
1

Optimizing File Availability in
P2P Content Distribution

Jussi Kangasharju
University of Helsinki

TU Darmstadt

Keith W. Ross
Brooklyn Polytechnic

David A. Turner
CSU San Bernardino

03.06.2007 2

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

P2P Content Management Problem

• A community of peers access a set of files
– Peers members of a DHT-based file sharing community
– Large, popular files, e.g., media or software

• Goals and challenges:
1. Adaptively manage content to minimize download delay

– Assume downloads in community are fast
– Hence, roughly equivalent to maximizing hit rate in community

2. Design a simple, yet efficient algorithm to address:
– Replication
– File replacement
– Load balancing

2

03.06.2007 3

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Why Replication?

• Peer-to-peer systems based on unreliable peers
• Need for building reliable services on top of peers
• Simple answer: Replication
Replication benefits:
• Improves availability and level of service
• “Easy” to implement
Replication problems:
• Creating and managing additional copies is costly
• Consistency problems with modifiable content

03.06.2007 4

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Replication Issues

Main questions with replication:
1. What do we want to achieve?

– For example, availability of X nines?

2. How many copies are needed?
3. How many copies we can afford?
4. Where to put copies?
5. Did we achieve our goal?
6. Is 100% guaranteed availability possible?
• Yes, at least in some cases… ;-)

– But probably never in practice

3

03.06.2007 5

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Contributions

1. Main contribution:
– Set of adaptive algorithms for dynamically replicating and

replacing files in a P2P community
– Optimal replication theory for P2P communities
– No assumptions about nodes or node behavior, or file request

probabilities
– Algorithms are simple, adaptive, and fully distributed
– Top-K MFR algorithm can be shown to be near-optimal

2. Second contribution:
– Investigation of load balancing techniques for P2P communities
– Without any load balancing, load concentrates on a few nodes
– Fragmentation approach achieves a general load balance
– Overflow approach allows for individual variation
– Both shown to be very effective

03.06.2007 6

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Outline

• Community model
• Optimization theory
• Simple algorithms and evaluation
• Most Frequently Requested Algorithm and evaluation
• Load balancing

– Fragmentation approach
– Overflow approach

• Summary

4

03.06.2007 7

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Abstract Community Model

Up node

Down node

Community

Outside
repository

Miss

Response

• Examples of communities: Campus, distribution engine
• Assume good bandwidth within community
• Goal: Satisfy requests from within community

03.06.2007 8

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Replication Issues

• How many copies of each object in community?

• Which peers in community have copies?

• Is there an algorithm that is:
– simple
– decentralized
– adaptively replicates objects
– provides near-optimal replica profile?

5

03.06.2007 9

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Assumptions

• Community based on a distributed hash table (DHT)
– Any existing DHT can be used or modified

• Assume that when given an object, DHT gives us an
ordering of nodes (i.e., which nodes are responsible)
– First node is 1st place winner, second 2nd place winner, etc.

• Peers are up with a certain probability (up probability)
• Peers offer some amount of space for community
• File popularities follow Zipf-like distribution

03.06.2007 10

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Replication Theory

• J objects, I peers
• object j

– requested with probability qj

– size bj

• peer i
– up with probability pi

– storage capacity Si

• decision variable
– xij = 1 if a replica of j is put in i; 0 otherwise

• Goal: maximize hit probability in community (availability)
• Extension to byte hit probability is possible

6

03.06.2007 11

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Optimization Problem

Minimize

subject to

Can be reduced to Integer programming problem: NP

!

xij " {0,1}, i =1,K,I, j =1,K,J

!

bjxij

j=1

J

" # Si, i =1,K,I

!

qj

j=1

J

" (1# pi)
xij

i=1

I

$

03.06.2007 12

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Homogeneous Up Probabilities

• Suppose pi = p

• Let = number of replicas of object j

• Let S = total group storage capacity

• Minimize

• subject to:

Can be solved by
dynamic programming

!

nj = xij

i=1

I

"

!

qj(1" p)nj

j=1

J

#

!

bjnj " S
j=1

J

#

7

03.06.2007 13

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Extension: Erasure Codes

• Above theory considers only full replicas
– Number of copies must be an integer

• Removing this restriction gives us an upper bound
• Upper bound for hit-rate with erasure coding is derived

in paper

• Upper bound can also be used for case without erasures
– Details in paper

• Optimal number of copies (non-integer!) turns out to be
as follows…

03.06.2007 14

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

(1) Order objects according to qj/bj

(2) There is an L such that n*j = 0 for all j > L.

(3) For j <= L , “logarithmic replication rule”:

Optimal Replication

Logarithmic replication rule

!

= K1 + K 2ln(qj /bj)

!

nj
*

=
S

BL

+
bl ln(ql /bl)

l=1

L

"
BLln(1# p)

+
ln(qj /bj)

ln(1/(1# p))

8

03.06.2007 15

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Adaptive Algorithm: Simple Version

Suppose X is a node that wants object o.

1) X uses DHT to find 1st-place up node i for o
2) X asks i for o
3) If i doesn’t have o, i retrieves o from the “outside”

and stores a copy in its shared storage.
4) i sends o to X

Each node uses LRU replacement policy in shared storage

03.06.2007 16

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Adaptive Algorithm

up node

down node

X

i

outside

LRU

Each object o has
“attractor nodes”

Object o tends to get
replicated in its attractor
nodes.

