Appendix B

Solutions

Ex. 1 Gram Schmidt

1. Two vectors u; and ug of R™ are orthogonal if their inner product equals zero. If either one of the vectors is a zero
vector, the vectors are trivially orthogonal to each other. Hence, assume that both u; and us are nonzero. Because

T
T . T u; az
u; uz = uq (az — T 1)
U1
o T 142 T
= u;az — T u; up
1 U1

the vectors u; and us are orthogonal.

Let v be a linear combination of a; and as, i.e. v = aa; + faz for some real numbers o and . Since u; and us

were defined in terms of a; and ag, we can write v as

v = aai+ faz

u?az
T

u; u

= oaui + fB(u2 +

u1)

u?ag
T, W
1

= oau; + pur + f——
u; U

T
. u; az
= (Oz—‘rﬂuTu )U1 + Sug,

1 U1

where o + B((uf az)/(ufu)) and 3 are real numbers, so v can be written in terms of u; and u..

2. Recall that when showing things by induction, one has first to show that the claim holds for the first possible value,
and then, that, if the claim holds for some value k, it holds also for value k+ 1. Since orthogonality is a property of two

vectors, the first possible value is two, which was proved in part 1 of this exercise. So we assume that ui, us, ...
are orthogonal vectors and prove that, given this assumption, the vectors u;, ua,..

, Uk

., Uk, U4+ are orthogonal as well:

T T T
Uj ag41 Ug a1 Uy Ak+1
Uip+1 = Ak+1 — —1 ur — — Uz — ...~ —p — Ug,
u; ug u, ug u; ug
and foralli=1,2,... k
T T
T _..T Uy k41 T Upag41 T
Ui Ugt1 = U Qp41 — —5—U; U1 — ... — —5——U; Ug.
uj ug u; ug
. T e - .
By assumption u; u; = 0 if i # j, so
T
T o T U; ag+1 T
u; Ug+1 = uiakH—O—...— T : Wy . -0
u; u;

T T
u; ag+1 — U; &g41
0,
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which proves the claim. Notice that if vector a; is a linear combination of aj, az,...,a;_1, the vector u; given by
Gram Schmidt process is zero vector and the process cannot be applied for the other vectors ajii1,aj42,...,a;. If
k > n, the vector a,+1 is automatically a linear combination of ai, a2, ..., as,, since there cannot exist a set of k > n
linearly independent vectors. On the other hand, if K = n and ai,as,...,a; are linearly independent, Gram Schmidt
process gives an orthogonal basis of R".

For the other part, notice that the case of one vector is trivial and the case of two vectors was prover in part 1
of the exercise. Using induction, we assume that the claim holds for k vectors and we will prove it for k + 1 vectors:
Let v be a linear combination of a1, as,...,ar+1, ie. v=aia1 +azaz + ...+ aray + arri1ak+1 for some real numbers
a1,Q2,...,a,+1. Using the induction assumption, v can be written as

v =fiur + fouz + ... + Brur + agr1akt1,

for some real numbers 1, f2, ..., Bx Furthermore, using equation (B.1), v can be written as
T
U] ag+1
v=p3u + o Bk + Qb1 U1+ Okl
ul u
T
Uy ak+1
+ otk uk
uk ug

Denoting v; = 3; + ozkﬂ(uiTakH)/(uiTui), v is then
V =71u1 + Y2U2 + ... + YUk + Qk41Uk+1,

which proves the claim.

Ex. 2 Linear Transforms

1. Let a; and a2 be vectors that span a parallelogram. From geometry we know that the area of parallelogram is base
times height, which is equivalent to length of the base vector times length of the height vector. Denote this by
5% = ||a1|]?*||uz||?, where is a; is the base vector and us is the height vector which is orthogonal to the base vector.
Using Gram Schmidt process for vectors a; and az in that order, we get the vector uz as the second output.

ag

ala,
ala, 1
Therefore ||uz||? can be written as
waf* = uzue

= B2z ala; N ala; ala; 18
C aTa (alaz)?
292 aTa;
Thus, S? is:
2 2 2
ST = al|7|Juz]|
= (ajai)(uzuz)
T, \2
T T (31 32)
= (aja;)|azas — ———
RICERE

= (agag)(alTal) - (alTag)QA
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2. As requested, let

az1 a2

A= (a aQ):(a“ ‘“2).

The determinant of A is |A| = a11a22 — a12a21. By multiplying out (aj a2), (afai) and (afaz)?, we get

T 2 2
ayaz = ajz+axn
T 2 2
ajar = aj; +ax
T, \2 2 2 2 2 2
(a; a2) = (a11a12 + a21a22)” = ajials + az1a39 + 2a11G12a21a22.

Therefore the area equals

s? = (a§2 + a§2)(a?1 + 031) - (afag)Q
a3aal; + aiaa3; + azai, + adsas; —
(0%20%1 + a§1a§2 + 2a11a12021022)
a32a3; + a3ya7; + 2a11a12a21 022

(a11a22 — arza21)?,

which equals |A]*.

3. Denote A = (a; az2). A rectangle with the same area as U, is spanned by vectors (A1 0)T and (0 A2)T. Under the
linear transform A these spanning vectors become Aja; and Asas. Therefore a parallelogram with the same area as
Uy is spanned by Aja; and Ajas.
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Using the part 2 of this exercise it is easy to calculate the area AUy of Uy as the determinant of (Aja; Azasz):

AU —  det <A1a11 A2(112>

Y Araz1  Azaz

- AIAQQIIQQQ _A1A2a12a21

A1Az(ar11a22 — a12a21)
= Ai1A]A|

Therefore the area of Uy, is the area of U, times |A].

4. This explanation is intuitive and doesn’t contain any real proof. On the left hand side of the change of variables
formula, y runs over the region U,. On the right hand side of the formula, x runs over the set U, = A™*(U,) so that
Ax runs also over U,. Hence, the functions on both sides of the equations take on the same values. In part 3 of this
exercise it was shown that the area of U, is the area of U, times |A|. Hence, we need to use the compensating factor
|A| when we integrate over A~(U,).

Ex. 3 Eigenvalue Decomposition
This exercise is very important and will be used many times in the future exercises.

1. Let A be an n X n matrix and u; and uz be such vectors of R™ that Au; = Au; and Auz = Auz for some real number
A. Denote u = au; + fuz, where o and (8 are arbitrary real numbers. Now
Au = «aAu; + fAus
= alu; + [fAue
Aaug + fuz)
= Au,

so u is an eigenvector of A with the same eigenvalue as u; and us.
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2. Let A be a diagonal n x n matrix with the eigenvalues of A on its diagonal: The elements of A are zero everywhere
but on its diagonal where the elements are the A1, A2,..., \,,. Denote by U the matrix with has as column vectors
the linearly independent eigenvectors of A: U = (u1 uz ... u,). Using Au; = A\u; for all ¢ = 1,2,...,n, and the
properties of matrix multiplication we have

AU = (Au1 AUQ e Aun) = (/\1u1 A2u2 . /\nun) = UA

3. (i) Since the columns of U are linearly independent, U is invertible. Because AU = UA, multiplying from the right
with the inverse of U gives A = UAU ' = UAV™.
(ii) Denote by ul? the ith row of U, v the jth column of V' and v the jth row of V and denote B = P i vy
Let el be a row vector with 1 in the ith place and 0 elsewhere and ) be a column vector with 1 in the jth place
and 0 elsewhere. Notice that because A = UAV™, the element in the ith row and jth column is

Ay = ulA@
NGO
M Vi1
~ u|
= Z A Vi Uik
k=1

On the other hand, for matrix B the element in the ith row and jth column is

B;j Z)\ke[i]ukvgem
k=1

> MUk Vi,

k=1

which is the same as A;;. Therefore A = B.

(iii) Since A is a diagonal matrix with no zeros as diagonal elements, it is invertible (the inverse matrix of A is just
a diagonal matrix with inverse elements of the eigenvalues of A as diagonal elements in the same order as in A).
We have thus

A = (wAUTHYT P =wautt)y t=wouhH Tttt
= WwhH'Alut=uavh

(iv) The calculation is the same as in part 4 of this exercise when the element \; is substituted by 1/\; for every
1=1,2,...,n.

Ex. 4 Trace, Determinants and Eigenvalues

1. Since Tr(AB) = Tr(BA) and A = UAU™*

Tr(A) Te(UAU ™) = Te((U)(AU™Y))

Tr(AU'U) = Tr(A) = Zn: Ai

2. The determinant of a diagonal matrix is just the product of its diagonal elements and the determinant of an inverse
matrix is just the inverse of the determinant of the original matrix. In addition since det(AB) = det(A)det(B), we

get
det(A) = det(UAU™") = det(U)det(A)det(U ")
_det(U)det(A) T
= T = det(A) = [ ]\

=1

Ex. 5 Eigenvalue Decomposition for Symmetric Matrices
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1. Since Au; = A1u; and Auz = A2uq, we also have
uldus = Xouiuo.
Taking the transpose of ul Aus, gives us
(uerug)T = (Aug)T(u?)T = u;FATul = u;FAul = Alu;rul
because A is symmetric. On the other hand, the same operation gives us
(uf Auz2)" = (Aoufuz)’ = Xouguy
Therefore Alu;rul = )\gugul, which is equivalent to u;rul(Al — A2) = 0. Because A1 # A2, the only possibility is that

ugul = 0. Therefore u; and us are orthogonal to each other.

2. Part 1 of this exercise showed that for distinct eigenvalues the corresponding eigenvectors are orthogonal, so in this
case the only thing left to do is normalize each of them by multiplying the vector with the inverse of its norm. If
A has some equal eigenvalues, the fact that A is symmetric tells us that there exists a set of n linearly independent
eigenvectors. Applying Gram Schmidt to the set of the eigenvectors with the same eigenvalue, we can thus obtain
a set of orthogonal vectors. A generalization of part one of exercise 3 (Eigenvalue Decomposition) tells us that the
vectors obtained via Gram Schmidt are still eigenvectors. After normalizing the vectors, we have a set of eigenvectors
that are orthogonal and of unit length.

3. Assume that vT Av > 0 for all v # 0. Since eigenvectors are not zero vectors, the assumption holds also for eigenvector
u, with corresponding eigenvalue \,. Now
u;fAuk = u;f)\kuk = )\k(u;fuk) = )\k||uk|| >0

and because ||[ug|| > 0, we obtain Ax > 0.

Assume now that all the eigenvalues of A, A1, A2,..., \,, are positive and nonzero. In part 2 of this exercise it
was shown that there exists an orthogonal basis consisting of eigenvectors ui,us,...,u, and therefore every vector
v can be written as a linear combination of those vectors. Hence for a nonzero vector v and for some real numbers
a1,Q2, ..., ay, holds that

vTAv
= (oqui +agug+...+ anun)TA(alul + aguz + ...+ anuy)
= (aau +...+au,) (Aus + ... + anAuy,)

= (aqur+... +o¢nun)T(a1)\1u1 + ...t aniiuy)
= Zaiu?aj)\juj
i
= Zaiai)\iu?ui
S ORI

because uf u; = 0 if i # j due to orthogonality of the basis. Since (a;)? > 0, [|u:||* > 0 and A; > 0 for all i, vT Av > 0.

