
PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 1

Performance Issues in Mobile 
Computing and Communications:
Flash Memories

Kimmo Raatikainen

Department of Computer Science

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 2

Preliminaries …

Flash memory is a type of electrically-erasable 
programmable read-only memory (EEPROM).
Because flash memories are non-volatile and 
relatively dense, they are now used to store files 
and other persistent objects in handheld 
computers, mobile phones, digital cameras, 
portable music players, and many other 
computer systems in which magnetic disks are 
inappropriate.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 2

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 3

… Preliminaries

Flash, like earlier EEPROM devices, suffers 
from two limitations.

First, bits can only be cleared by erasing a large block 
of memory.
Second, each block can only sustain a limited number 
of erasures, after which it can no longer reliably store 
data.

Due to these limitations, sophisticated data 
structures and algorithms are required to 
effectively use flash memories.
These algorithms and data structures support 
efficient not-in-place updates of data, reduce the 
number of erasures, and level the wear of the 
blocks in the device.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 4

Lecture Outline

Basic Facts
Block-Mapping Techniques
Flash-Specific File Systems
Additional Classes of Flash Data Structures

application-specific data structures (mainly search trees),

data structures for storing machine code, and

a mechanism to use flash as a main memory replacement.

Eran Gal and Sivan Toledo: ”Algorithms and Data 
Structures for Flash Memories,” ACM Computing Surveys, 
Vol. 37, No. 2, June 2005, pp. 138-163. 



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 3

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 5

Basic Facts …

The read/write/erase behaviours of flash memory is 
radically different than that of other programmable 
memories such as volatile RAM and magnetic disks.

Perhaps more importantly, memory cells in a flash device 
(as well as in other types of EEPROM memory) can be 
written to only a limited number of times, between 10,000 
and 1,000,000, after which they wear out and become 
unreliable.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 6

… Basic Facts …

Flash memories come in two flavours NOR and NAND.
They are quite different.
In both types, write operations can only clear bits (change 
their value from 1 to 0).
The only way to set bits (change their value from 0 to 1) is 
to erase an entire region memory.
These regions have fixed size in a given device, typically 
ranging from several kilobytes to hundreds of kilobytes 
and are called erase units.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 4

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 7

… Basic Facts …

NOR flash (the older type) is a random-access device that 
is directly addressable by the processor.

Each bit in a NOR flash can be individually cleared once per-

erase-cycle of the erase unit containing it.

NOR devices suffers from high erase times.

NAND flash (the newer type) enjoys much faster erase 
times, but it is not directly addressable

it is accessed by issuing commands to a controller,

access is by page (a fraction of an erase unit, typically 512 

bytes) not by bit or byte, and

each page can be modified only a small number of times in 

each erase cycle.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 8

… Basic Facts

Because of these peculiarities, storage management 
techniques that were designed for other types of memory 
devices are not always appropriate for flash.
To address these issues, flash-specific storage 
techniques have been developed with the widespread 
introduction of flash memories in the early 1990s.
Some of these techniques were invented specifically for 
flash memories, but many have been adapted from 
techniques that were originally invented for other storage 
devices.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 5

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 9

… Basic Facts …

Because of these peculiarities, storage management 
techniques that were designed for other types of memory 
devices, such as magnetic disks, are not always 
appropriate for flash. To address these issues, flash-
specific storage techniques have been developed with the 
widespread introduction of flash memories in the early 
1990s. Some of these techniques were invented 
specifically for flash memories, but many have been 
adapted from techniques that were originally invented for 
other storage devices.
The techniques that are used in some flash-management 
products have remained trade secrets; some are alluded 
to in corporate literature but are not fully described.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 10

Block-Mapping Techniques



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 6

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 11

Block-Mapping Techniques …

One approach to using flash memory is to treat it as a 
block device that allows fixed-size data blocks to be read 
and written much like disk sectors.
This allows standard file systems designed for magnetic 
disks, such as FAT, to utilize flash devices.
In this setup, the file system code calls a device driver, 
requesting block read or write operations.
The device driver stores and retrieves blocks from the 
flash device.