Queries for o tend to be
sent to attractor nodes.

 tend to get hits
Problem: Can miss even though
object is in an up node in the
community

9

03.06.2007 17

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Top-K Algorithm

• If i doesn’t have o, i pings top-K winners.
• i retrieves o from one of the top-K if present.
• If none of the top-K has o, i retrieves o from outside.

top-K up node

ordinary up node

down node

X

i

03.06.2007 18

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Simulation

• Adaptive and optimal algorithms

• 100 nodes, 10,000 objects

• Zipf = 0.8, 1.2

• Storage capacity 5-30 objects/node
– Focus on large files, hence small storage capacity

• All objects the same size
– Heterogeneous sizes yield similar results

• Up probabilities 0.2, 0.5, and 0.9

• Top K with K = {1, 2, 5}

10

03.06.2007 19

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Hit-Probability vs. Node Storage

p = P(up)
 = .5

Zipf = .8

03.06.2007 20

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Number of Replicas

p = P(up)
 = .5

15 objects
per node

K = 1

Zipf = .8

11

03.06.2007 21

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

General observations

• Community improves
performance significantly

• LRU is lets unpopular objects
linger in peers

• Top-K algorithm is needed to
find object in aggregate storage
(see right)

How can we do better?

03.06.2007 22

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Most Frequently Requested (MFR)

• Each peer estimates local request rate for each object
– Denote λo(i) for rate at peer i for object o

• Peer only stores the most requested objects
– Packs as many objects as possible

Suppose i receives a request for o:
• i updates λo(i)

• If i doesn’t have o & MFR says it should:

 i retrieves o from the outside

12

03.06.2007 23

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Most-Frequently-Requested
Top-K Algorithm

top-K up node

ordinary up node

down node

X

i1

outside

i2
i3

i4

I should
have o

MFR combines replacement and admission policies

03.06.2007 24

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Hit-Probability vs. Node Storage

p = P(up)
 = .5

MFR: K=1

Zipf = .8

13

03.06.2007 25

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Replica Profile

p = P(up)
 = .5

15 objects
per node

K = 1

Zipf = .8

Replica
profile
almost
optimal

03.06.2007 26

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Optimality of MFR
• Recall basic idea of MFR:

– Each peer estimates local request rate for each object

• Analytical (offline) procedure for MFR Top-I: (all nodes)
– Init: γj = qj/bj, j = 1, ..., J, and Ti = Si, i = 1, ..., I
1. Find file j with largest γj

2. Sequentially examine winners for j until Ti ≥ bj and xij = 0
• Set xij = 1
• Set γj = γj(1-pi)
• Set Ti = Ti – bj

• If no such node, remove file j from consideration

3. If still files to be considered go to step 1, otherwise stop.

• Above procedure near-optimal
– Difference at most 1 or 2 copies, usually no difference

14

03.06.2007 27

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Summary: MFR Top-K Algorithm

Implementation
• Layers on top of DHT substrate
• Decentralized
• Simple: each peer keeps track of a local MFR table
Performance
• Provides near-optimal replica profile

03.06.2007 28

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Load Balancing

• What if the first place winner for a popular object is
(almost) always up?

• Problem: How to balance the load between the peers in
the community?

• Two approaches:
– Fragmentation
– Overflow

15

03.06.2007 29

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Load Balancing: Solutions

• Fragmentation
– Idea: Divide each object into chunks, store chunks individually
– One chunk is much smaller than a file, hence load is balanced

better, since chunks are stored on different peers
– Achieves overall load balancing

• Overflow
– Idea: Allow peers to refuse requests
– Request passed on to the next winner (eventually to outside)

• Load on others will increase and hit-rate may decrease!

– Allows a peer to decide how much traffic to handle
– Achieves individual load balancing

• Fragmentation + Overflow
– Use both approaches

03.06.2007 30

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Load Balancing: Fragmentation

Peer up probability

N
or

m
al

iz
ed

 l
oa

d

• 90-percentile
load for Zipf
parameter 1.2

• K = number of
chunks

• Load
normalized to
“fair share”

• Works well for
large number
of chunks

16

03.06.2007 31

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Load Balancing: Overflow

Peer up probability

Ad
di

ti
on

al
 l

oa
d

pe
r

pe
er

• Overflow with
1 chunk

• Different
amounts of
refused traffic

• Calculate new
load on other
peers

• Worst case: 5%
additional load
for each peer

03.06.2007 32

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Fragmentation + Overflow

Peer up probability

Ad
di

ti
on

al
 l

oa
d

pe
r

pe
er

• Same as
above, but
with 30 chunks
per file

• Additional load
less than 0.5%
in all cases

17

03.06.2007 33

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Overflow: Refused Traffic

• When large number of traffic is refused, it goes to the
outside, thus reducing hit-rate

• How much is hit-rate affected?
• Rough rule of thumb: Proportion of reduced traffic

reduces overall storage capacity by the same proportion
• Example: If 50% of peers are refusing 50% of the traffic,

then overall storage capacity is reduced by 25%

03.06.2007 34

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Load Balancing: Summary

• Without any load balancing mechanism, load is severely
unbalanced

• Fragmentation approach works well for achieving a
uniform load on all peers

• Pure overflow approach allows individual peers to
reduce their load at a cost of increased load to others

• Overflow with fragmentation works best
• Refused traffic ends up effectively reducing the overall

amount of storage offered by the community

18

03.06.2007 35

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Summary

1. Main contribution:
– Set of adaptive algorithms for dynamically replicating and

replacing files in a P2P community
– No assumptions about nodes or node behavior, or file request

probabilities
– Algorithms are simple, adaptive, and fully distributed
– Top-K MFR algorithm can be shown to be near-optimal

2. Second contribution:
– Investigation of load balancing techniques for P2P communities
– Without any load balancing, load concentrates on a few nodes
– Fragmentation approach achieves a general load balance
– Overflow approach allows for individual variation
– Both shown to be very effective

03.06.2007 36

Ubiquitous Peer-to-Peer Infrastructures Group
Department of Computer Science

Thank You!