Since every eigenvalue of A is nonzero, we can use the last part of exercise 3 (Eigenvalue Decomposition) to
conclude that inverse of A exists.

Ex. 6 Gaussian Distribution

1. The best thing is to start with the cumulative distribution function (cdf) F(y) = P(Y < y). Assume that Y has a
density f and therefore equation

y
Fo = [ fw)du (B.2)
holds. Now F'(y) can be written as

Fly) = P <y)
= P(Xi+X2<y)

/P(X1 + X2 <ylX2 =2z)fo(z) dz
- / P(X) <y —a|Xz = 2) fola) da

= /P(Xl <y —z)f2(z) du,
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because X7 and X2 are independent. On the other hand

and therefore

y—x

P(Xy<y—a)= / £1 () du,

—o0

r
.
/

—o0

(f) dudz
v

[
/—oofl U —z) f2(x) dudz

[/w £1(i — ) fo(z)dz | .

oo

<8

Now comparison with equation (B.2) shows that

y) = / " fuly — ) fa(u) du

2. Denote again the densities of X; and X2 by fi1 and fa:

1 z2 ]
1(x) = exp |——= |,
fi() = -
1 z2
fo(x = exp {f—
(@) 202 203

Using the formula that was derived in the previous part of this exercise, we get

Furthermore,

f(y)

/fl(y —u) f2(u) du

y—w?® o
202 203
2
Y 1 1 2uy
202 tu (20% + 20%) 202
201 + 03 -~ yo3 n i
20303 20303 207
o+ 05 (2 g, vo3 Y
20202 o?+ o2 202
2
oi+os (  yob  y’a) N v’ (of +03)
20103 o} + o3 2ot +03)of  2(cf +03)of
2 2
— Y92
(=) LV
99193 2(c? +03)’

SOLUTIONS
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Hence, we can write f(y) as follows:

1 1 / [ (y—u)? u?
— [ exp |- — — | du
V2no? /2703 203 202
B 1 1
B 21 (0? + o2 0202
\/ ( 1 2) 27‘(‘ o'%lﬁ»o'z%
2
/ (“ - U%ﬁ,g) y?
exp |— —
9 02%‘75 2(0? + 03)
o7 +o'2
y
1 1 (“ - agﬁg)
- \/2 (U2+0'2) 2 epT 0195 du
™ oro
1 2 \/271' 0%1“»02_5 o%-l»og

2
vy
P { 2(02 +a§>]

= [
= —————exp |———5—5| -
27 (o} + 03) 2(0f +03)
The last lines defines a Gaussian random variable with variance o? + o3, which completes the proof.

3. Recall that if X is a Gaussian random variable with mean y and variance o2, then for any constant c holds that X +c
is a Gaussian random variable with mean u + ¢ and variance o%. Now we can write X; = X + 1 and Xo = Xa + 12,
where X; ~ N(0,0?) for i = 1,2, and furthermore

Y =X, +X2:X~'1+X~'2+,u1+u2.

In part 2 of this exercise it was shown that X~'1 + X'g is a Gaussian random variable with zero mean and variance
02+ 02 Thus Y ~ N(pu + U2, 0% + a%)A

Ex. 7 Bivariate Gaussian

1. Recall that if A is a 2 X 2 matrix with A = <Z 3)7 then the inverse of A is
1 d —b
A7 =1/det(A) (76 a ) .
Since the determinant of X is
2| = otol + otosp” = aios(1 - p?),

the inverse of X is

-l 1 O'% —0102p
0202(1 — p2) \—o102p o1 ‘

Therefore

7 1 o2 - x
e 3 102p 1
XY x = (v122) 55—
) (oo o) (2)
1 U%l’l — 0102PpT2
= —— —  (mx
ey LRl S

2,2 2 2
03X] — 0102PpT1T2 — O102PT1T2 + x5071
2 .2 02
ofo3(1—p?)

1 xf 122 x%
f— —_— 2 [—
1—p? <O‘% palag + o2

- q($17$2)

and thus

1 1
f(z1,22) = DIy g exp [—§Q($l — H1,T2 — N2)} .
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2. Write first ¢(x1, x2) in a different form:

The marginal distribution f(z1) is

flz) = /f(xl,xg)d:vz

1 / 1 <-’82 L2 T1 m)Q
— [ exp |— — dz
2my/oio3(1 - p?) ’ [ 2(1=p?) 02 _— :
1 (#1 — Ml)Q]

exp |:7 5 0‘%

;/ex e —Q(x_)de
2rna2(1 — p?) P 202(1 — p2?) 2~ M2 PUI 1 — M 5

2
! exp {* (xl 51) ]
\/2mo? 207
1 (1 — #1)2]
exp |— ,
\/2mo? P |: 20%

. . . . . 2
which defines a Gaussian random variable with variance V(z1) = o7.

3. The covariance cov(z1,z2) is

cov(zy,x2) = pa)(z2 — p2))

- //“ e )

exp {—Eq(xl 1, T2 — )} dx1dxs

1 1
= 102 —————exp | —=q(x1,22) | dr1dx
// ! 2271'\/0’%0’%(1—[)2) p{ 2q( ' 2)] o

T2

2
. (r1=r2im)
part 2 /xl T ! ! d

9 ———=—exp | —
\V2mo2(1 — p2) 203(1 = p?)

= mean of a Gaussian pdf

2
N T
eXp{ a%} N Jona?

The mean that is marked in the previous equation chain is (poax1)/o1, which can be seen by comparison with the

common form of Gaussian density function. Hence
af
—xl exp dxzy
\/271'01 / { 20 2]

= /:vl exp { } dz1
\/271'01

the variance V(z1) = o}

cov(zi,z2)




4. Using the part 2 of this exercise it holds that

Ty _
_q(xl,l'Q) + o'_% =
Therefore
_ f(xlva)
f(z2|z1) = e
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1 X9 €1 2 ] x?
T s\ P T ot 3
1—p? \ o2 o1 oy 07
_ 1 T — X102 2
Ba-,m \* "o

\/2mo?

exp

exp

1
2‘1

2m\/oo3(1 — p?)

(11—

)2
(xl—uhﬂm—/m)-f— 20%

1
V2mo3(1—p?)

U S U 2 (21 — ) ’
20;(17&) 2 — M2 pal 1= M1 .

Hence, f(wz2]|z1) is a Gaussian probability density function with

mean : fg, |z

. 2
variance : o

2

EPIESY

p2 + p2= (21 — ) and
g1

o3 (1—p°).

. If p =0, then Haglz, = H2 and Oglzy = a%. Hence, if cov(z1,x2) = poio2 = 0, then 1 and z2 are also independent.
Note that this isn’t generally true for random variables.

. Assume that f, is the density function of X with mean vector u, and covariance matrix ¥, and f, is the density
function of Y. Let U, be a rectangle and U, = H~'U,. Integrating over U, may be hard, so making a change of
variables (see exercise 2: Linear Transforms) to integrate over the rectangle U, gives us

o fu(y)dy = P(yeU,)
= P(xe H '(Uy)
) /UI:H”(Uy) e
-/ gy

Hence,
fuly) = fo(H 'y)|H™'
= LETY
m exp [(H_ly — ) S N (H Yy — M)] _

Therefore pu, = Hp., and because

(H 'y — po) 'S0 W H Yy — pta)
(v — Hpo) " (H) 'S ' H  (y — Hpta),

we have X' = (HN) 'S 'H™ or 8y = HY,H'.

Ex. 8 Maximum Likelihood for a Gaussian
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1. The likelihood L(u, o) is the joint density of the data, treated as a function of the parameters u and o. Because of the
iid assumption of the data, the likelihood is the product of the probability density functions f(X;;u, o). The random
variable being Gaussian, the likelihood is

L(p,o) = Hf(Xiau, o)

N

- (75 o [5577])

i
N

1 1 2
= @ro)vp exp [ﬁZ(Xiﬂ) } :

i=1

2. To make the answer to the third part of the exercise simpler, write the sum in the first part differently:

N N B B
DXi—w? = Y (Xi-X+X—p)?
i=1 i=1

N

= Y (X =-X)P+2X —p)) (Xi—-X)+
N(X —p)®

where X is the sample mean and S? is the sample variance. Using this form of the sum, the log-likelihood is

Z(uva) = log L(/JHU)

| 1 NS? + N(X — p)?
©8 (2mo2)N/2 P 202

_ N 2 N o N S 2

= 2 log(2mo”) 2025’ 557 (X —p).

Using the original form of the sum, the log-likelihood would be

Up,0) = log L(p,0)
_ 1 (X — p)?
= log <(27r02)N/2 exp [ — 202 :|>

— log (m) + log <exp [ i %})

N 2
_ N 2 (Xi —n)

i=1

3. Calculating the maximum likelihood estimate means calculating the value of the parameter that maximizes the likeli-
hood. Because the logarithm function is strictly monotonically increasing, it doesn’t change the argument where the
likelihood is maximized. Since finding the maximum likelihood estimates for the log-likelihood function is simpler than
finding them for the original likelihood function, it is convenient to start with the log-likelihood function. Finding the
estimates is done by taking derivatives with respect to pu and o

o NX-—p

ou o2

o0 N NS N(X-p)?
P _;+ o3 + o3 ’

Now, the only value of ;1 which makes the derivative with respect to p zero is the sample mean X. Setting p to X in
the derivative with respect to o, we get
SQ

1
—== = o =5
o lea
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This is the only value of o that makes the derivative zero. Furthermore, it is the global maximum we were looking
for (this can be shown by calculating second derivatives). Therefore the maximum likelihood estimates are X and S2.

Ex. 9 Gradient of vector-valued functions
This exercise is useful for the later exercise sessions, so remember it if you have to calculate gradients in later exercises.

1. Gradient of J(w) = aTw using both methods.
1. First method

J(w) = alw = Zaiwi
i=1
oJ(w)
— = a;
8w¢
ai
az
= VJ(w) = =a.
an
2. Second method
Jw+eh) = a'(wH+eh)=a'w+e a' h
—~ ~
J(w) vJ(w)T
= VJ(w) = a.

2. Gradient of J(w) = wT Aw using both methods. Notice that for every real number x holds that = equals its own
transpose.
1. First method

J(w) = WTAW:iiwiAijwj

i=1 j=1
= 8;1(;:) = ;Akjwj + ;wiAik
Z;L:1 Avjw; + 307, widn
= VJ(w) =
>y Anjwy + 350, wilin
Z?:l Arjw; i wiAa
- R
>oj—1 Anjw; >y Wilin
A ... A, w1
= : . : +
At oo Awn) \wn
A ... A w1
Avn ... Aon W
= Aw+ A"w
2. Second method
J(w+eh) = (w+eh)"A(w +eh)
w'Aw +w' A(eh) + eh” Aw + (¢h)" Ach
NI
= 0(e?)

w Aw + e(w' Ah + (WTATh)T) + 0(€)
———
eR
= w Aw+e(w' Ah+w" A h) + O()
w AW +e(w A+ wTAT)h + O(e%)
———
= J(w) _ VJ(W)T
(wrA+w AN = ATw 4 Aw.

