =
∑

ij

G((AU)ij)

=
∑

ij

(AU)2ij

= ‖AU‖2
(∗)
= Tr(AU(AU)T)

= Tr(AUUT

︸ ︷︷ ︸

= I

AT)

= Tr(AAT),

which is independent of U , i.e. J(U) is constant for all orthogonal U .

Ex. 24 Kurtosis
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1. Uniform distribution

E(x4) =

∫ √
3

−
√

3

x4 1

2
√
3
dx

=
1

10
√
3
((
√
3)5 + (

√
3)5)

=
1

10
√
3
2(
√
3)5

=
1

5
(
√
3)4

=
9

5
.

E(x2) =

∫ √
3

−
√

3

x2 1

2
√
3
dx =

1

6
√
3
2(
√
3)3 =

3

3
= 1.

=⇒ kurt(x) =
9

5
− 3 =

9− 15

5
= −6

5
.

2. Laplacian distribution

E(x2)

=

∫ ∞

−∞

1√
2
x2 exp(−

√
2|x|) dx

by symmetry
=

√
2

∫ ∞

0

x2 exp(−
√
2x) dx

partial
=

integration

[

−
√
2√
2
x2 exp(−

√
2x)

]∞

0
︸ ︷︷ ︸

= 0

+

∫ ∞

0

2x exp(−
√
2x) dx

partial
=

integration

[

− 2√
2
x exp(−2

√
2x)

]∞

0
︸ ︷︷ ︸

= 0

+

∫ ∞

0

2√
2
exp(−

√
2x) dx

=
[

− exp(−
√
2x)
]∞

0

= 0 + 1

= 1.

E(x4)

=

∫ ∞

−∞

1√
2
x4 exp(−

√
2|x|) dx

by symmetry
=

√
2

∫ ∞

0

x4 exp(−
√
2x) dx

partial
=

integration

√
2








[

− x4

√
2
exp(−

√
2x)

]∞

0
︸ ︷︷ ︸

= 0

+

∫ ∞

0

4√
2
x3 exp(−

√
2x) dx








partial
=

integration
4








[
−x3

√
2

exp(−
√
2x)

]∞

0
︸ ︷︷ ︸

= 0

+

∫ ∞

0

3√
2
x2 exp(−

√
2x) dx








= 6

∫ ∞

−∞

1√
2
x2 exp(−

√
2|x|) dx

= 6E(x2).

=⇒ kurt(x) = 6E(x2)− 3(E(x2))2 = 6− 3 = 3.
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3. Gaussian distribution with mean zero and variance σ2.

E(x2)

=

∫ ∞

−∞
x2 1√

2πσ2
exp

(

− x2

2σ2

)

dx

partial
=

integration

1√
2πσ2

[
x3

3
exp

(

− x2

2σ2

)]∞

−∞
︸ ︷︷ ︸

= 0

−

1√
2πσ2

∫ ∞

−∞

x3

3

(

− x

σ2

)

exp

(

− x2

2σ2

)

=
1

3σ2

∫ ∞

−∞
x4 1√

2πσ2
exp

(

− x2

2σ2

)

=
1

3σ2
E(x4).

Since mean µ is zero, we have

σ2 = E(x2)),

so that

E(x2) =
1

3σ2
E(x4) =

1

3E(x2)
E(x4)

=⇒ (E(x2))2 =
1

3
E(x4)

=⇒ kurt(x) = E(x4)− 3(E(x2))2 = E(x4)− E(x4) = 0.

4. Gaussian scale mixture. Denote

p(x) =
1

2

[

1
√

2πσ2
1

exp

(

− x2

2σ2
1

)

+
1

√

2πσ2
2

exp

(

− x2

2σ2
2

)]

=
1

2
(p1(x) + p2(x)).

Calculate kurtosis piece by piece:

E(x2)
µ=0
= V(x)

=
1

2

[∫ ∞

−∞
x2p(x)dx

]

=
1

2

[∫ ∞

−∞
x2p1(x)dx+

∫ ∞

−∞
x2p2(x)dx

]

=
1

2
(σ2

1 + σ2
2).

E(x4) =
1

2

[∫ ∞

−∞
x4p(x)dx

]

=
1

2

[∫ ∞

−∞
x4p1(x)dx+

∫ ∞

−∞
x4p2(x)dx

]

part 1
=

1

2
(3(σ2

1)
2 + 3(σ2

2)
2)

=
3

2
(σ4

1 + σ4
2).

kurt(x) = E(x4)− 3(E(x2))2

= E(x4)− 3V(x)2

=
3

2
(σ4

1 + σ4
2)− 3 · 1

4
(σ2

1 + σ2
2)

2

=
3

2

[

σ4
1 + σ4

2 −
1

2
(σ4

1 + 2σ2
1σ

2
2 + σ4

2)

]

=
3

2

[
1

2
σ4
1 − σ2

1σ
2
2 +

1

2
σ4
2

]

=
3

4
(σ4

1 − 2σ2
1σ

2
2 + σ4

2)

=
3

4
(σ2

1 − σ2
2)

2.
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For σ1 6= σ2, (σ
2
1 − σ2

2)
2 is always larger than zero and thus, kurt(x) > 0. If σ1 = σ2, then kurt(x) = 0, since p(x) is

then just an ordinary Gaussian distribution as in part 1 of this exercise.

5. Mixture of Gaussians for the same variance but different means. Denote

p(x) =
1

3
(pµ(x) + p0(x) + p−µ(x))

=
1

3
√
2π

∫ ∞

−∞
exp

(

− (x− µ)2

2

)

dx+

1

3
√
2π

∫ ∞

−∞
exp

(

−x2

2

)

dx+

1

3
√
2π

∫ ∞

−∞
exp

(

− (x+ µ)2

2

)

dx.