Some removable flash devices, like CompactFlash, even 

incorporate a complete ATA disk interface so they can 

actually be used through the standard disk driver.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 12

… Block-Mapping Techniques …

Mapping the blocks onto flash addresses in a simple 
linear fashion presents two problems.
First, some data blocks may be written to much more 
often than others.

When the file system in mapped onto a flash device, 

frequently used erase units wear out quickly, slowing down 

access times and eventually burning out.

This problem can be addressed by using a more 

sophisticated block-to-flash mapping scheme and by moving 

blocks around.

Techniques that implement such strategies are called wear-

leveling techniques.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 7

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 13

… Block-Mapping Techniques

The second problem that the identity mapping poses is 
the inability to write data blocks smaller than a flash erase 
unit.

Suppose that the data blocks that the file system uses are 

4KB each and that flash erase units are 128KB each.

If 4KB blocks are mapped to flash addresses using the 

identity mapping, writing a 4KB block requires copying a 

128KB flash erase unit to RAM, overwriting the appropriate 

4KB region, erasing the flash erase unit, and rewriting it from 

RAM.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 14

The Block-Mapping Idea …

The basic idea behind all the wear-leveling techniques is 
to map the block number presented by the host (virtual 
block number) to a physical flash address (sector).
When a virtual block needs to be rewritten, the new data 
does not overwrite the sector where the block is currently 
stored.

The new data is written to another sector and the virtual-

block-to-sector map is updated.

Typically, sectors have a fixed size and occupy a fraction 
of an erase unit.

In NAND devices, sectors usually occupy one flash page.

But in NOR devices, it is also possible to use variable-length 

sectors.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 8

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 15

… The Block-Mapping Idea …

This mapping serves several purposes:
First, writing frequently modified blocks to a different sector 

in every modification evens out the wear of different erase 

units.

Second, the mapping allows writing a single block to flash 

without erasing and rewriting an entire erase unit.

Third, the mapping allows block writes to be implemented 

atomically so that, if power is lost during a write operation, 

the block reverts to its prewrite state when flash is used 

again.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 16

… The Block-Mapping Idea …

Atomicity is achieved using the following technique:
Each sector is associated with a small header which may 
be adjacent to the sector or elsewhere in the erase unit.
When a block is to be written, the software searches for a 
free and erased sector.
In this state, all the bits in both the sector and its header 
are 1.
Then a free/used bit in the header of the sector is cleared, 
to mark that the sector is no longer free.
Then the virtual block number is written to its header, and 
the new data is written to the chosen sector.
Next, the prevalid/valid bit in the header is cleared to mark 
the sector is ready for reading.
Finally, the valid/obsolete bit in the header of the old 
sector is cleared to mark that it is no longer contains the 
most recent copy of the virtual block.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 9

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 17

… The Block-Mapping Idea

If power is lost during a write operation, the flash may be 
in two possible states with respect to the modified block.
If power was lost before the new sector was marked valid, 
its contents are ignored when the flash is next used, and 
its valid/obsolete bit can be set to mark it ready for 
erasure.
If power was lost after the new sector was marked valid 
but before the old one was marked obsolete, both copies 
are legitimate, and the system can choose either one and 
mark the other obsolete.
If choosing the most recent version is important, a two-bit 
version number can indicate which one is more recent.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 18

Data Structures for Mapping …

Direct maps are essentially arrays that store in the ith

location the index of the sector that currently contains 
block i.
Inverse maps store in the ith location the identity of the 
block stored in the ith sector.
Inverse maps are stored on the flash device itself.
When a block is written to a sector, the identity of the 
block is also written.
The block’s identity is always written in the same erase 
unit as the block itself so that they are erased together.
The main use of the inverse map is to reconstruct a direct 
map during device initialization