= VJ(w)



130 APPENDIX B. SOLUTIONS

3. The easiest way to calculate gradient for J(w) = w™w is to use the previous part of this exercise by choosing A = I
(the identity matrix). Therefore
VIw)=Iw+I"w=w+w=2w.
4. Recall the chain rule for gradients:
V(ho f)(x) =1 (f(x))Vf(z).
Using the chain rule and the part 2 of this exercise we can calculate the gradient for J(w) = ||w|| = VwTw:

chain rule V(WTW) part 2 2w W
™) 2wtw 2wl Tl

Using the chain rule is, of course, just a shortcut. Calculating the partial derivatives without the chain rule is here
also possible without much more work.

5. Using the chain rule and previous part of this exercise we can calculate the gradient for J(w) = f(||w]]):

chain rule revious part w
VI (w) TEETE f(([wl )V w]] =T f'(||W||)W-

6. Using the chain rule and first part of this exercise we can calculate the gradient for J(w) = f(w"a):

VJ(W) chain:rule f,(WTa)V(WTa)

T

woaeR f'(wra)v(a™w)
part 1 '(WTa)a
Ex. 10 Newton’s method
1. First, we write the function f in a different form:
Flw) = Fwo) + & (W~ wo) + 5 (w — wo) H(w — wo)

1 1
= f(wo) —g"wo + wo Hwo+g'w + w' Hw

= ¢ (constant)

1 1
—§WTHWO — Engw
—_———
ER

1
= c+gTw+ §WTHW — WTHW().

Using the exercise 9 (Gradient of vector-valued functions) we can calculate the gradient (remember that H is symmet-
ric):

Vf(w) g—‘r%(HTW—f—HW)—HWO

= g+ Hw — Hwy.
2. Set the gradient to zero and solve for w (assuming that H is invertible):

Vfw)=0 <= g+Hw—-—Hwo=0
<~ H(w-—wo)=-g
<~ w:wo—H_lg.

Here, wo stands for the starting point of the iteration or, during the iteration, for the previously obtained value of w,
and w stands for the updated value. As g is Vf(wo) and H is the Hessian at wo, we obtain the Newton iteration.

Ex. 11 Gradient of matrix-valued functions

1. Gradient of J(W) = u"Wv using both methods.



131

1. First method

J(W) = ZZWWUW

i=1 j=1
dIw) g
Wkl = UV = (uV )kl
— VJ(W) = uv'.
2. Second method

J(W—&-ee(i)]em) _ uT(W—f—ee(i)]em)v
= uTWv+e ule elily
——
€ER  €R

JW) + celluvTe®

— VJ(W) = uv'.

. Notice that

JW)=u"(W + A)v=u"Wv +u"Av,
and uT Av is a constant with respect to . Therefore

part 1

VJW)=Vu' Wv+Vu'Av = Vu" Wv +0"E " uv'.

. Gradient of J(W) =3 f(w,}v) using both methods.
1. First method.

aJ(W) 9

= F(wiv)
oW, AL R
= f/ (w?v) al/?/ij W;FV
3y Wijv,
= flwiv)y
= VJW) = f(Wv)v',
where f’(.) operates element-wise on the vector Wv.
2. Second method. Recall the theory of Taylor expansion ().
JW) = Y fwiv) =) f(eTw)
k=1 k=1
JOW +cePel) = 37 el (W + ceVel)v)

= Z f(e[k]Wv + ee[k]e(i)emv)
k=1
n

2wy +

k=1
ef (e™wv) w ellv +0(?)
=0, unless k = i
— (K] ’(altl [i] o (1) Gld]
;f(e Wv)+ef'(e Wv)e:(;:l_/e v+
O(€%)
= JW)+ e (Wv)vie?) + 0(e?)
— VJ(W) = fWvv',

where f’(.) operates element-wise on the vector Wv.
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4. Gradient of J(W) = uTW™'v using only the second method. Notice that because W is symmetric, W' is also
symmetric (x).

J(W + ee(i)em)
= uT(W + ee(i)e[j])_lv

gt — e leWell W 4 O(€2))v
= u"Wlv—eud"Wwle® Wy 40(6?)
Lr e eV v
€ R € R
= JW) =)@ W T W )T +
0(62)
= JW)—e W HTuvT (W HTe? + 0(?)
© JW) — el tuvTw e + O(&?)
— VJW) = W law'w

Ex. 12 Gradient of the Log-Determinant

1. As in exercise 3 (Eigenvalue Decomposition), let UAV™T be the eigenvalue decomposition of W (with VI = U™1).
Then A = VWU and

A\n = e[”]Ae(”)
e"vTwue™
ve"H)Tw(ue™

T
= v, Wu,,

where (as always) el is the row vector with 1 in the nth slot and 0 elsewhere and (™ is the corresponding column
vector.

2. Using the previous part of this exercise and the exercise 11 (Gradient of matrix-valued functions), we get:
V(W) = Ve Wu, = vaur.
3. In exercise 4 (Trace, Determinants and Eigenvalues), we proved that det(W) = ], A: and hence |det(WW)| = [T, |A:].
(i) If W is positive definite, its eigenvalues are positive (as we proved in exercise sheet 1) and |det(W)| =TT, A:.

(ii) If W is a matrix with real entries, then Wu = Au implies Wua = Ad, i.e. if A is a complex eigenvalue, then X (the
complex conjugate of ) is also an eigenvalue. Since |A|> = A,

|det(W)| = H Ai H sign(A;)A;

z;ec \jER
Now we can write J(W) in terms of the eigenvalues:

J(W) = log|det(W)]

= log | [] M I sign(A)A,

\;€C A, ER

= ldog | J] M| +log | J] sign(A)As

A eC AjER
= > loghi+ Y _ log(sign(A;)\),
A eC AjER
thus making calculating the gradient easier:
VIW) = V(D loghi+ Y log(sign(X;));))
X €C AjER
— Y L+ Y —— iz

)\i sign()\i))\i

A eC A; ER

T 3 T

r viu; sign(\;)viu;

SRR R I S

rec 7P A;€R ghiAi)Ai
viuiT

Ai




4. Using exercise 3 (Eigenvalue Decomposition) (x), we get

VI(W) =

T
A & 1 * —
v; _ Z —(uiV;F)T ) (W 1)T_

Ex. 13 Maximum Likelihood Estimation for Multivariate Gaussians

1. The likelihood function is

h

(Mv Zx)

.

n=1

N
1 _
= H m exp [—5(’% — 1) TS (% — u)]

1

The log-likelihood function is thus

£(p, Tx)

= logL(p,¥x)

= —Nlog((2m)™2[5x["/*) —

1 > Tv—1
@R P [5 > Gt = 55 e uﬂ .

n=1

[\DI»—l

N

Z S (%0 — 1)
|

e N .
= —Nlog(2m)™* — -log| S| — 5 > (xn — 1) "E" (%0 — pr)-

2. Using the given hint (%) we get

J(W + ee(i)e[j])

n=1

= u'(W+ ee(i)em)_lv
= u"Tw —awteel W) 4+ 0 () v
= u'Wilv—ed"w e W v +0O(6?)
~————
eR €R
= u"Wlv—el W HTuvT (W 1)Te? +
O(e*),
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so the second method for calculating gradients for matrix valued functions (introduced in exercise sheet 2) gives us

VIW)=-W HTav (W™ 1)".

3. We can use the results from exercise 12 (Gradient of the Log-Determinant) (x) and part 2 of this exercise to calculate

the gradient with respect to Xx. Remember that because Yx is symmetric, its inverse is also symmetric ().

Vs, 6(”7 Zx) =

Iz

. N
Vs, (~Nlog(2m)™/?) — Vi, (- log|x|) -
S —
=0
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Calculating the gradient with respect to p is easier since there is no need to use any special formulas:

. N
Vil Sx) = Val=Nog2m)™?) ~ Vu(Nloglx)
1 N
~Vulg D (n = ) S (xn — 1))

—

n=

V(%0 S X — 2%, S+ B )

I
ol
M=

3
Il
-

(—285 "%, + 255 1)

I
=

Il
-

n

(Eglxn - E;IN)

[
=

3
Il
-

(2% '%n) — N2 '

[
M=

Il
i

n

4. Setting the gradient with respect to u to zero gives us

N
Vil %) =0 <= > (Sx'xn) = NE'u=0

1 N

Remember that if the Hessian is negative definite at a critical point, the function attains a local maximum in that
point. Because the Hessian in this case is (up to positive a scalar) —5?', it is negative definite, since by assumption
Yx (and therefore also ¥x*') is positive definite. Therefore /i really maximizes £(u, ¥x) and the maximum likelihood
estimate /i is the sample mean. Setting 1 = [t gives us then

Ve (1, 5x) | =0
H=p
N 1
-1 -1 FNTx—1
— = Sx +2n§:1:2x (xn — X)(xn — X)TE =0
1 N
-1 _ 1,1 - 3\ Tyy—1
— wloyg (N;:l:(xn X)(xn — X)T)2x

which is what we wanted.

Ex. 14 Derivation of the Power Method
1. Using the alternative, 2-step method:
(i) V41 & Wi + /J,EW]C

. Vi1
(ii) Wi+ ¢ Vigt1ll2?
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we see that formula (i) looks like an update step of gradient ascent w <— w + pVJ(w). Thus, ¥w should be the
gradient of J(w). Using the exercise Gradient of vector-valued functions (x) we get:

VJ(w) = V%WTEW

*

1

3 symmetric 1

3 22w
= Yw.

Hence, formula (i) is the gradient ascent method (for maximization) with

w as the value at previous iteration step,

W as the step size,
Ywi as the gradient of objective function J, and
V41 as the updated value.

In formula (ii) we normalize the obtained vector vi11 to unit norm by dividing the vector by its 2-norm, which is the
length of the vector in Euclidean space. This is a form of constraint optimization and is in this case necessary because
without the constraint of unit norm for wy41, the maximum would be obtained when wy41 is infinitely large.

To sum up, the update rule is a constraint gradient ascent update step to optimize the objective function J.

2. Write first w41 in different form to make taking the limit easier:

WE+1
Wi + pXwg
Wi + pEwel|2
Wi + pXwg
V(Wi + pEwi) T (Wi + pEwy)
Wi + EW
VWEWE A+ u(EwWe) Twi + pw il (Bwi) + 42 (Swi) T (Swe)
Wi + EWp
VWIWE + 2uwl Swy, + 2 (Swi) T (Swy)

1 (ivvk + Ew;c)
wlw 2wl Sw
e ST TS
%Wk + Xwy

T 2wl Swy, ’
Ve 2 s 2

Since 1/ — 0 when p — oo, taking the limit is now easy.