Since E(x2) = V(x) + E(x)2, we get

E(x2) =
1

3









∫ ∞

−∞
x2pµ(x)dx

︸ ︷︷ ︸

= Epµ (x)

+

∫ ∞

−∞
x2p0(x)dx

︸ ︷︷ ︸

= Ep0
(x)

+

∫ ∞

−∞
p−µ(x)dx

︸ ︷︷ ︸

= Ep
−µ

(x)









=
1

3

(
(1 + µ2) + (1 + 02) + (1 + (−µ)2)

)

=
1

3
(3 + 2µ2)

= 1 +
2

3
µ2.

E(x2)2 = 1 +
4

3
µ2 +

4

9
µ4.

For the calculation of the 4-th moment, notice that h(y) = y3 exp
(

− y2

2σ2
y

)

is an odd function, i.e.

h(−y) = (−y)3 exp

(

− y2

2σ2
y

)

= −y3 exp

(

− y2

2σ2
y

)

= −h(y).

Note also that the function y3 goes to infinity slower than the exponential function goes to zero so that the integral

∫ ∞

0

h(y) dy

exists. As h(y) is odd symmetric, we have furthermore that

∫ ∞

0

h(y) dy = −
∫ 0

−∞
h(y) dy.

Hence,

E(y3) =
1

√
2πσ2

y

∫ ∞

−∞
y3 exp

(

− y2

2σ2
y

)

dy

=
1

√
2πσ2

y

[∫ ∞

0

h(y) dy +

∫ 0

−∞
h(y) dy

]

= 0.

The third moment E(y3) (skewness) is zero for zero mean Gaussians.

For E(x4) we need also to calculate Epµ(x
4) and Ep

−µ
(x4) (we can use part 1 of the exercise for Ep0(x)):
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Epµ(x
4) =

1√
2π

∫ ∞

−∞
x4 exp

(

− (x− µ)2

2

)

dx

change of variable
=

u=x−µ

1√
2π

∫ ∞

−∞
(u+ µ)4 exp

(

−u2

2

)

du

=
1√
2π

∫ ∞

−∞
(u4 + 4u3µ+ 6u2µ2 + 4uµ3 +

µ4) exp

(

−u2

2

)

du

=
1√
2π

∫ ∞

−∞
u4 exp

(

−u2

2

)

du+

1√
2π

∫ ∞

−∞
4u3µ exp

(

−u2

2

)

du+

1√
2π

∫ ∞

−∞
6u2µ2 exp

(

−u2

2

)

du+

1√
2π

∫ ∞

−∞
4uµ3 exp

(

−u2

2

)

du+

1√
2π

∫ ∞

−∞
µ4 exp

(

−u2

2

)

du

= E(u4)
︸ ︷︷ ︸

part 1

+4µE(u3)
︸ ︷︷ ︸

skewness

+ 6µ2E(u2)
︸ ︷︷ ︸

unit variance

+

4µ3E(u)
︸ ︷︷ ︸

zero mean

+µ4

= 3 + 0 + 6µ2 + 0 + µ4

= 3 + 6µ2 + µ4.

Ep
−µ

(x4) =
1√
2π

∫ ∞

−∞
x4 exp

(

− (x+ µ)2

2

)

dx

change of variable
=

u=x+µ

1√
2π

∫ ∞

−∞
(u− µ)4 exp

(

−u2

2

)

du

=
1√
2π

∫ ∞

−∞
u4 exp

(

−u2

2

)

du−

1√
2π

∫ ∞

−∞
4u3µ exp

(

−u2

2

)

du+

1√
2π

∫ ∞

−∞
6u2µ2 exp

(

−u2

2

)

du−

1√
2π

∫ ∞

−∞
4uµ3 exp

(

−u2

2

)

du+

1√
2π

∫ ∞

−∞
µ4 exp

(

−u2

2

)

du

= E(u4)− 4µE(u3) + 6µ2E(u2)−
4µ4E(u) + µ4

as earlier
= 3 + 6µ2 + µ4.
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Therefore

E(x4) =
1

3










∫ ∞

−∞
x4pµ(x)dx

︸ ︷︷ ︸

= Epµ (x4)

+

∫ ∞

−∞
x4p0(x)dx

︸ ︷︷ ︸

part 1

+

∫ ∞

−∞
x4p−µdx

︸ ︷︷ ︸

= Ep
−µ

(x4)










=
1

3

(
(3 + 6µ2 + µ4) + 3 + (3 + 6µ2 + µ4

)
)

=
1

3
(9 + 12µ2 + 2µ4)

= 3 + 4µ2 +
2

3
µ4,

and thus, the kurtosis is

kurt(x) = E(x4)− 3E(x2)2

= 3 + 4µ2 +
2

3
µ4 − 3(1 +

4

3
µ2 +

4

9
µ4)

= 3 + 4µ2 +
2

3
µ4 − 3− 4µ2 − 4

3
µ4

= −2

3
µ4,

which is always negative for nonzero mean.

6. The linear properties of kurtosis were introduced in Section 7.3. Using those, we get

kurt(x+ αy) = kurt(x) + α4kurt(y) =
3

4
(σ2

1 − σ2
2)

2 − α4 2

3
µ4.

Setting kurt(x) to zero gives us

α4 2

3
µ4 =

3

4
(σ2

1 − σ2
2)

2 ⇐⇒ α4 =
9

8
(σ2

1 − σ2
2)

2 1

µ4

⇐⇒ α = ± 4

√

9

8

√

|σ2
1 − σ2

2 |
1

µ
.