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 10

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 19

… Data Structures for Mapping …

The reason that direct maps are stored in RAM is that, by 
definition, they support fast lookups.
This implies that when a block is rewritten and moved 
from one sector to another, a fixed lookup location must 
be updated.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 20

Block mapping in a flash device

© ACM Computing Surveys, 37, 3 (June 2005) p. 142



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 11

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 21

Flash Translation Layer …

The Flash Translation Layer (FTL) is a technique to store 
some of the direct map within the flash device itself while 
trying to reduce the cost of updating the map on the flash 
device.
This technique was later adopted as a PCMCIA standard.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 22

An example of the FTL mapping structures

© ACM Computing Surveys, 37, 3 (June 2005) p. 143



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 12

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 23

… Flash Translation Layer …

1. Block numbers are first mapped to logical block numbers 
which consist of a logical erase unit number and a sector 
index within the erase unit.

Each sector is copied to the same location in the new 

erase unit.

2. The mapping of the first blocks, which in FAT-formatted 
devices change frequently, can be stored in RAM, while 
the rest is stored in the flash device. 

3. The flash portion of the block-to-logical-block map is not 
stored contiguously in the flash but is scattered 
throughout the device along with an inverse map.

The map is stored in a two-level hierarchical structure.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 24

… Flash Translation Layer …

4. When a block is rewritten and moved to a new sector, its 
mapping must be changed.

This mechanism favours sequential modification of blocks 

since, in such cases, multiple mappings are moved from 

the main map to the backup map before a new mapping 

sector must be written.

The backup map can be sparse; not every mapping sector 

must have a backup sector.

5. Finally, logical erase units are mapped to physical erase 
units using a small direct map in RAM.

One entry per erase unit, not per sector.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 13

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 25

Block mapping with variable-length sectors

© ACM Computing Surveys, 37, 3 (June 2005) p. 144

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 26

Erase-Unit Reclamation …

Over time, the flash device accumulates obsolete sectors 
and the number of free sectors decrease.

To make space for new blocks and for updated blocks, 
obsolete sectors must be reclaimed.

Since the only way to reclaim a sector is to erase an 
entire unit, reclamation (garbage collection) operates on 
entire erase units.

Reclamation can take place either in the background or 
on-demand when the amount of free space drops below a 
predetermined threshold.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 14

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 27

… Erase-Unit Reclamation …

The system reclaims space in several stages.
One or more erase units are selected for reclamation.
The valid sectors of these units are copied to newly 
allocated free space elsewhere in the device.

- Copying the valid data prior to erasing the 
reclaimed units ensures persistence even if a fault 
occurs during reclamation.

The data structures that map logical blocks to sectors 
are updated, if necessary, to reflect the relocation.
Finally, the reclaimed erase units are erased and their 
sectors are added to the free-sector reserve.

- This stage might also include writing an erase-unit 
header on each newly-erased unit.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 28

… Erase-Unit Reclamation …

In many cases, the system keeps at least one or two free 
and erased units at all times to allow all the valid data in a 
unit that is being reclaimed to be relocated to a single 
erase unit.
The reclamation mechanism is governed by two policies:

which units to reclaim, and

where to relocate valid sectors to.

These policies are related to another policy which governs 
sector allocation during block updates.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 15

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 29

… Erase-Unit Reclamation …

These three interrelated policies affect the system in three 
ways.
They affect the effectiveness of the reclamation process 
which is measured by the number of obsolete sectors in 
reclaimed units
They affect wear leveling
They affect the mapping data structures (some relocations 
require simple map updates and some require complex 
updates).
The goals of wear leveling and efficient reclamation are 
often contradictory.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 30

… Erase-Unit Reclamation

The fourth policy triggers reclamation events.