Lwy + Swy,
lim wy, = lim = r =
J—> 00 J—> 00 \/WJH;V_k + 2w #Zwk + ||ZW]<;||%
_ Zwk
VIIEwe|[3
Ewk
[[Ewkl2”

Ex. 15 Convergence of the Power Method
1. Since the columns of U are orthonormal (eigen)vectors, U is orthogonal, i.e. U™ = UT. With Exercises 5 and 3, we
get
Y =UAUT,

where A is the diagonal matrix with eigenvalues \; of ¥ as diagonal elements. Assume that A1 > A2 > ... > \,.
(Remember that all eigenvalues are positive since 3 is symmetric)
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j=2,3,...,n and

A
klgrolo ()\_1> =0

For the normalization constant ¢, we get

and therefore

. 1
Ck = n @ 2 \ 2k
LY (8) ()
. - 1
klggock - 2 2k
YT (2 m (3)
1

APPENDIX B. SOLUTIONS
2. Notice that
T T T
Vit+1 = Zwk =UAU W < U Vi+1 = AU Wi,
so therefore vi+1 = Awyg. The norm of vi41 is the same as the norm of vii1:
- T
Vil = U Vel
= V(UT™VR)T(UTvis1)
= A /VE+1UUTV]€+1
\/ VE-HVIHI
= [IViqall.
Hence, in terms of v and wy the vector iteration is
Vi1 = Awy
. Vi1
Wk+1 ~—+
[[Ve+1l]
3. Let wo = (a1 a2 an)T. Because A is a diagonal matrix, we get
)\10&1 1
a2 A
Vi = . = A . )
and therefore
1
a2 A
~ Ao ar A
W = —— ,
C1
an An
@1 A1
where ¢; is a normalization constant such that ||w1|| =1 (i.e. ¢1 = ||v1]|). Hence, for wy, it holds that
1
az (22"
5 B o \ A1
Wi = Ck . 5
an (An i
o A1
where ¢ is again a normalization constant such that |[Wg|| = 1. As A1 is the dominant eigenvalue, |\j/A1]| < 1 for
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Because wyj, = ¢, Vi, the limit
lim Wk
k— o0

exists. Hence

! 1
k
a A
a1 (ﬁ) 0
lim wip = lim ¢ lim . =
k— o0 k— o0 k—o0 :
Qn (A_n)k 0
aq A1
4. Because wy = Uwy, we get
1
0
lim we=U | . | =uy,
k— oo :
0

which is the eigenvector with the largest eigenvalue (“dominant eigenvector”).

Ex. 16 Dimension Reduction by PCA

1. Direct calculations give

Jw) = E(lx-x)
= E <Z(xj — 'LU]'Z)2>
= E <Zn:(x? — 2xw;iz + wfz2)>

= E <Zn: x?) +E <Zn: —ijwjz> +E < Y w?-z2>
= ZE(ZE?) — 2ijE(:vjz) + <Z wf) E(z%).

By assumption, E(z;) = 0, so E(z3) = V(z;) and

Z2 = Zwiwkxixk,
ik
E(z") = ZwiwkE(ﬂcixk) = Zcov(ac,’7ack),
i,k i,k

E(z;z) = ZwiE(xjxi)ZZwicov(acﬁxi)A
i=1 i=1
Hence,

J(w) = ZV(xj) - Qij Zwicov(xjwi) +
j=1 j=1 =1

n
2
w; wiwkcov(Ts, T).
Jj=1 i,k

2. Since V(z;) is a constant, denote >°7_, V(x;) = c. Because [|w|| = 1, we get

n n n
2
c—2 E wj E wicov(zj, ;) + E w; E wiwkcov(Ti, T)
Jj=1 =1 Jj=1 i,k

= ¢—2 ZUHU)_;’COV(ZC]', z;) + 17 Z wiwjcov (T, ;)

0,3 %)

= c¢c— Z wiwjcov(zi, ;)
%)

J(w)

T
= Cc— W XxW,
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where X is the covariance matrix of x, i.e. (Xx)ij = cov(z;,z;). This is the same as the PCA cost function up to the
additive constant and the sign.

Ex. 17 Signal Approximation with PCA

1. The outer vector product ww?’ is

w1
w2
T
WwW = . (w1 w2 e wn)
Wn,
2
w1 wi1Ww2 . w1 Wn
2
wa2w1 Wa cee W2Wn
2
Wn W1 Wn W2 e Wy,

— Tr(ww')

n

2 2
> wi = llwl.
k=1

Jmin = BE(llx = UnUpnx|*)

= E(Tr((x — UnUpx)(x — UnUpx)"))

= E(Tr(xx" — xx" UnU,n, — UnUjpxx" +
Un Ut xx U Um))

= E(Tr(xx")) — E(Tr(xx" U Up)) — E(Tr(Un U xx"))
+E(Tr(Un Upxx " U U,y,))

= E(Tr(xx")) — E(Tr(Upxx" Un)) — E(Tr(Upxx" Us))
+E(Te (U U U xx " Uy )

~——

I

= Tr(BE(xx")) — Te(B(Upxx" Un))
= Tr(E(xx")) — Tr(Us E(xx") Uy)
b3 =¥

= Tr(Zx) — Te(UhSxUn).
3. Let UAUT be the eigenvalue decomposition of ¥y. Now
UnSxUn = UnUAU" Up,.

Find out piece by piece, what UL ¥y U,y looks like:

UELU = (u1 uz ... um)T(u1 oo Wy Umtl e un)
1 0 0 0 0
0 1 0O 0 ... 0
= . . . | (m x n matrix)
0 0 1 0 0
1 0 0
1 0
Utv, = Wst)"=|[0 0 ... 1| (nxm matrix)
0 0
0 0 0
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W0 ooy (L0 o
0 A 0 0
AUTU,, = : 00 1
0 0 Am 0 0 0
0 0 0 An 0 0 0
A O 0
0 A 0
= 0 0 ... Xu|(nxmmatrix).
0 0 0
0 0 0
Therefore
A0 0
0 Ao 0
1 0 0 0 0 .
0 1 0 0 0 :
U SxcUnm , 0 0 An
: 0 0 0
0 0 1 0 0 .
0 0 0

|

0 0 ... Am

4. Using the fact that () Tr(Xx) = > p_; Ak, we get

Jwin T2 Tr(Se) — Tr(ULSkUnm)
PEES Ty(Sy) — Tr(Am)

S S
k=1 k=1
> e

k=m+1

Ex. 18 PCA and data representation

1. Since the matrix X can be written as

X1 Xio . Xan
Xo1  Xoo .. Xon

X = . . . )
Xpl Xp2 Xpn

where X;; is the jth observation of the ith component of the random variable x, we see that the kth row of X contains
all n observations of the kth random variable.

2. Now cov(Xk, X;) = E(X,X;) because the mean was assumed to be zero. The sample covariance matrix is thus

1 — 1
— E XXy = —vivi.
n n

=1
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Since for E(x) = 0 the covariance matrix C' is C' = E(xx"),

E(X1X1) E(X:1X2) ... E(X1Xp)
" E(X2X1) E(X2X2) ... E(X2Xp)
E(xx") = . . . )
E(Xp,X1) E(XpX2) ... E(X,X,)
the sample covariance matrix C' is thus
Vivi Viva ... ViV,
T T T
. Vo Vi Vo V2 s Vo Vy
o=1 . . ) . —Llxxr
n : : g : n
VAV VaVa ... VpVp
3. We can write Z as
zZ = U'X
= UT (Xl X2 e Xn)
= (UTX1 UTX2 . UTXn)
urx; uixs ... uix,
ugxl urger o ugxn
unx: unXe ... UnXn

Because z; = u} x is the ith principal component, the ith row of Z contains thus all the realizations of the ith principal
component. Notice that the row as a whole is also often called the ith principal component.

4. The ith row of Z is uf X. Let i # j. Taking the inner product of the ith and jth row gives us

part

1 .
u; XX u; = nu! (= XXy TE 2 nu; Cuj.
n

Since U has the first m principal component weights as its columns, the sample covariance matrix C can be written
as UDUT, where D is a diagonal matrix (see Section 4.3.3 on page 4.3.3). Thus

u; XX"w; = nu!UDU"u;
0
di 0 0
0 do 0
= n(0 1; 0) . 1
0 0 dp :
0
0
= n(0 di 0) | 1
0
= 07

i.e. the rows of Z are orthogonal.

5. Simply put: the principal components are an orthogonal basis for the data space.

Ex. 19 Correlations, linear dependence and small eigenvalues

1. The eigenvalues can be calculated as follows (as you may have seen in your linear algebra course):

_ L=A p \_ 2 2 _
det(C—A[)-det( ) 1_)\>—(1—)\) —p°=0

= 1-A=4p

If |p| is close to 1, one of the eigenvalues is close to zero, i.e. if the random variables are highly correlated, we get one
small eigenvalue.
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2. The variance of x2 has to be 1, therefore
V(xz2) = V(azi +n) = a®V(z1) + V(n) = a’* + V(n) = 1. (B.3)

Since the mean of x; is zero, the variance of x1 equals E(x%), which is one. Because the covariance between z1 and x2
has to be p, we get

cov(ri,z2) = E(z172)

E(z1(az1 + n))

= aE(z]) +E(z1) E(n)
——

——
=1 =0

Therefore we have choose a = p. From equation (B.3) we see that the noise n has to have variance 1 — p?, but that is
the only criterion it has to satistfy.

3. The variances for the given p and the corresponding plots for 5000 samples are:

(i) p=—-1: V(n) =0

ar
3F N
°~,
oL
1k
X o
=
ok
-3 ",
o
_4 . . . . . . )
-4 -3 -2 -1 0 1 2 3 4
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(iv) p=10.5: V(n) =0.75

3t .
oL
1
Yo
b
ol
-3} e
_a . . . . . . ,
-4 -3 -2 -1 0 1 2 3 4

x1
Note that we used here a Gaussian random variable for 21 and n. But we could also haven chosen other distributions
as long as the conditions from the previous question are satisfied.

4. If |p| = 1, the variance of the noise variable is 0 and z2 is deterministically related to x1. Therefore vi and v are
linearly dependent.

If |p| is close to 1, the vectors vi and vz are close to being linearly dependent. The conditioning number of C is
given by

Amax _ 1+ |p|
Amin 1= p|’

which becomes arbitrary large as |p| — 1.

The conditioning number of XT = (v1,v2) is a measure of the linear dependencies of vi and va. For any matrix M



(not necessarily square) the conditioning number is defined as
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biggest eigenvalue of M™TM

cond(M)

/

smallest eigenvalue of MTM "

In our case M = X T and therefore MT™M = XXT = nC, where C is the covariance matrix. The conditioning number

of X7 is thus

L+1p

[nA [A
XT _ T Amax _ max
Cond( ) n)\min )\min

: = /cond(C).

L—1p

If |p| — 1, we see that the conditioning number of X and (therefore the conditioning number of C') goes up, i.e. vi

and v become more linearly dependent.

Ex. 20 Correlation and projection

1. Notice that for A3 = 0 the columns of C' are linearly dependent:

1 0
cos(a) 0 + sin(«) 1
cos(a) sin(a)
1st column 2nd column

and therefore C' is not invertible.