Ex. 25 Kurtosis-based ICA

1. For g(u) = u we have

E(zg(wT
z)) = E(zwT

z
︸︷︷︸

∈ R

) = E(zzTw) = E(zzT)w = Σzw,

where Σz is the covariance matrix. The iteration is then

w ← w + γΣzw

w ← w

||w|| ,

which is the gradient-iteration for calculating the first principal component (see exercise 14 on the power method).

2. If Σz = I (that is if z is white), the direction of w is not changed. Nothing happens.

Ex. 26 Skewness-based ICA

1. The gradient for J(w) = E((wTz)3) is

∇J(w) = E(3(wT
z)2z) = 3E((wT

z)2z).

2. Gradient-ascent optimization becomes now

w ← w + 3µ̃
︸︷︷︸

= µ

E((wT
z)2z)

w ← w

‖w‖ .
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3. Notice that

w

‖w‖ =
w + µE((wTz)2z)

√
(w + µE((wTz)2z)T(w + µE((wTz)2z)

=
w + µE((wTz)2z)

√
wTw + 2µwT E((wTz)2z) + E((wTz)2z)TE((wTz)2z)

=

w

µ
+ E((wTz)2z)

√
1
µ2 + 2

µ
wT E((wTz)2z) + E((wTz)2z)TE((wTz)2z)

.

Thus, the limit of µ→∞ is:

w← 0 + E((wTz)2z)
√

0 + 0 + E((wTz)2z)TE((wTz)2z)
=

E((wTz)2z)

‖E((wTz)2z)‖ .

Ex. 27 Another reason why Gaussian variables don’t work for ICA.

1. We need to know pz, the probability distribution function of z, where z = As, with

ps(s) =

k∏

i=1

pi(si)

by definition of the ICA model. Recall the theory about linear transformations of random variables. Because A is
invertible, we get

pz(z) = ps(A
−1

z) · |det(A−1)|
= ps(A

T
z) · |det(A)|

︸ ︷︷ ︸

= 1

=
k∏

i=1

pi(a
T
i z),

where the ai are the columns of A. Because the data z is iid, the likelihood (as a function of A) is therefore

L(A) =

n∏

j=1

k∏

i=1

pi(a
T
i zi)

and thus, the log-likelihood (as a function of A) is

logL(A) =

n∑

j=1

log

k∏

i=1

pi(a
T
i zj)

=
n∑

j=1

k∑

i=1

log pi(a
T
i zj).

2. Assume now that the pi are Gaussian, i.e.

pi(x) =
1√
2π

exp

(

−x2

2

)

.
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Now the log-likelihood becomes

logL(A) =
n∑

j=1

k∑

i=1

(

log

[
1√
2π

]

− (aT
i zj)

2

2

)

=
n∑

j=1

k∑

i=1

log

[
1√
2π

]

︸ ︷︷ ︸

= c1(constant)

−1

2

n∑

j=1

k∑

i=1

(aT
i zj
︸ ︷︷ ︸

∈ R

)2

= c1 − 1

2

n∑

j=1

k∑

i=1

z
T
j aia

T
i zj

= c1 − 1

2

n∑

j=1

z
T
j

[
k∑

i=1

aia
T
i

]

︸ ︷︷ ︸

= AAT = I (orthogonality of A)

zj

= c1 − 1

2

n∑

j=1

z
T
j zj

︸ ︷︷ ︸

= c2 (constant)

= c1 − c2.

Therefore the log-likelihood function is a constant and doesn’t depend anymore on the matrix A. Hence, if one assumes
Gaussian sources si all orthogonal matrices A give an equally likely fit to the data. The “true” orthogonal matrix
A can thus not be found if the sources are Gaussian. In other words, the ICA model is not identifiable if the si are
Gaussian.

Ex. 28 Maximum Likelihood Estimation of the ICA Model

1. Notice that
∫ ∞

−∞
sg(s) exp

(

−s2

2

)

ds

partial
=

integration

[

−g(s) exp
(

−s2

2

)]∞

−∞
︸ ︷︷ ︸

= 0

+

∫ ∞

−∞
g′(s) exp

(

−s2

2

)

ds

=

∫ ∞

−∞
g′(s) exp

(

−s2

2

)

ds,

since g was assumed to grow slower than exp(s2i /2). Therefore we get

E(sg(s)− g′(s))

=

∫ ∞

−∞
(sg(s)− g′(s))

1√
2π

exp

(

−s2

2

)

ds

=
1√
2π

[∫ ∞

−∞
sg(s) exp

(

−s2

2

)

ds−
∫ ∞

−∞
g′(s) exp

(

−s2

2

)

ds

]

=
1√
2π

[∫ ∞

−∞
g′(s) exp

(

−s2

2

)

ds−
∫ ∞

−∞
g′(s) exp

(

−s2

2

)

ds

]

= 0,

and hence the condition is not fulfilled.

2. For gi(si) = s3i , we have

E(sigi(si)− g′i(si)) = E(s4i − 3s2i )

= E(s4i )− 3 E(s2i )
︸ ︷︷ ︸

= V(si)

= E(s4i )− 3E(si)
2

= kurt(si),

so the condition corresponds to kurtosis being larger than zero.
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3. For gi(si) = −si, we have

p̃′i(si)

p̃i(si)
= −si

=⇒ ∂

∂s
log p̃(si) = −si

=⇒ log p̃i(si) = −
s2

2
+ c

︸︷︷︸

constant

=⇒ p̃i(si) = c · exp
(

−s2

2

)

,

which is a Gaussian distribution.

Ex. 29 On the derivation of the Natural Gradient Algorithm

1.