Clearly, reclamation must take place when the system 
needs to update a block but no free sector is available.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 16

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 31

Wear-Centric Reclamation Policies and Wear-
Measuring Techniques

Typically, the system uses an efficiency-centric reclamation 
policy most of the time but switches to a wear-centric technique 
that ignores efficiency once in a while.

Sometimes uneven wear triggers the switch, and sometimes it 
happens periodically whether or not wear is even.

Many techniques attempt to level the wear by measuring it.

Most techniques are patented; for details see Gal&Toledo

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 32

Combining Wear-Leveling with Efficient 
Reclamation …

One policy that attempt to address both wear leveling and 
efficient reclamation is based on a block device driver for 
a flash device.

The driver was intended for use with a log-structured Unix 

file system. It has two reclamation policies.

The first policy selects the next unit for reclamation based 
on a weighted benefit/cost ratio.

The benefit of a unit reclamation is the amount of invalid 

space in the unit, and the cost is incurred by the need to 

read the valid data and write it back elsewhere.

This policy still leads to inefficient reclamation in some 

cases.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 17

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 33

… Combining Wear-Leveling with Efficient 
Reclamation …

The second policy tends to improve efficiency at the 
expense of worse wear leveling.

Data is written to two units.

One unit is used for sectors relocated during the reclamation 

of so-called cold units, ones that were not modified recently.

The other unit is used for sectors relocated from hot units 

and for updating blocks not undergoing reclamation. This 

policy tends to cluster static data in some units and dynamic 

data in others.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 34

… Combining Wear-Leveling with Efficient 
Reclamation …

This, in turn, tends to increase the efficiency of reclamation, 

because units with dynamic data tend to be almost empty 

upon reclamation, and static units do not need to be 

reclaimed at all because they often contain no invalid data.

Clearly, units with static data can remain unreclaimed for 

long periods which leads to uneven wear unless a separate 

explicit wear-leveling mechanism is used.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 18

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 35

… Combining Wear-Leveling with Efficient 
Reclamation …

The eNVy system [Wu and Zwaenepoel 1994] partitions 
the erase units into fixed-size partitions.
Lower-numbered partitions are supposed to store hot 
virtual blocks, while higher-numbered partitions are 
supposed to store cold virtual blocks.
When a virtual block is updated, the new data is written to 
a sector in the active unit in the same partition that the 
block currently resides in.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 36

… Combining Wear-Leveling with Efficient 
Reclamation …

The system tries to achieve a roughly constant 
reclamation frequency in all the partitions.
Therefore, hot partitions should contain fewer blocks than 
cold partitions because hot data tends to be invalidated 
more quickly.
If the partition’s reclamation frequency is higher than 
average, some of its blocks are moved to neighboring 
partitions.
Blocks from the beginning of the unit being reclaimed are 
moved to a colder partition, and blocks from the end are 
moved to a hotter partition.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 19

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 37

… Combining Wear-Leveling with Efficient 
Reclamation …

Block clustering mechanisms called CAT and DAC were 
proposed in 1999.
At the heart of these methods lies a concept called 
temperature.
The temperature of a block is an estimate of the likelihood 
that it will be updated soon.
The system maintains a temperature estimate for every 
block using two simple rules:

(1) when a block is updated, its temperature rises, and

(2), blocks cool down over time.

The CAT policy classifies blocks into three categories: 
read-only (absolutely static), cold, and hot.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 38

… Combining Wear-Leveling with Efficient 
Reclamation

The DAC policy is more sophisticated.
First, blocks may be classified into more than three 
categories.
More importantly, blocks are reclassified on every update 
so a cold block that heats up will be relocated to a hotter 
erase unit, even if the units that store it never get 
reclaimed while it is valid.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 20

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 39

Real-Time Reclamation

Chang et al. [ACM TOECS 3, 4 (2004) 837–863.] proposed a 
guaranteed reclamation policy for real-time systems with 
periodic tasks.
They assume that tasks are periodic, and that each task 
provides the system with its period, with per-period upper 
bounds on CPU time and the number of sector updates.
The system uses a greedy reclamation policy that reclaims the 
unit with the least amount of valid data, and it only reclaims 
units when the number of free sectors falls below a threshold.