2. By mechanical calculation

cos(a)
sin(a)
cos? (o) + sin?(a)

cos(a)
sin(a) |,
1

3rd column

1 1 0 cos(a) cos(a)
Cui = — 0 1 sin(a) sin(a)
V2 cos(a) sin(w) 1 1
1 2 cos(a)
= — 2 sin(«)
2 \ cos? (a) 4 sin®(a) + 1
cos(a)
— oL sin(a)
V2
= 2. u,
1 0 cos(a) —sin(«)
Cuy = 0 1 sin(a) cos(a)
cos(a) sin(a) 1 0
—sin(a)
= cos(a)
0
= 1 uz,
1 1 0 cos(a) —cos(a)
Cus = — 0 1 sin(«) —sin(a)
V2 cos(a) sin(w) 1 1
— cos(a) + cos(a)
- L —sin(a) + sin(«)
V2 \_ cos?(a) — sin?(a) + 1
= 0- us,
so the eigenvalues are Ay =2, A2 =1 and A3 = 0.
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3. Recall the exercises about eigenvalue decomposition and the formula A = Z?:l )\iuiV;F. Now C = Z§:1 )\iuiu;r:

. 1 cos?(a) cos(a) sin(a) — cos(a)
Asuzuy = 5)\3 cos(a) sin(a) sin?(«) —sin(a) |,
— cos(a) — sin(«) 1

2nd part of C

cos? () cos(a) sin(a) cos(a)
Muuf = 2.2 | cos(a)sin(a) sin?(a) sin(a) |,
cos(a) sin(a) 1
sin’(a) —sin(a) cos(a) 0
Aousu; = — sin(a) cos(a) cos?(a) 0],
0 0 0
1 0 cos(a)
)\111111? + )\211211;F = 0 1 sin(a)
cos(a) sin(w) 1

1st part of C

4. The principal component directions correspond to the eigenvectors of the covariance matrix C. Since we want to

explain as much variance as possible, we would use the two principal components with the biggest eigenvalues, that
means s; = u; x and s = ua X.

. The proportion of variance explained is defined as

k
Zi:l Ai
i1 A 7
where k is the number of selected components and n the dimension of the data. Hence, for A3 = 0.1 we get

A1+ A2 _ 3 -
A+ A2+ A3 3.1 ~0.97,

meaning that approximately 97% of the variance is explained by the first two principal components.

. In this case, the projection of a point x is a vector defined as (u?x ung)T.

For y1 = (xl 0 O)T the projection is
T 1 1
u 1 —= cos(a —= cos(«
plyn) = () = (P, (VE s
uz y1 —z1 sin(a) —sin(a)
T T
For yo = (0 To 0) the projection is
T 1 1
u T2 —= sin(« —= sin(«
p(y2) _ }Fy2 _ 273 ( ) = 2o V2 ( ) )
u;y2 x2 cos(a) cos(a)
T T
For y3 = (0 0 xg) the projection is
T 1 1
— (ULYs) (3R — g (V3
- (53)- () -(3)
From these formulas we see that projecting y; is the same as projecting the ith unit vector scaled by the value x;.

Thus, in the plots we only show the projection of the unit vectors e;. The projection of any other vector of the form
yi lies along the same axes.

. From the covariance matrix we see that the correlation between the first and second variable is zero, and that the

correlation between the first and the third variable is given by cos(«), and between the second and the third variable
the correlation is given by sin(«). For the values of « in the previous part of this exercise we get:

(i) a=0:p13=1, pas =0,

(i) a=7:ps =5 3=



a=0:
A
ple2)
T
_ (L
o= (5 9
p(e2) = (0 1) >
1 T ples)
ples) = (E 0)
a=4:
A
pley)
T
pler) = (% —%)
T
_ (1 .
plez) = (2 ﬂ)T ples)
ples) = (\/Lﬁ 0)

™

(ili) o= 3 : p13 =0, pa3 = 0,

5m V3 1

(iv) oo=2F: p1g = =2, pog = 1.

pler)
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Relating these numbers to the projections, we see that: (1) If the axis p(es) is closer to the axis p(e1) than to p(ez),
then the third variable is more correlated to the first variable than to the second one. (2) If the arrows, i.e. the
projections, point to the same direction, the random variables are positively correlated (and otherwise negatively).

Ex. 21 PCA and linear regression

1. In matrix notation we have

€1 Y1
€2 Y2

€= . 7X:(x1 Xo ... xn)7y: . :XTB+§.
€n Yn

Since only y and X are observed, minimizing J(8),

Ly - X0 (y - X"p),

n

J(B)

gives us an estimate B = arg max J(f) of the true value of 3 € RP. As usual, we calculate the gradient of J with
B

respect to 8 and solve for 3 after setting the gradient to zero. Recall exercise 9 (Gradient of vector-valued functions)
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a=3:
A
pe=(0 1) (e
p(e2
e = (3 ;
) T ples)
ples) = (ﬁ 0)
pler)
o =5
A
pler) ~ (70.61 70.5)T
ples) ~ (0.35 —0.86)" >
ples) = (% 0) ples)
pler)
ple2)
(%)
J(B) = %(yTy —y'X"8 - g Xy + BTXX"B)
—  VsJ(8) 2 %(—QXy +2XX"p).
VsJ(B) =0
— XX"g=Xy
= f=XX")"Xy= %(%XXT)’IX et Loy Xy
= = (XX Xy = (G) 72Xy,

where (', is the sample covariance matrix. For large n, 3 converges to E(XXT) 'E(Xy). The first term corresponds
to the covariance matrix and the second term measures the correlation between X and y.

2. Since y = XTB + ¢, we can write
B o= (XX")"'Xy

= (XX (xX")s+ (XX") ' Xe
= B+ XX")'Xe
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and because every € has zero mean, we get

E(BX) = E(BX)+E(XX")'X¢X)
B+ (XXT) 7' X E(g]X)
=0
= 57
VBIX) = V( B +(XX")'X¢X)
~  ——

= (XXHTIX)V(X)(XXT)TX)"
= XX 'Xr((xxhH'x)"
= oXXNH (XXM XX
o?(XX)™!
o1

- (nXXT)

= %C’gl.
3. By writing the norm ||8 — j3|| differently, we get
MSE = E(|8-8IIX)
= B(T((8-B)(B - H)"]X) )
= E(Tx[(f —m+m = B)(B—m+m—B)X),
where m = E(j3|X). Notice that
(B =m+m=B)(B—m+m-—p)"
= B-m@B-m)"+(B-m)m=-H)"+
(m = B)(B—m)" + (m— B)(m - B)".

Because trace is a linear operation and it holds that Tr(A + B) = Tr(A) + Tr(B), we can take the expectation inside
to get

MSE
= TB((8 —m)(8 = m)" X)) + Tr[B((8 — m)(m — B)"[X)] +
Tr[E((m — B)(8 —m)")] + Tx[E((m — B)(m — B)T)].

Now notice that

which holds also for E((m — 8)(8 — m)T|X). Furthermore,
E((8 = m)(8—m)")|X) = (8 =m)(8 —m)"),
because everything is deterministic here, and
E((m = B)(m — B)"1X) = V(B|X),
by definition of the variance and the fact that m = E(S|X). Therefore
MSE = Tr[(8 —m)(8—m)"]+TrV(3|X)
= 8- E@IX)|* + TrV(BIX).
4. Using the previous parts of this exercise and exercise 4 (Trace, Determinants and Eigenvalues) (x), we get

MSE = Tr(V(8X))+ I8 - EBIX)|

= IOk + 8- Bl
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where d; are the eigenvalues of éx. Hence, the small eigenvalues of é’x cause the MSE to be large. In exercise 19
(Correlations, linear dependence and small eigenvalues) we showed that eigenvalues of C'x are small if some random
variables x; are highly correlated. This means that some rows of X are, or are close to being, linearly dependent.

5. The vector ULxy is the kth observation of the principal components. Let z, = UL xx. Now

1 n
JUny) = EZ(}’k*XEUmW)Q

Since J(B) = (1/n) Sp_,(yx — xi 8)?, the function Jp. really has the same form as J, but the principal components
are used instead of the original inputs.

6. Let U = ( Uz ...UWm  UWptt up) and Z = ( Zo ... zn) where z;, € R™ is as in the solution to the
previous part of this exercise. Notlce that Z = UXX. Just as in the first part (having just Z instead of X), we get:

. 1 1
§ = (-2Z")'-Zy
n n
1 1
= (Un(=XX"U,) ' ~U} Xy
n n

——
=Cx

1
(U,TLUDUTUm)*lUELEXy,

where UDUT is the eigenvalue decomposition of the sample covariance matrix Cx. On the other hand,

up
UnU = (w0 Um Umpr ... W)
um
1.1 O 0 0 0
0 1o 0 0 0
= : 5
0 0 1mm 0 Omp

and therefore UELUDUT U, = Dy, where D,, has the first m diagonal elements of D on its diagonal. Hence,

y = (U,EUDUTUM)*IUEL%Xy = D,’nlUEL%Xy.

7. The solution follows the same steps as in part 3 of this exercise: Since

Bre = (UnDZUD)LXy

(UmD,;lU;)lX(xTﬁ +e)

(Un D U ) Lxx T84+ (UnD U ) L xe,
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V(BpelX)
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(U D, UL %XXT B+ (UnD;,} Uﬁ)%x E(e)

N—— :VO
— Cx
Un.D;'UTUDUT B
di 0 ... 0O 0 ... 0
0 d ... 0 0 ... 0
U D} , . Uu's
0 0 dm O 0
i 0 ... 0 0 ... 0
0 1y 0 0 0 -
Unm . . |U° B
0 0 1mm O Omp
:U;fL
UnUp, B,
1 _ _
= F(UmDmlUg)XE(e_eT)XT(UmDmlU;Z)T
N——
=027
2
— T (Un.DLUT) LXXT (U, D UT)T
n n
— Ox

2
- 2 u.p;'UvtupuTU,, D, UL
n —_————

= D,

= “—2UmD:ﬂlU§L.
n

8. Because Tr(cAB) = ¢Tr(BA) for any constant ¢, the trace of V(Spc|X) equals

Tr(V(BpelX))

and therefore the MSE for f is

MSE,. =

If m = p, then U, = U and UU™ = I, so MSE,. becomes (o2 /n)
If m < p, then the variance is reduced by (¢%/n)

2

(%= (U D UR)

Tr(Up U D)

B
>
7

SN NS

‘Mg
&=

@
Il
-

Tr(V

0_2

el X)) + 118 — E((8)peX)|I?

-+ |18 = Un U B

1

—
>

.MS
&|,_.

n
1

-
Il

-+ 18Iy = UnUp)|I.

Il
3|9
‘MS
Q.|>—A

S

i=1

P_,(1/dy), i.e. it is equal to the MSE of 8.