∑

ij

(A)ij(B)ij =
∑

ij

(A)ij(B
T)ji =

∑

i

(ABT)ii = Tr(ABT).

2. Using the hint by settingA = ∇J(W ), we obtain

J(W + µ∇J(W )) = J(W ) + µ
∑

ij

(∇J(W ))ij(∇J(W ))ij +O(µ2).

Here µ
∑

ij(∇J(W ))ij(∇J(W ))ij = µ
∑

ij(∇J(W ))2ij is positive, since ∇J(W ) 6= 0. Since O(µ2) depends on µ2 and

µ
∑

ij(∇J(W ))2ij depends on µ, the term O(µ2) converges to zero quicker than the sum. Therefore ,for small enough
µ > 0 it holds that

µ
∑

ij

(∇J(W ))2ij +O(µ2) > 0.

Thus, for small enough µ, we have that

J(W + µ∇J(W )) > J(W ).

3. Using part 1 of this exercise, the Taylor expansion in terms of the trace operator is

J(W + µA) = J(W ) + µ
∑

ij

(A)ij(∇J(W ))ij +O(µ2)

= J(W ) + µTr(A∇J(W )T) +O(µ2).

For A = ∇J(W )BTB), we have

Tr(A∇J(W )T) = Tr(∇J(W )BTB∇J(W )T)

= Tr((∇J(W )BT)(∇J(W )BT)T)

=
∑

ij

(∇J(W )BT)2ij ≥ 0,

and thus, for small enough µ the modified iteration increases the objective function (or leaves it unchanged).

Ex. 30 EM-algorithm

1. Notice that Jt(θ|θk) in Equation (A.83) becomes for θ = θk

Jt(θk|θk) =
∫

[log p(x(t), s(t), θk)] p(s(t)|x(t), θk) ds(t),
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which is some constant. If we subtract Jt(θk|θk) from Jt(θ|θk), we obtain

Jt(θ|θk)− Jt(θk|θk)

=

∫

[log p(x(t), s(t), θ)] p(s(t)|x(t), θk) ds(t)−
∫

[log p(x(t), s(t), θk)] p(s(t)|x(t), θk) ds(t)

=

∫

log

[
p(x(t), s(t), θ)

p(x(t), s(t), θk)

]

p(s(t)|x(t), θk) ds(t)

= J̃t(θ|θk).

As additive constants don’t affect the maximizing arguments, the same argument θ, which maximizes J(θ|θk), maxi-
mizes also J̃(θ|θk).

2. As

log

[
p(x(t), s(t), θk)

p(x(t), s(t), θk)

]

= log 1 = 0,

J̃t(θk|θk) equals zero for every t, and therefore J̃(θk|θk) = 0. In the next step, θk+1 is chosen to be such that J̃(θ|θk)
is maximized, i.e. J̃(θk+1|θk) ≥ J̃(θ|θk) for every θ. Since this holds for every θ, it holds also for θk and hence,

J̃(θk+1|θk) ≥ J̃(θk|θk) = 0.

3. Using the given fact, we can write

J̃(θ|θk) =

∫

log

[
p(x(t), s(t), θ)

p(x(t), s(t), θk)

]

p(s(t)|x(t), θk) ds(t)

=

∫

log

[
p(s(t)|x(t), θ)p(x(t), θ)
p(s(t)|x(t), θk)p(x(t), θk)

]

p(s(t)|x(t), θk) ds(t)

=

∫

log

[
p(s(t)|x(t), θ)
p(s(t)|x(t), θk)

]

p(s(t)|x(t), θk) ds(t) +

log

[
p(x(t), θ)

p(x(t), θk)

] ∫

p(s(t)|x(t), θk) ds(t)
︸ ︷︷ ︸

= 1

.

Now
∑

t log p(x(t), θ) = ℓ(θ), and thus we get

J̃(θ|θk) =
∑

t

J̃t(θ|θk)

=
∑

t

log

[
p(x(t), θ)

p(x(t), θk)

]

+

∑

t

∫

log

[
p(s(t)|x(t), θ)
p(s(t)|x(t), θk)

]

p(s(t)|x(t), θk) ds(t)

=
∑

t

log p(x(t), θ)−
∑

t

p(x(t), θk) +

∑

t

∫

log

[
p(s(t)|x(t), θ)
p(s(t)|x(t), θk)

]

p(s(t)|x(t), θk) ds(t)

= ℓ(θ)− ℓ(θk) +
∑

t

∫

log

[
p(s(t)|x(t), θ)
p(s(t)|x(t), θk)

]

p(s(t)|x(t), θk) ds(t).
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4. From the previous part of this exercise we get

ℓ(θk+1 − ℓ(θk)

= J̃(θk+1|θk)−
∑

t

∫

log

[
p(s(t)|x(t), θ)
p(s(t)|x(t), θk)

]

p(s(t)|x(t), θk) ds(t)

= J̃(θk+1|θk) +
∑

t

∫

log

[
p(s(t)|x(t), θ)
p(s(t)|x(t), θk)

]−1

p(s(t)|x(t), θk) ds(t)

= J̃(θk+1|θk) +
∑

t

∫

log

[
p(s(t)|x(t), θk)
p(s(t)|x(t), θ)

]

p(s(t)|x(t), θk) ds(t)

= J̃(θk+1|θk)
︸ ︷︷ ︸

≥ 0 (part 2)

+
∑

t

D(p(s(t)|x(t), θk), p(s(t)|x(t), θ)
︸ ︷︷ ︸

≥ 0

≥ 0,

and therefore we have ℓ(θk+1) ≥ ℓ(θk). Each iteration of the EM-algorithm leads thus to an increase of the likelihood
ℓ(θ), which would be obtained by integrating out the latent variables s.

