Large XML on Small Devices: Techniques
Developed in the Fuego Core Project

Tancred Lindholm
May 28, 2007

Storage capacity on limited and mobile devices has risen rapidly in
recent years. The amount of available processing capacity is, however, still
low, as it is limited by battery capacity. In this talk we look at techniques
for efficiently processing the increasing amounts of data in XML format
that can be fit on a mobile phone. The techniques were developed by the
author and Jaakko Kangasharju as part of the Fuego XML stack in context
of the Fuego Core project on mobility middleware.

The XML processing techniques included in the Fuego XML stack that
we present are: processing sequences of XML particles, parser/serializer
byte stream access, parsing in a random access manner, using delayed tree
structures and building mutability on these, as well as document packag-
ing for synchronization.

In many cases, it is unnecessary to construct the tree structure corre-
sponding to the XML document in order to perform a processing task.
Instead, the document may be processed as a sequence of XML particles,
such as document start, element start, element end, content, and so on. In
the Fuego XML stack, the XAS XML parsing and serialization API sup-
ports such sequential processing. We have developed an XML efficient
differencing application based on sequential XML processing [1].

One way of embedding binary data in XML documents is to use Base64-
encoding, and embed the resulting text as a text node in the XML docu-
ment. However, this large text object frequently becomes a bottleneck in
XML parsing and serialization. This situation can be remedied by pro-
viding access to the raw input and output streams of the XML parser and
serializer. Care has to be taken to preserve a valid XML context when
switching between byte- and XML-level processing.

In some cases, XML documents are too large to be accessed in a se-
quential manner, in which case a parser that can be quickly positioned at

1



REFERENCES

specific locations in the document is advantageous. This technique is es-
pecially useful in combination with delayed in-memory structures for the
XML data, as one may then implement on-demand and selective loading
of XML data.

The Fuego XML stack includes a type of delayed tree structure, called
the reftree, and associated APIs for manipulating reftrees. This functional-
ity allows easy development of applications that load tree structured data
on demand and need to update the trees in a memory-efficient manner.
The latter is accomplished with the tree change buffer structure. Further-
more, reftrees become very efficient tools when combined with the byte
access and random access parsing capabilities of the lower layers.

The fundamental idea of the reftree is simple: to use a special kind of
reference node to refer to nodes and subtrees from another tree structure.
There are two kinds of references: node and tree references, where the for-
mer refers to a single node and the latter to an entire subtree. The API
provides a set of primitive operations for manipulating these references,
e.g., to combine several reftrees into one, or to reverse the role of the ref-
erencing and the referenced tree. Reference nodes do not automatically
expand themselves, to shield the application developer form potentially
costly expansion going on behind his back.

On the topmost layer we have the Random Access XML Store compo-
nent, which provides packaging of XML documents with associated satel-
lite files (such as images), and document-level operations, such as ver-
sioning, version recall, and synchronization. The packaging mechanism
allows for easy migration of compound documents.

As a demonstration of this, we have written an XML editor that runs
on Nokia 9500 mobile phones and has been used to edit XML files of up to
1GB on this platform. The editor uses on-demand loading of the document
tree when viewing, and wraps a change buffer on top of the document tree
for editing. The in-memory tree resulting from edits uses reference nodes
to refer to subtrees and nodes that remain unchanged from the original
tree, thus remaining compact despite the large size of the original tree.

References

[1] Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. Fast and
simple XML tree differencing by sequence alignment. In David F.
Brailsford, editor, ACM Symposium on Document Engineering, pages 75—
84, October 2006.