Y m+41(1/di) but we incur a bias since UnUY # Ip,. This is

called the bias-variance trade-off: by choosing m, one can choose a certain reduction in variance, at the cost of more
bias. The best m is the one which leads to the smallest MSE. The formula for the MSE,. show that the best m is
essentially a function of d; and u,, i.e. the covariance matrix of X.

Ex. 22 Least squares for factor analysis and PCA
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1. Direct calculations give

Tr(A" B)

Tr(AB™)

ij

APPENDIX B. SOLUTIONS

2. Remember that, (a) Tr(A 4 B) = Tr(A) + Tr(B), (b) Tr(AB) = Tr(BA) and (c) Tr(A) = Tr(AT). Remember also that
the trace of a real number is just the number itself.

|C —aa’|
Tr((C —aa")(C —aa™)")
Tr((C —aa”)(C" —aa"))

3. Recall exercise 9 (Gradient of vector-valued functions):

Jls(a) =

cT=c

Jls(a)

— VJ[S(G,)

4. Let v be such vector that VJis(v) = 0. Now

Tr

o

C
Tr

c
c
c

(
(
Tr(CC" +aa’aa” — 2Caa™)
(
(

= [lal?

l|al|* — 2a™Ca 4 Tr(CC).

(a'a)® —2a" Ca + Tr(CO)

CC" — Caa" + aa’aa" —aa'C")

) 4+ Tr(aaaa™) — Tr(2Caa")
cC™)+Tr(a"a a’a) — 2Tr(a’ Ca)
-~ ——

€R

2a’a-2a—2Ca—2CT a+0
=~

=C

4)la)*a — 4Ca.

Viis(v) =0 <= Cv = ||v|’v.

Therefore v is an eigenvector by definition.

Let a* = ae, where « is a scalar and e is an eigenvector of C' with unit norm and eigenvalue A. Since

VJLs(a*) =0

— |a"|*a* = Ca"
— afael’e = aCe
— ad’e=)e

- a= :I:\/X7

the only possible scalars « are £v/A. Notice that because covariance matrices are positive-semidefinite, the eigenvalues

are non-negative.
5. Notice that

Jls (a*)

(V)2 = 2(£VA) e Ce + Tr(CC)
A% — 2D\ + Tr(CC)
N+ Tr(CC).
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Since Jis(a},) < Jis(a},) if AT > A3 and all the eigenvalues of C' are non-negative, we see that Jis(a,) < Jis(a3,) if
A1 > A2. Therefore the eigenvector with the largest eigenvalue minimizes Jis.

Ex. 23 Derivation of quartimax update rule

1. For G(y) = y* we have

JU) = G((AU)y) = > (AV)i)" =D O amux;)".
ij K

ij ij
We can use the gradient ascent to optimize the function J with the constraint that U must be orthogonal:

U + U+ pVJ(U) (update step)
U <« (UUT)"Y2U (orthogonalization).

Thus, we have to compute the the gradient of J:

oJ oJ oJ
ou ou o ou
ot af "
Ouzi Ouzz Tt Ougy,
VJI(U) =
oJ oJ oJ
Oupn1 Oup2 o Ounn

By chain rule, we get:

01 0 NS
k

Oupq Oupq .

= Z4(Za¢kukq)38izaikukq
i k Upg

= aip

- 42((AU)iq)3(A)¢p7

so the gradient is:
VJ(U) = 4(AU)P A,

where (AU)®) stands for taking the third power of matrix AU component wise.

2. Using exercise 22 (Least Squares for Factor Analysis and PCA) (), we get for G(y) = y?

JU) = ZG((AU)m
= Z(AU)?J'

ij

= AU

*

= Tr(AU(AU)T)
= Tr(A&[/]_T/ AT

= Tr(AA"),

which is independent of U, i.e. J(U) is constant for all orthogonal U.

Ex. 24 Kurtosis
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1. Uniform distribution

" Vi
E(x = / r—— dz
(z") .
1
N NV A
o5 (V) + (VA))
1
= — 2(V3)°
10\/§( )
1
= (V3"
5
-9
=
V3
1 1 3
E(z?) = / P——dr=—=2(v3?2=2=1
(z) W 6\/§( ) =3
9 9—15 6
k = =Z_-3= =_—,
= kurt(x) 5 3 5 5
2. Laplacian distribution
E(xQ)
= — 2% exp(—V2|z|) dz
| 55" ep(=vala)

oo
by svmmeny /o 2% exp(—V2z) dx
0

partial \/5 2 \/— :| =~ /oo
= ——x"exp(—V2x + 2z exp(—V2z) dz
integration |: \/5 p( ) 0 0 p( )

=0

partial 2 i > 2
= ——_zexp(—2V2z +/ — exp(—V2z) dz
integration |: \/5 p( ):| 0 0 \/5 p( )

= [fexp(f 2:2)]20
= 0+1
= 1.
E(fj)
= [m %le exp(—v/2|z|) dz

oo
by symmetry V2 ! exp(—ﬁx) dzx
0

4 oo oo
partial \/— X 4 3
= 2| [ === exp(—V2z +/ — 2% exp(—V2z) dz
integration [ \/§ p( ):| 0 0 \/5 p( )

=0

r 3 oo e}
partial —T 3 2
= 4| | —= exp(—V2x +/ — 2% exp(—V2z) dz
integration ( L \/5 p( ):| 0 0 \/5 p( )

=0

1 5
— 2% exp(—V2|z|) dx
[ et en(—vE)
2



3. Gaussian distribution with mean zero and variance o2.

Since mean p is zero, we have

so that

=
=

4. Gaussian scale mixture. Denote

p(z)

Calculate kurtosis piece by piece:

par_tial

integration

E(xQ)
/00 xQ# ex —x—Q dx
Ceo  V2mo? P 202
1

z? 22\~
7 oo ()]
=0
1 < g3 x x?
V2ro? /_oo 3 (_ﬁ) P <_T;2>
1 4

oo 1 $2
302 /,J Voror P (‘ﬂ)

ST;E(fl)
o’ = E(%),
1 4 1 4
307 ) = 3R )

[

[/:: 2%p1 (z)dz + /: x2p2(m)dm:|
(o1 + 03).

o]

[ /_ O:O 2*p1 (z)dz + /_ Z :v4p2(x)dx}

(3(01)* +3(03)%)

N—= N—= N

N|wWw N~ N~ N

(041l + 03).
E(z*) — 3(E(2%))?
E(z') — 3V(z)*

(0411 + 03) -3 (af + 03)2

P

1
{af +o5— 5(011 + 20202 + 03)}
1 1
|:§Uil — O’%O’% + §J§:|

(01 — 20703 + 032)

W R W DWW DWW

(af - 03)2.

153
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For o1 # 02, (0f — 03)? is always larger than zero and thus, kurt(z) > 0. If o1 = o2, then kurt(xz) = 0, since p(z) is
then just an ordinary Gaussian distribution as in part 1 of this exercise.

5. Mixture of Gaussians for the same variance but different means. Denote

p(z)

Since E(z?) = V(z) + E(z)?, we get

E(xQ)

E(Q?Q)Q

_ é(pu(x) +po(@) + p-p())

= 3\/15 ::exp<—(x_2u)2>dm+
T a?
L ()i
.

[ee) oo

/j:o prH(x)dx—I—/

—o0

% po(z)dx + /

w| =

—o0

p—p(z)dz

= Epu(z) = Epo(z)

(1 + ) + (407 + (14 (—p)?))

1 2

(342

3(+u)
2 5

1+ -p”.
+3,u

4 5 4 4
1+ = — .
+3u+9u

= Ep,” (z)

For the calculation of the 4-th moment, notice that h(y) = y* exp (—;{f—é) is an odd function, i.e.
Yy

h(—y)

Note also that the function 3® goes to infinity slower than the exponential function goes to zero so that the integral

/Ooo h(y) dy

exists. As h(y) is odd symmetric, we have furthermore that

Hence,

The third moment E(y®) (skewness) is zero for zero mean Gaussians.

For E(z") we need also to calculate E,, (z*) and Ep_, () (we can use part 1 of the exercise for E,, (z)):
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Ep, (z") = \/_/ x eXp< @) dz

change civariable ’U, + ox 7U_2 du
B o ,U p B)

1 e} 4 u2)
= — u- ex — | du +

V21 )~ P ( 2

1 o 3 u2)
— 4u”p exp | —— | du +
oz /,oo prexp ( 2

1 e} - < U2>
— 6u exp | —— | du +
V2T [oo a P 2

L/oo dup® ex (—U—Q)du—&—
fom . 1% p B

—1 /00 4o ( u2) du
b [ ——
o 700# P D)

= E(u') +4uE(u®) + 6°E(u®) +
—_—— —— ——

part 1 skewness unit variance
4P E(u) +p
———

= 340+6u>+0+pt

= 3+ 6u2 + k.

1 < (z +p)?
Ep_, (x4) = — " exp | ———— | dz
Vor J oo 2
change of variable 1 > B 4 7’[1/_2
i —_/ (u—p)” exp ( 2 ) du
2
= u? exp du —
7 e (-5)
2
\/—_/ 40P exp <—%> du +
2
6u exp (L) du—
1’ exp
Vor 2
2
_/ 4up’® exp <—%> du +

u?
,u exp du
7 e ()
= E(u") — 4uE(u®) + 6p°E(u®) —
4 B(u) + p
as e%rlier 3 + 6}142 + }144-
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Therefore

1 oo (oo} oo
E(z*) = 3 / x4p#(x)dx+/ x4po(x)dx+/ z'p_dx
= Bp,, (") part 1 =Ep_,(a*)
1
= 5«3+@f+uﬂ+3443+@f+uﬂ)
1
= 300+ 124° + 2p*)
2
= 344+ 2u
and thus, the kurtosis is
kurt(z) = B(z') - 3E(z?)?
2 4 4
T I R S v R S T P
HAp” gt =31+ gut 4 gp)
2 4
= 344+t -3 -4yt — ot
3 3
_ 2
- 3,u‘ )

which is always negative for nonzero mean.

6. The linear properties of kurtosis were introduced in Section 7.3. Using those, we get
a2
3

kurt(z + o) = kurt(z) + o kurt(y) = %(Uf —o3)? —at Syt

Setting kurt(z) to zero gives us
42 43 2

o gh —Z(U%—UQ)Q = o =g

9 1
— a::ti/j\/UQ—UQ —.
8 | 1 2/1/

4 9(0%_05)2%
12

Ex. 25 Kurtosis-based ICA

1. For g(u) = u we have
E Tz) =E(zw'z) = E(zz'w) = E(zz")w = 3,
(zg(w " z)) (zw z) (zz" w) (zz")w w,
€R
where Y, is the covariance matrix. The iteration is then

W~ WA YEwW

W
w4 —
[wl|

SOLUTIONS

which is the gradient-iteration for calculating the first principal component (see exercise 14 on the power method).