Ex. 31 More on the general form of the EM-algorithm

1. If we consider p(X,S; θ) and integrate out the latent variables S, we get p(X; θ) (see Eq 11.11). Therefore

p(X; θ) =

∫

p(X,S; θ) dS

=

∫ T∏

t=1

p(xt|st; θ)p(st; θ) dS

=

T∏

t=1

∫

p(xt|st; θ)p(st; θ) dst

=
T∏

t=1

p(xt; θ).

2. For continuous data we have

J(θ) =

∫

log(p(X,S; θ))p(S|X; θk−1) dS

=

∫

log

(
T∏

t=1

p(xt|st; θ)p(st; θ)
)

p(X,S; θk−1)

p(X; θk−1)
ds1 . . .dsT

=

∫ ( T∑

t=1

(log(p(xt, st; θ))

)

·

∏T
τ=1 p(xτ |sr; θk−1)p(sτ ; θk−1)

∏T
τ=1 p(xτ ; θk−1)

ds1 . . .dsT

=

∫
(

T∑

t=1

(log(p(xt, st; θ))

)

·

T∏

τ=1

p(xτ |sr; θk−1)p(sτ ; θk−1)

p(xτ ; θk−1)
ds1 . . .dsT

=

T∑

t=1

(
∫

log(p(xt, st; θ)

T∏

τ=1

p(sτ |xτ ; θk−1) ds1 . . .dsT

)
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We split now the product over τ into two parts to isolate the term involving τ = t:

J(θ) =
T∑

t=1

∫

log(p(xt, st; θ)p(st|xt; θk−1) dst ·

∫ T∏

τ=1
τ 6=t

p(sτ |xτ ; θk−1) ds1 . . . dst−1 dst+1 . . .dsT

=
T∑

t=1

∫

log(p(xt, st; θ)p(st|xt; θk−1) dst ·

T∏

τ=1
τ 6=t

∫

p(sτ |xτ ; θk−1) dsτ
︸ ︷︷ ︸

= 1

=

T∑

t=1

∫

log(p(xt, st; θ)p(st|xt; θk−1) dst,

which was what we wanted. For discrete variables the calculation is analogue. We just need to replace the integral
over S with a sum over S.

This expression has a nice interpretation: log p(xt, st; θ), which would give the complete log-likelihood when
summed-up, is replaced by an estimate, namely the conditional expectation.

3. Denote all the parameters µc, Cc, c = 1, 2, . . . , C, by θ. From the definition, we get:

p(r(t)|x(t);θ) =
p(r(t),x(t); θ)

p(x(t); θ)

=
p(r(t),x(t); θ)

∑C
r(t)=1 p(r(t),x(t); θ)

=
qt,c

∑C
c=1 qt,c

= q∗t,c.

Ex. 32 Estimating Gaussian mixture models with EM-algorithm

1. We have

p(x|r = c) =
1

(2π)n/2|Cc|1/2
exp

(

−1

2
(x− µc)

TC−1
c (x− µc)

)

,

p(x, r = c) = p(x|r = c)P (r = c)

=
1

(2π)n/2|Cc|1/2
exp

(
(x− µc)

TC−1
c (x− µc)

2

)

πc.

Since the data is iid, it holds that

Lxr(θ) =

T∏

t=1

p(x(t), r(t) = ct),

ℓxr(θ) =
T∑

t=1

log(πct)−
T∑

t=1

n

2
log(2π)−

T∑

t=1

1

2
(|Cct |)−

T∑

t=1

1

2
(x(t)− µct)

TC−1
ct (x(t)− µct),

which is equivalent to

ℓxr(θ)

=
T∑

t=1

C∑

c=1

χ(c = r(t)) ·
[

log(πc)− n

2
log(2π)− 1

2
(|Cc|)− 1

2
(x(t)− µc)

TC−1
c (x(t)− µc)

]

,
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where χ(c = r(t)) is the indicator (or characteristic) function:

χ(c = r(t)) =

{
0 if r(t) 6= c
1 if r(t) = c

.

2. The posterior P (r = c|x, θ) is calculated as follows:

P (r = c|x, θ)

=
P (r = c,x|θ)

p(x|θ)

=
P (r = c,x|θ)

∑C
k=1 p(x|r = k, θ)P (r = k|θ)

=

(
1
2π

)n/2
(

1
|Cc|

)1/2

exp
(
− 1

2
(x− µc)

TC−1
c (x− µc)

)
πc

∑C
k=1

(
1
2π

)n/2
(

1
|Ck|

)1/2

exp
(
− 1

2
(x− µk)TC

−1
k (x− µk)

)
πk

=

πc√
|Cc|

exp
(
− 1

2
(x− µc)

TC−1
c (x− µc)

)

∑C
k=1

πk√
|Ck|

exp
(
− 1

2
(x− µk)TC

−1
k (x− µk)

) .

3. The parameters θ in ℓxr are µ1, µ2, . . . , µc and C1, C2, . . . , Cc and π1, π2, . . . , πc. As we cannot observe the value r(t),
we have to estimate it given all we have: the observation x(t) and some estimates θk for the parameters.

Estimation of r(t) means here taking the average value with respect to the density P (r(t) = m|x(t), θk):

J(θ|θk)

=

T∑

t=1

C∑

c=1

C∑

m=1

P (r(t) = m|x(t), θk) · χ(r(t) = c)

[

log πc − 1

2
log |Cc| − n

2
log(2π)− 1

2
(x(t)− µc)

TC−1
c (x(t)− µc)

]

=
T∑

t=1

C∑

m=1

P (r(t) = m|x(t), θk) ·
[

log πm − 1

2
log |Cm| − n

2
log(2π)− 1

2
(x(t)− µm)TC−1

m (x(t)− µm)

]

.