This policy is used only under deadline pressure; for non-realtime

reclamation, a different policy is used. It ensures that every 

reclamation generates a certain number of free sectors.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 40

Flash-Specific File Systems



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 21

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 41

Flash-Specific File Systems

Another approach is to expose the hardware 
characteristics of the flash device to the file-system layer 
and let it manage erase units and wear.

The article has a good background section (3.1) on Log-
Structured File Systems

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 42

The Research-In-Motion File System …

Research In Motion (http://www.rim.net) , a company 
making handheld text messaging devices and smart 
phones, patented a log-structured file system for flash 
memories.

The file system is designed to store contiguous variable-

length records of data, each having a unique identifier.

The flash is partitioned into an area for programs and an 
area for the file system

this is fairly common and is designed to allow programs to 

be executed in-place directly from NOR flash memory



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 22

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 43

… The Research-In-Motion File System

The file system area is organized as a perfectly circular 
log containing a sequence of records.

Each record starts with a header containing the record’s 

size, identity, invalidation

Keeping the records contiguous allows the file system to 
return pointers directly into the NOR flash in read 
operation.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 44

The Journaling Flash Filing System

The Journaling Flash File System (JFFS) was originally 
developed by Axis Communications embedded Linux

[http://developer.axis.com/software/jffs/]

It was later enhanced, in a version called JFFS2, by Red 
Hat [http://sources.redhat.com/jffs2/jffs2.pdf].
Both versions are freely available under the GPL.
Both versions focus mainly on NOR devices and may not 
work reliably on NAND devices.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 23

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 45

… The Journaling Flash Filing System …

JFFS2 is a posix compliant file system.
Files are represented by an inode number.
Inode numbers are never reused, and each version of an 
inode structure on flash carries a version number.
Version numbers are also not reused.
The version numbers allow the host to reconstruct a direct 
inode map from the inverse map stored on flash.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 46

… The Journaling Flash Filing System

At mount time, the system scans all the nodes in the log 
and builds two data structures.
One is a direct map from each inode number to the most 
recent version of it on flash.
This map is kept in a hash table.

The other is a collection of structures that represent each 

valid node on the flash.

Each structure participates in two linked lists

one chaining all the nodes according to physical address (to 

assist in garbage collection), and

the other containing all the nodes of a file, in order.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 24

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 47

YAFFS: Yet Another Flash Filing System …

YAFFS was written as a NAND file system for embedded 
device.
It has been released under the GPL and has been used in 
products running both Linux and Windows CE.
In YAFFS, files are stored in fixed-sized chunks which can 
be 512 bytes, 1KB, or 2KB in size.
The file system relies on being able to associate a header 
with each chunk.
The header is 16 bytes for 512 bytes chunks, 30 bytes for 
1KB, and 42 bytes for 2KB.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 48

… YAFFS: Yet Another Flash Filing System

Each file (including directories) include one header chunk, 
containing the file’s name and permissions, and zero or 
more data chunks.
As in JFFS2, the only mapping information on flash is the 
content of each chunk, stored as part of the header.
This implies that at mount time all the headers must be 
read from flash to construct the file ID and file contents 
maps, and that, as in JFFS, the maps of all the files are 
stored in RAM at all times.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 25

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 49

The Trimble File System

The Trimble file system was a NOR implemented for GPS 
equipment: Trimble Navigation.
The overall structure of the file system is fairly similar to 
that of YAFFS.
Files are broken into 252-byte chunks, and each chunk is 
stored with a 4-byte header in a 256-byte flash sector.
The 4-byte header includes the file number and chunk 
number within the file.
Each file also includes a header sector, containing the file 
number, a valid/invalid word, a file name, and up to 14 file 
records, only one of which, the last one, is valid.
Each record contains the size of the file, a checksum, and 
the last modification time.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 50