2. If ¥, = I (that is if z is white), the direction of w is not changed. Nothing happens.

Ex. 26 Skewness-based ICA

1. The gradient for J(w) = E((w'z)?) is

VJ(w) = E@B3(w'z)’z) = 3E((w"2)%z).
2. Gradient-ascent optimization becomes now

w < w+ 33 E(w'z)’z)
~—
=n
w
W = .
[wl
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3. Notice that

W w + nE((wTz)%z)
[wl VW + nE(wT2)22) T (w + p B(w'z)2z)
w+ pE((w'z)?z)
VWTw + 2uwT E((wTz)2z) + E((wTz)22)TE((w'z)2z)
® 4 B((w"2))
\/‘%2 + %WT E((wTz)%z) + E((wTz)2z)TE((wTz)2z)

Thus, the limit of p — oo is:

- 0+ E((w'z)%z) _ E((wTz)%z) .
VO +0+E((wT2)%2)TE((wTz)%z)  [|E((Ww'2)22)]|

Ex. 27 Another reason why Gaussian variables don’t work for ICA.

1. We need to know p,, the probability distribution function of z, where z = As, with

ps(s) = Hpi(sz')

by definition of the ICA model. Recall the theory about linear transformations of random variables. Because A is
invertible, we get

pa(z) = ps(A7'z)-[det(A7)
= ps(ATz) - | det(A)]
————

=1

k
= [Iriaia),
i=1

where the a; are the columns of A. Because the data z is iid, the likelihood (as a function of A) is therefore

n k
L(A) = H _sz' (a; zi)

and thus, the log-likelihood (as a function of A) is

n k
log L(A) = > log][piaiz)
=1 i=1

n k
= > > logpi(alz).

j=11i=1

2. Assume now that the p; are Gaussian, i.e.

o | 8
~_

pi(z) = \/%7 exp (7_
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Now the log-likelihood becomes

j=1i=1
= Y || -5 Yl
=1 i=1 2r] 2 =1 i=1 \EjR"
= ¢ (constant)
1 n k
= Cc1 — 5 Z Zz;raiaisz
j=1i=1
1 n k
SICEE ) SE RN o]
=1 i=1
J ———

=AAT =1 (orthogonality of A)

n
1 T
= clf—g Z; Zj
QLI
j=1

——

= co (constant)

= Cc1 — C2.

Therefore the log-likelihood function is a constant and doesn’t depend anymore on the matrix A. Hence, if one assumes
Gaussian sources s; all orthogonal matrices A give an equally likely fit to the data. The “true” orthogonal matrix
A can thus not be found if the sources are Gaussian. In other words, the ICA model is not identifiable if the s; are
Gaussian.

Ex. 28 Maximum Likelihood Estimation of the ICA Model

1. Notice that

paﬁial _ (8) ox 78_2
integ;ition g p 2

and hence the condition is not fulfilled.

. For gi(s;) = s2, we have

E(sigi(si) — gi(si)) = B(si —3s7)
E(s{) — 3 B(s})
= V(s;)
= E(s;) — 3E(s:)”
= kurt(s;),

so the condition corresponds to kurtosis being larger than zero.



159

3. For g;(si) = —s:, we have
pilsi) _
pi(si) '
== 2 log p(si) = —ss
Js
&2
= logpi(si) = -5+ ¢

constant
2
~ S
= pi(si) =c-exp <—§> )

which is a Gaussian distribution.

Ex. 29 On the derivation of the Natural Gradient Algorithm

> (A)ii(B)ij =Y (A)i;(BT)js = Y (ABT)s; = Tr(AB").

ij ij i
2. Using the hint by settingA = VJ(W), we obtain

J(W +uVJ(W)) = +uZ VI(W))ij(VI(W))ij + O(?).

Here p 32, (VJ(W))ii(VI(W))ij = ud2,; (VJ( ))i; is positive, since V.J(W) # 0. Since O(p*) depends on p° and
1 Zij(VJ(W))?j depends on p, the term O(u?) converges to zero quicker than the sum. Therefore ,for small enough
1> 0 it holds that

Y (VIW)) +0(?) > 0.
Thus, for small enough u, we have that
JW 4+ uVI(W)) > J(W).
3. Using part 1 of this exercise, the Taylor expansion in terms of the trace operator is

JW + pA) = +uZ )is (VI(W))i; + O(u?)

J(W) +uTr(AVJ( " 4+ o3?).
For A = VJ(W)BTB), we have

Tr(AVJ(W)T) = Te(VJW)BT"BVJ(W)T)
= T((VJ(W)B")(VJ(W)B")")
= > (VJW)BN) >0,

i
and thus, for small enough p the modified iteration increases the objective function (or leaves it unchanged).

Ex. 30 EM-algorithm

1. Notice that J;(0|0x) in Equation (A.83) becomes for 6§ = 6y

500168 = [ Hog(a(0).5(0),00)] p(s(0)lx(1),61) ds(0),
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which is some constant. If we subtract J;(0|0x) from J;(0]6x), we obtain

Je(010k) — Je(0x)0k)

/[logp(X(t):S(t)y9)]p(S(t)IX(t)79k) ds(t) —

/ llog p(x(), 5(£), 62)] p(s(t)|x(t), Bx) ds(2)

APPENDIX B. SOLUTIONS

PO, 5(.0) ]
[ 1o | ZELEOD] )0, 00) astr)

Ji(0104).

As additive constants don’t affect the maximizing arguments, the same argument 6, which maximizes J(6|6), maxi-

mizes also J(6]6%).

2. As

a1 s(0).00)
lg[< D) (t>9>]

=logl=0,
pX( ,S y Uk &

Ji(0x01) equals zero for every ¢, and therefore J(01]0r) = 0. In the next step, fx11 is chosen to be such that .J(6]0%)
is maximized, i.e. J(Or41]0k) > J(0]0) for every 0. Since this holds for every 0, it holds also for ) and hence,

3. Using the given fact, we can write

j(9|9k)

Now ¥, log p(x(t), )

j(0|9k)

J(0x1|0%) > J(0x|0x) = 0.

[ 1o | ZEL D] ts(0ix0).00) asto)

[ ——

[ e
LR [ ststoyinto.00) astr

£(0), and thus we get

> Ju(016x)

> s aiﬂ ‘

p(s(t)|x

Z/[|

> “logp(x - Zp
t t

(t),0
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4. From the previous part of this exercise we get

L(Ok4+1 — £(0k) ] ]
= J(Oks1]0k) — ;/bg W p(s(t)[x(t),0k) ds(t)

= j(9k+1|‘9k)+2/log w

_ j(ek+1|0k)+¥/log Zss(tt)lw

= J(0k1105) + Y D(p(s()[x(t), 0r), p(s(t)|x(t),0)
———

t
0 (part 2) >0

>
0,

Y

and therefore we have £(0x1) > £(0x). Each iteration of the EM-algorithm leads thus to an increase of the likelihood
£(0), which would be obtained by integrating out the latent variables s.

Ex. 31 More on the general form of the EM-algorithm

1. If we consider p(X,S;0) and integrate out the latent variables S, we get p(X;0) (see Eq 11.11). Therefore

p(X;0)

/ p(X,S;0)dS

/Hp(xt|st;9)p(st;9) ds
= H/p(xt|st;9)p(st;9) ds;

= [[p(xs0).

2. For continuous data we have

J0) = / log(p(X, 5;6))p(S|X: 65 1) dS

T
- /10g <tlj[1p(xt|stu a)p(stu 9)) p(X, Gk—l) dsl e dST

= /(Z(log(p(Xt:St59))>'

t=1
Hle P(XT|ST; kal)p(sT; 91%1)

ds;...ds
Hf:lp(xﬁ‘gk—l) 1 '
T
_ /(Z(log(p(Xt:St?e))>'
=1
T -0 ;0
Hp(xT|Sr7 Icfl)p(sT7 kil) dsi...dst
11 p(xr; Or—1)

|

~
-

:</

T

r=1

log(p(x¢, s¢;6) H p(s+|xr;0k—1) dsy...dsp

)
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We split now the product over 7 into two parts to isolate the term involving 7 = ¢:

J(9)

APPENDIX B.
T
= Z:/log(p(x,g7 St; 0)p(se|x¢; Ok—1) ds; -
t=1
T
/ Hp(ST|X7—; 0]@71) dS1 e dSt_l dSt+1 . dST
T=1

T#t
T
= Z/log(p(xt,st;ﬁ)p(st|xt;kal) ds¢ -
t=1
T
H/p(s7'|x7';0k71) ds,
=1

T#t 1

T
= Z/log(p(xt,st;ﬁ)p(st|xt;kal) ds,
t=1

SOLUTIONS

which was what we wanted. For discrete variables the calculation is analogue. We just need to replace the integral

over S with a sum over S.

This expression has a nice interpretation: logp(x¢,s:; @), which would give the complete log-likelihood when
summed-up, is replaced by an estimate, namely the conditional expectation.

3. Denote all the parameters p.,Ce,c=1,2,...,C, by 0. From the definition, we get:

p(r(t)[x(t);0) =

Sty P(r(t),x(1);0)
qt,c
ZCC:I qt,c

_ *
- Qt,c-

Ex. 32 Estimating Gaussian mixture models with EM-algorithm

1. We have

Since the data is iid, it holds that

which is equivalent to

1 1 T -1
(27T)n/2|CC|1/2 exp <7§(X7:u¢) Cc (Xi,uc))y

= p(x|r=c)P(r=c) o
1 ((xfuc) Ce (X*uc)>m.

= GECE O 3

= Y log(me) — . Blog(2m) — > 5(1Ce ) -
S S x(0) = e O x(0) = )



where x(c =

2. The posterior P(r = ¢|x,0)

3. The parameters 6 in {5, are p1, p2,. ..
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r(t)) is the indicator (or characteristic) function:

B |0 if r(t) #£c
x(e=r(®) { 1 ifr(t)=c’

is calculated as follows:

P(r = c|x,0)
_ P(r=c¢xl0)

p(x|0)

_ P(r =c¢,x|0)

Yooy P(x|r =k, ) P(r = K|0)

chzl (2 )1/2 exp (—3(x — ) TCL ' (x — k) Tk
e exp (<3¢ 1) O (x = )
S A e (50— ) G )

,tte and C1,Ca,...,Ce and 71,72, ..., m. As we cannot observe the value r(t),

we have to estimate it given all we have: the observation x(¢) and some estimates ), for the parameters.

Estimation of r(t)

4. In the previous part of this

means here taking the average value with respect to the density P(r(t) = ml|x(t), 0k ):

J(010x)

T c

DD > Plr(t) =mla(t),6x) - x(r(t) = ¢)

t=1 c=1m=1

1 n

o8 7. = 5 g Cel — 5 og(2m) — 5(x(6) = )" (x(6) = )|

T C
> Plr(t) =mlz(t),6k) -

t=1 m=1

o 7 = 3108 |Gy = §Tom(2) = 36x(0) = )" Ci (x(8) )|

—

2

exercise, in the very last equation it holds that the latter sum is constant with respect to

e if m # c. Therefore using exercise 13 (Maximum Likelihood Estimation for Multivariate Gaussians), we get

J(0|0x)
T
> V. Pr(t
t=1
T
> P

t=1

= cfx(), 04) | 5 (x(1) — o) O (x(0) — pe)

P(r(t) = cx(1), 05)Ce ™ (x(t) — pe).-

Setting the gradient to zero gives us

T

> P(r(t) = elx(t),0)C e =

t=1

from which we get

= c|x(t),0x)Cc ' x(t),

ZP

S PUr(t) = elx(0).00x()

Soimy P(r(t) = clx(t), 0x)

which is the value for p.(k + 1).