4. In the previous part of this exercise, in the very last equation it holds that the latter sum is constant with respect to
µc if m 6= c. Therefore using exercise 13 (Maximum Likelihood Estimation for Multivariate Gaussians), we get

∇µcJ(θ|θk)

=
T∑

t=1

∇µcP (r(t) = c|x(t), θk)
[

−1

2
(x(t)− µc)

TC−1
c (x(t)− µc)

]

=
T∑

t=1

P (r(t) = c|x(t), θk)C−1
c (x(t)− µc).

Setting the gradient to zero gives us

T∑

t=1

P (r(t) = c|x(t), θk)C−1
c µc =

T∑

t=1

P (r(t) = c|x(t), θk)C−1
c x(t),

from which we get

µc =

∑T
t=1 P (r(t) = c|x(t), θk)x(t)
∑T

t=1 P (r(t) = c|x(t), θk)
,

which is the value for µc(k + 1).

The last sum in the very last equation of the previous part of this exercise is constant with respect to Cc if m 6= c.
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Again, we can use the results from exercise 13 to find the gradient with respect to Cc:

∇CcJ(θ|θk)

=
T∑

t=1

∇CcP (r(t) = c|x(t), θk)
[

−1

2
log |Cc| − 1

2
(x(t)− µc)

TC−1
c (x(t)− µc)

]

=

T∑

t=1

P (r(t) = c|x(t), θk) ·
[

−1

2
C−1

c +
1

2
C−1

c (x(t)− µc)(x(t)− µc)
TC−1

c

]

.

Setting the gradient to zero gives us

1

2
C−1

c

T∑

t=1

P (r(t) = c|x(t), θk)(x(t)− µc)(x(t)− µc)
TC−1

c

=
1

2
C−1

c

T∑

t=1

P (r(t) = c|x(t), θk)

⇐⇒ Cc =

∑T
t=1 P (r(t) = c|x(t), θk)(x(t)− µc)(x(t)− µc)

T

∑T
t=1 P (r(t) = c|x(t), θk)

,

which gives us Cc(k + 1) when we use µc(k + 1) for µc.

5. Because exp(γ) ≥ 0 for every γ ∈ R, we have πc ≥ 0. Also

C∑

c=1

πc =

C∑

c=1

exp(γc)
∑C

k=1 exp(γk)
=

∑C
c=1 exp(γc)

∑C
k=1 exp(γk)

= 1,

so the trick works.

6. Using the previous part of this exercise, we get

∂J(θ|θk)
∂γc

=
C∑

n=1

∂J

∂πn

∂πn

∂γc
,

∂πn

∂γc
= − exp(γn)

(
∑C

k=1 exp(γk))
2
· exp(γc) = −πnπc (if n 6= c),

∂πc

∂γc
= πc − πcπc,

∂J(θ|θk)
∂πn

=

T∑

t=1

1

πn
P (r(t) = n|x(t), θk).

Therefore the derivative is

∂J(θ|θk)
∂γc

=

C∑

k=1
n6=c

T∑

t=1

−πnπc

πn
P (r(t) = n|x(t), θk) +

T∑

t=1

πc − π2
c

πc
P (r(t) = c|x(t), θk)

= −πc

C∑

k=1
n6=c

T∑

t=1

P (r(t) = n|x(t), θk)− πc

T∑

t=1

P (r(t) = c|x(t), θk) +

T∑

t=1

P (r(t) = c|x(t), θk)

= −πc

T∑

t=1

C∑

n=1

P (r(t) = n|x(t), θk)
︸ ︷︷ ︸

= 1

+
T∑

t=1

P (r(t) = c|x(t), θk)

= −πc · T +

T∑

t=1

P (r(t) = c|x(t), θk).
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Setting the derivative to zero gives us

πc =
1

T

T∑

t=1

P (r(t) = c|x(t), θk),

which gives us πc(k + 1).

Ex. 33 K-means

1. Because I−1 = I and |I | = det(I) = 1, we have

P (r = c|x, θk) =

1
C

1√
|I|

exp
(
− 1

2
(x− µc)

TI−1(x− µc)
)

∑C
k=1

1
C

1√
|I|

exp
(
− 1

2
(x− µc)TI−1(x− µc)

)

=
exp

(
− 1

2
(x− µc)

T(x− µc)
)

∑C
k=1 exp

(
− 1

2
(x− µc)T(x− µc)

)

=
exp

(
− 1

2
‖x− µc‖2

)

∑C
k=1 exp

(
− 1

2
‖x− µk‖2

) .

2. Simply put:

argmax
c

P (r = c|x, θk) = argmax
c

exp

(

−1

2
‖x− µc‖2

)

= argmin
c
‖x− µc‖,

i.e. the value of r that maximizes P (r = c|x, θk) is given by the cluster whose mean is closest to x.

3. With Exercise 32 (Estimating Gaussian Mixture Models with EM-Algorithm), the EM-update step for µc is

µc(k + 1) =

∑T
t=1 P̂ (r(t) = c|x, θk)x(t)
∑T

t=1 P̂ (r(t) = c|x, θk)

=

∑

t:r̂k(t)=c 1 · x(t) +
∑

t:r̂k(t) 6=c 0 · x(t)
∑

t:r̂k(t)=c 1 +
∑

t:r̂k(t) 6=c 0

=

∑

t:r̂k(t)=c x(t)
∑

t:̂k(t)=c 1

=

∑

t:r̂k(t)=c x(t)

number of points assigned to cluster c
.

We can use the EM-update rule for µc (obtained in exercise 32 with P̂ (r(t) = c|x(t), θk) instead of P (r(t) = c|x(t), θk)
because, formally, the cost function that must be optimized in the maximization step is the same as the one in
exercise 32.

Ex. 34 Clustering for binary data
Note that many calculations are similar to those in Exercise 32.

1.

E(ui) =
∑

ui∈{0,1}
uip(ui) = 0 · µ0

i (1− µi)
1 + 1 · µ1

i (1− µi)
0 = µi,

V(ui) = E(u2
i )− E(ui)

2

=
∑

ui∈{0,1}
u2
i p(ui)− µ2

i

= 02 · µ0
i (1− µi)

1 + 12 · µ1
i (1− µi)

0 − µ2
i

= µi − µ2
i

= µi(1− µi).
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2.

E(u) = E








u1

u2

...
un








=








E(u1)
E(u2)

...
E(un)








=








µ1

µ2

...
µn








= µ,

cov(ui, uj) = E(uiuj)− E(ui)E(uj)

ui and uj
=

independent
E(ui)E(uj)− E(ui)E(uj)

= 0,

so we get

cov(u) =








V(u1) cov(u1, u2) . . . cov(u1, un)
cov(u2, u1) V(u2) . . . cov(u2, un)

...
...

. . .
...

cov(un, u1) cov(un, u2) . . . V(un)








=








µ1(1− µ1) 0 . . . 0
0 µ2(1− µ2) . . . 0
...

...
. . .

...
0 0 . . . µn(1− µn)








.

The variables are thus uncorrelated.

3. To simplify notation, we denote q(x;µc, πc, c = 1, 2, . . . , C) by q(x) only. We can calculate the mean in a straightfor-
ward manner:

E(x) =
∑

x∈{0,1}n
xq(x)

=
∑

x∈{0,1}n
x

C∑

c=1

πcp(x;µc)

=

C∑

c=1

πc

∑

x∈{0,1}n
xp(x;µc)

part 2
=

C∑

c=1

πcµc.

For the calculation of the covariance matrix of x, we first calculate the marginal distribution of an element xi of the

vector x =
(
x1 x2 . . . xn

)T
. We denote the marginal by q(xi). By definition of the marginal distribution, we get

q(xi) =
∑

xk

k=1,2,...,n

k 6=i

q(x),

where we sum over all elements xk of the vector x but element i. The marginal is thus

q(xi) =
∑

xk

k=1,2,...,n

k 6=i

q(x)

=
∑

xk

k=1,2,...,n

k 6=i

C∑

c=1

πcp(x;µc)

=
C∑

c=1

πc

∑

xk

k=1,2,...,n

k 6=i

p(x;µc)

︸ ︷︷ ︸

marginal of xi

=

C∑

c=1

πcp(xi;µc).
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The equality in the last line holds since p(x;µc), defined in Equation (A.100), factorizes. We can use the marginal to
calculate the covariance in few steps:

E(x2
i ) =

1∑

xi=0

x2
i q(xi)

=
1∑

xi=0

x2
i

C∑

c=1

πcp(xi;µi)

=
C∑

c=1

πc

1∑

xi=0

x2
iµ

xi
ci (1− µci)

(1−xi)

=
C∑

c=1

πcµci.

E(xixj) =
1∑

xi=0

1∑

xj=0

xixj

C∑

c=1

πc p(xi, xj ;µc)
︸ ︷︷ ︸

= p(xi;µc)p(xj ;µc)

=

C∑

c=1

πc

1∑

xi=0

1∑

xj=0

xip(xi;µc)cjp(xj;µc)

=
C∑

c=1

πc

(
1∑

xi=0

xip(xi;µc)

)



1∑

xj=0

xjp(xj;µc)





=
C∑

c=1

πcµciµcj .

cov(x) = E(xxT)− E(x)E(x)T

=

C∑

c=1

πc








µc1 µc1µc2 . . . µc1µcn

µc2µc1 µc2 . . . µc2µcn

...
...

. . .
...

µcnµc1 µcnµc2 . . . µcn







−

C∑

c=1

πc








µc1

µc2

...
µcn








C∑

c=1

πc

(
µc1 µc2 . . . µcn

)
.

From this we can see that the covariance matrix is not diagonal and therefore the xi are correlated. This shows that
the mixture distribution is a richer distribution than a single multivariate Bernoulli distribution.

4. The log-likelihood ℓ(µc, πc, c = 1, 2, . . . , C)) is

ℓ = log

(
T∏

t=1

q(x(t);µc, πc, c = 1, 2, . . . , C)

)

=
T∑

t=1

log q(x(t);µc, πc)

=

T∑

t=1

log

(
C∑

c=1

πcp(x(t);µc)

)

=
T∑

t=1

log

(
C∑

c=1

πc

n∏

i=1

p(xi(t);µci)

)

.
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5. When the class memberships are also observed, the log-likelihood ℓ(µc, πc, c = 1, 2, . . . , C)) is

ℓ = log

(
T∏

t=1

q(x(t), r(t);µr(t))

)

=
T∑

t=1

log q(x(t), r(t);µr(t))

=

T∑

t=1

log(πr(t)p(x(t);µr(t)))

=
T∑

t=1

[

log πr(t) + log

(
n∏

i=1

p(xi(t);µr(t),i)

)]

=
T∑

t=1

log(πr(t)) +
T∑

t=1

n∑

i=1

log
(

µ
xi(t)
r(t),i(1− µr(t),i))

(1−xi(t))
)

=
T∑

t=1

log(πr(t)) +

T∑

t=1

n∑

i=1

(xi(t) log µr(t),i + (1− xi(t)) log(1− µr(t),i)).