The last sum in the very last equation of the previous part of this exercise is constant with respect to C. if m # c.
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Again, we can use the results from exercise 13 to find the gradient with respect to Cl:

Ve, J(0]0k)
- Zvc P(r(t) = elx(t),00) | 5 108]Cel — 5 (x(t) — 1e) O (x(1) — o)
= S P(r(t) = elx(),04) -

t=1

50 5O () — ) k() — o) 'O

—

Setting the gradient to zero gives us

e ZP ) = elx(), 00) (x(t) — o) (x(t) — pe) O

= —clzp ) = c|x(t), 0x)

Soimy Plr(t) = clx(t), 0x) (x(t) — pre) (x(t) — pae)™
Simy P(r(t) = clx(), 6x)

which gives us Ce(k 4 1) when we use pc(k + 1) for pec.

— C.=

I

5. Because exp(y) > 0 for every v € R, we have . > 0. Also

. exp(re)  _ Do () _
Z ’ ;Zk coxp(m) i exp(n)

so the trick works.

6. Using the previous part of this exercise, we get

J(00x) 9J Omn
0ve - Z Omn 87‘2
Omn exp(yn) i
= ————————— exp(e) = —mame (if n#0),

e (0, exp(mi))?

871'0 = Te — TeTT

a’yc — c citey
8. (0)0r) 1

k _ 1 _

“on = ; 7TnP = n|z(t),0k).

Therefore the derivative is
0J(0)0x)
8%

= ZZ T pr(t) = nla(t), 61) +

k=1t=1
n#c

2 TP (®) = cla(), 01

C T T
- ZZ t) = nla(t),66) —we »_ P(r(t) = cla(t), 6)
; t=1 t=1
D P(r(t) = clz(t), 61)
- *WcZZP ) = nla(t), 0x) + > P(r(t) = cla(t), 0x)
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Setting the derivative to zero gives us

Te =

NI=
M~
)

(r(t) = clz(t),0k),

o~
Il
i

which gives us me(k + 1).

Ex. 33 K-means

1. Because I =TI and |I| = det(I) = 1, we have

1]
P(r=clx,0;) =

Skt & exp (=3 (% — o) T (x — )
o exp (o0 pe) T (x — )

Yoy oxp (=5 (x — 1) T (x — pic))

exp (—5Ix — pel*)

= = )

ko exp (—3lx — p?)

2. Simply put:
1 2
argmax P(r = ¢|x,0;) = argmax exp —§||x — el
c c

— argmin [x — el
c

i.e. the value of r that maximizes P(r = ¢|x,0;) is given by the cluster whose mean is closest to x.

3. With Exercise 32 (Estimating Gaussian Mixture Models with EM-Algorithm), the EM-update step for u. is

St P(r(t) = efx, )% (1)
oy P(r(t) = cfx, 0x)
Zt:fk(t):c L-x(t) + Zt;;«k(t);éc 0-x(1)
Dt (y=e LT 2ii (1) 0
D (y=c X(#)
thk(t):c 1
ka(t):c x(t)

number of points assigned to cluster ¢

We can use the EM-update rule for pi. (obtained in exercise 32 with P(r(t) = c|x(t), 0x) instead of P(r(t) = c|x(t),0%)
because, formally, the cost function that must be optimized in the maximization step is the same as the one in
exercise 32.

Ex. 34 Clustering for binary data
Note that many calculations are similar to those in Exercise 32.

1.
Blu) = > wp(u) =0-p{(1—p)' +1-pi(1—m)° =,
u; €{0,1}
2 2
V(ui) = E(ui)—E(w)
- Y e
u; €{0,1}
= 0% pd (=) + 1% i (1= )’ — i
= i

pi(1 = pa).
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u1 E(u1) 1
U E(us2) 2
E(u) = E = . |= =
cov(ui, u;) = E(uiu;) — E(ui)E(u;)
w; and u;
=7 E(u)B(uy) — E(ui)E(u;)
independent
= ()7
so we get
V(u1) cov(ui,uz) ... cov(ui,un)
cov(uz,u1) V (u2) .. cov(uz,un)
cov(u) =
cov(un,ur) cov(un,uz) ... V(uy)
Ml (1 — 11,1) O e 0
0 11,2(1 — /,LQ) e 0
0 0 coo (1 — pn)
The variables are thus uncorrelated.
. To simplify notation, we denote q(x; pte, me,c = 1,2,...,C) by ¢(x) only. We can calculate the mean in a straightfor-

ward manner:

Ex) = > xqx)

x€{0,1}7

C
= Z XZWCP()Q He)

x€{0,1}" c=1

C
= Dome Y xp(xipe)

c=1 xe€{0,1}m

C
part 2
= g TeMe-
c=1

For the calculation of the covariance matrix of x, we first calculate the marginal distribution of an element x; of the

vector x = (ac1 T2 ... xn)TA We denote the marginal by g(x;). By definition of the marginal distribution, we get
q(xl) - Z Q(x)7
T
k=1,2,...,n
ki

@) = Y )

Tk
k=1,2,...,n
ki
C
= > > mep(x;pe)
T c=1
k=1,2,...,n
k#i
c
= E Te E P(X; fe)
c=1 T
k=1,2,...,n
k#i

marginal of x;

C
= Zﬂ'cp(xi;uc)
c=1
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The equality in the last line holds since p(x; pu.), defined in Equation (A.100), factorizes. We can use the marginal to

calculate the covariance in few steps:

B@h) = 3 alq(e)

x;=0
= lezﬂ'cp xuﬂz
x;=0
= ch Z el (1 — peq)
z;=0
= Zﬂ'cllci-
c=1
E(xiz;) = Z Z TiT; Zﬂ'c p(Ti, 55 pe)
_/_/

z;=0xz;=0

= p(x; Hc)P(xji He)

= Zﬂ'c Z Z wzp xz,uc ij(xju/%)

z;=0x;=0

x,; =0

C
= g Telbeifbes -
c=1

cov(x) = B(xx')-ExEx)"
Hel  fhelfhe2

c M2 el He2
= Z Te . .
c=1 . .
Menflel  Hen fhe2
Mel

1

> aipag; pe)

z;=0

Hecl fben
He2 len

Hen

c fhe2 C
Z Te . Z Tc (,Ufcl He2 “ee ,Ulcn) .
c=1 . c=1

[ic,,

From this we can see that the covariance matrix is not diagonal and therefore the x; are correlated. This shows that
the mixture distribution is a richer distribution than a single multivariate Bernoulli distribution.

4. The log-likelihood #(pte, e, c=1,2,...,C)) is

L = log(Hq ); leyTre,c=1,2,. C))

= Z log q(x(t); He, Tc)
= Z log <Z mep(x(t)
= Zlog <Z7TCHp (zi(t

u«:))

Mcz)-
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5. When the class memberships are also observed, the log-likelihood ¢(pte, 7c,c = 1,2,...,C)) is

¢ = log <Hq “T(”)>
- Zlogq T(t); r(r))
— Zlog(ﬁr(t)p(x(t)QHr(t)))

T
= Z [log () + log <HP xz Mr(t) 1)>:|

t=1 i=1

= Zlog (Trry) + ZZlog (Nrft())z - Nr(t),i))(l_xi(t))>

t=1 i=1

= Z log(ﬂ-/y‘(t)) +

Z Z (z:(t)10g prrry.s + (1 — 2i(£)) 1og(1 = fir(r).i)-

t=1i=1

gr(t) = elx(t)) = 7‘1(2((2’(;‘)()“)
Ty P(X(); Hr(t))
S5 ax(t),r(t) = c)
mep(X(t); pe)
Sy mep(X(t); )

This is equivalent to Eq. (11.16) for the Gaussian mixture.

7. Using exercise 31 (More on the general form of EM for Mixture of Gaussians) (x), we have

E(l(pe; me))

T C

()

= D> alr(®) = cfx(1)) log(g(x(t), 7(£); 1r(r)))
=1 e=t :q;‘,c(notation) part 5

I
(]
(]

G,c log e +

c T
SO et log pei + (1 wi(t)) log(1 — per)).

8. Denote J = E(¢(tte, mc)). Now we have

aii = 0+thc<xl L (1= ) —2 )

Meci 1- Hei

T T

1 1
= — roxi(t) — (1 —xi ().
o ;qt,c O > arl (t))

Setting the derivative to zero gives us:

T T T
o (z ‘. zq;m(t)) )Y
t=1 t=1 t=1
from which we get

> Ghei(t)
)
Z?:l qr,c

which is what we wanted, since ¢; . = ¢(r(t) = ¢|x(t)). This is the same update rule as for Gaussian mixtures (compare
with Bq. 11.17).

Mei =



9. Denote J = J 4+ A\(1 — Y5_, 7). Now we have
= T

oJ . 1
e = ZQt,cﬂ__ - A

t=1

Setting the derivative to zero gives us:

We use the constraint to calculate A:
c c T c
Zt—l Qt,c 1 *
R S S D WS
k=1 k=1 k=1t=1

S i ;rkp(X(t); i)

1 k=1 Zj:1 mip(x(t); 1)

— Z chzl Tp(x(t); pr)
c

1 Zj:l mip(x(t); 15)

Therefore

which is what we wanted. This is the same update rule as for Gaussian mixtures in Eq. (11.19).

Ex. 35 Some Verifications for Metric MDS

1. For the columns, the sum equals

i=1 i=1 ij
N <% Z dij
ij
al al 1 1
= Z;d”iz;duiﬁzd”+ﬁzd”
i= = k) 3
= 0,

which was what we wanted. The proof for the rows is very similar.

2. For the euclidean distance, we have

diy =[x — x5

(xi —%;)" (i = x;)

_ T T T T

= X; Xi — X; Xj —Xj X +Xj X
——

€R ER

2 2 T
[[xill™ 4 [l4117 = 25 x5,
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and therefore

£
Il

ij

N N
2 2 _ o T 1 2 1 2
i1 + e 1* = 25 = = > il = = D M| +

i=1 i=1

1 < 1 < 1 <
T 2 2
N2 2xinﬁ;HX¢II *ﬁjzll\xg'l\ +

=1
1 & 1 1
T 2 2
N;QXZ- X+ Nz %:sz-ll Nz %:HXJH -
N—— SN——
=NEN 2 = NN lIxgl1°

N
1 1
= il 4 s P = 25 = Nl 1 + 25 = D xi—

i=1

—_————
=0
1 1< 1 1 Y
2 T T
NﬁHXiH +2x; N;inﬁ ;2Xi N;Xj
—_——— ———
=0 =0

2 2 T 2 2
llxall™ 4 115117 — 2 x5 — [|all™ = lIl

T
—2x; X;j.