6.

q(r(t) = c|x(t)) =
q(r(t),x(t))

q(x(t))

=
πr(t)p(x(t);µr(t))

∑C
c=1 q(x(t), r(t) = c)

=
πcp(x(t);µc)

∑C
k=1 πkp(x(t);µk)

This is equivalent to Eq. (11.16) for the Gaussian mixture.

7. Using exercise 31 (More on the general form of EM for Mixture of Gaussians) (∗), we have

E(ℓ(µc, πc))

(∗)
=

T∑

t=1

C∑

c=1

q(r(t) = c|x(t))
︸ ︷︷ ︸

=q∗t,c(notation)

log(q(x(t), r(t);µr(t)))
︸ ︷︷ ︸

part 5

=
C∑

c=1

T∑

t=1

q∗t,c log πc +

C∑

c=1

T∑

t=1

n∑

i=1

q∗t,c(xi(t) log µci + (1− xi(t)) log(1− µci)).

8. Denote J = E(ℓ(µc, πc)). Now we have

∂J

∂µci
= 0 +

T∑

t=1

q∗t,c

(

xi(t)
1

µci
− (1− xi(t))

1

1− µci

)

=
1

µci

T∑

t=1

q∗t,cxi(t)− 1

1− µci

T∑

t=1

q∗t,c(1− xi(t)).

Setting the derivative to zero gives us:

µci

(
T∑

t=1

q∗t,c −
T∑

t=1

q∗t,cxi(t)

)

= (1− µci)
T∑

t=1

q∗t,cxi(t),

from which we get

µci =

∑T
t=1 q

∗
t,cxi(t)

∑T
t=1 q

∗
t,c

,

which is what we wanted, since q∗t,c = q(r(t) = c|x(t)). This is the same update rule as for Gaussian mixtures (compare
with Eq. 11.17).
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9. Denote J̃ = J + λ(1−
∑c

k=1 πk). Now we have

∂J̃

∂πc
=

T∑

t=1

q∗t,c
1

πc
− λ.

Setting the derivative to zero gives us:

πc =

∑T
t=1 q

∗
t,c

λ
.

We use the constraint to calculate λ:

1 =
C∑

k=1

πk =
C∑

k=1

∑T
t=1 q

∗
t,c

λ
=

1

λ

C∑

k=1

T∑

t=1

q∗t,c

=⇒ λ =

C∑

k=1

T∑

t=1

q∗t,c

=
T∑

t=1

C∑

k=1

πkp(x(t);µk)
∑C

j=1 πjp(x(t);µj)

=
T∑

t=1

∑C
k=1 πkp(x(t);µk)

∑C
j=1 πjp(x(t);µj)

=
T∑

t=1

1

= T.

Therefore

πc =

∑T
t=1 q

∗
t,c

T
,

which is what we wanted. This is the same update rule as for Gaussian mixtures in Eq. (11.19).

Ex. 35 Some Verifications for Metric MDS

1. For the columns, the sum equals

N∑

i=1

d̃ij =

N∑

i=1

dij −
N∑

i=1

(

1

N

N∑

i

dij

)

−
N∑

i=1

(

1

N

N∑

j

dij

)

+

N∑

i=1

(

1

N2

∑

ij

dij

)

=
N∑

i=1

dij −N

(

1

N

N∑

i=1

dij

)

− 1

N

∑

ij

dij +

N

(

1

N2

∑

ij

dij

)

=
N∑

i=1

dij −
N∑

i=1

dij − 1

N

∑

ij

dij +
1

N

∑

ij

dij

= 0,

which was what we wanted. The proof for the rows is very similar.

2. For the euclidean distance, we have

dij = ‖xi − xj‖2

= (xi − xj)
T(xi − xj)

= x
T
i xi − x

T
i xj
︸ ︷︷ ︸

∈ R

−x
T
j xi
︸ ︷︷ ︸

∈ R

+x
T
j xj

= ‖xi‖2 + ‖xj‖2 − 2xT
i xj ,
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and therefore

d̃ij = ‖xi‖2 + ‖xj‖2 − 2xT
i xj − 1

N

N∑

i=1

‖xi‖2 − 1

N

N∑

i=1

‖xj‖2 +

1

N

N∑

i=1

2xT
i xj − 1

N

N∑

j=1

‖xi‖2 − 1

N

N∑

j=1

‖xj‖2 +

1

N

N∑

j=1

2xT
i xj +

1

N2

∑

ij

‖xi‖2

︸ ︷︷ ︸

= N
∑N

i=1 ‖xi‖2

+
1

N2

∑

ij

‖xj‖2

︸ ︷︷ ︸

= N
∑N

j=1 ‖xj‖2

−

1

N2

∑

ij

2xT
i xj

︸ ︷︷ ︸

=
∑N

i=1

∑N
j=1 2xT

i xj

= ‖xi‖2 + ‖xj‖2 − 2xT
i xj −N

1

N
‖xj‖2 + 2xT

j
1

N

N∑

i=1

xi

︸ ︷︷ ︸

= 0

−

N
1

N
‖xi‖2 + 2xT

i
1

N

N∑

j=1

xj

︸ ︷︷ ︸

= 0

− 1

N

N∑

i=1

2xT
i

1

N

N∑

j=1

xj

︸ ︷︷ ︸

= 0

= ‖xi‖2 + ‖xj‖2 − 2xT
i xj − ‖xi‖2 − ‖xj‖2

= −2xT
i xj .