The Microsoft Flash File System

In the mid 1990’s, Microsoft tried to promote a 
standardized file system for removable flash memories 
which was called FFS2.
Douglis et al. [“Storage alternatives for mobile computers.”
In Proceedings of the 1st USENIX Symposium on 
Operating Systems Design and Implementation (OSDI). 
Monterey, Calif., 1994, pp. 25–37.] report very poor write 
performance for this system which is probably the main 
reason it failed.
By 1998, Intel [Flash file system selection guide. 
Application Note 686, Intel Corporation.] listed this 
solution as obsolete.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 26

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 51

Norris Flash File System

Norris Communications Corporation patented a flash file 
system based on linked lists, much like the Microsoft 
Flash File System.
The file system was designed and implemented for use in 
a handheld audio recorder.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 52

Other Commercial Embedded File Systems …

TargetFFS.
Blunk Microsystems offers TargetFFT, an embedded flash 

file system, in both NAND and NOR varieties.

It under their own operating system but is designed to be 

portable to other operating systems and to products without 

an operating system.

The file system uses a POSIX-like API.

smxFFS.
This file system from Micro Digital only supports 

nonremovable NAND devices.

The file system consists of a block-mapping device driver 

and a simple FAT-like file system with a flat directory 

structure.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 27

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 53

… Other Commercial Embedded File Systems

EFFS.
HCC Embedded offers several flash file systems.

EFFS-STD is a full file system. 

EFFS-FAT and EFFS-THIN are FAT implementation for 

removable flash memories.

The two versions offer similar functionality, except that 

EFFS-THIN is optimized for 8-bit processors.

FLite.
FLite combines a standard FAT file system with an FTL-

compatible block-mapping device driver.

It is unclear whether this is a current product.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 54

Beyond File Systems



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 28

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 55

Flash-Aware Application-Specific Data 
Structures

Wu et al. proposed flash-aware implementations of B-
trees and R-trees.

Their implementations represent a tree node as an ordered 

set of small items.

Items in a set represent individual insertions, deletions, and 

updates to a node.

The items are ordered by time so the system can construct 

the current state of a tree node by traversing its set of items.

The main problem with flash-aware application-specific 
data structures is that they require that the flash device be 
partitioned.

One partition holds the application-specific data structure, 

another holds other data, usually files.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 56

Execute-in-Place …

Code stored in a NOR device, which is directly 
addressable by the processor, can be executed from the 
device itself without being copied into RAM.

This is known as execute-in-place, or XIP. 

Unless the system uses a virtual memory mechanism, 
which requires a hardware memory-management unit 
(MMU), code must be contiguous in flash, and it must not 
move.
To implement XIP in a system without virtual memory 
requires partitioning the flash memory at the physical 
address level into a code partition and a data partition.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 29

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 57

… Execute-in-Place

Even if the system does use virtual memory, 
implementing XIP is tricky
First, this requires that the block-mapping device driver be 
able to return the physical addresses that correspond to a 
given virtual block number.
Second, the block-mapping device driver must notify the 
virtual memory subsystem whenever memory-mapped 
sectors are relocated.
In addition, using XIP requires that code be stored 
uncompressed.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 58

Flash-Based Main Memories …

The eNVy is a flash-based nonvolatile main memory.
The system was designed to reside on the memory bus of 
a computer and to service single-word read and write 
requests.
The memory system itself contained a large NOR flash 
memory that was connected by a very wide bus to a 
battery-backed static RAM device.



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 30

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 59

… Flash-Based Main Memories

The system partitions the physical address space of the 
external memory bus into 256-byte pages that are 
normally mapped by the internal MMU to flash pages.
Read requests are serviced directly from this memory-
mapped flash.
Write requests are serviced by copying a page from the 
flash to the internal RAM, modifying the internal MMU’s
state so that the external physical page is now mapped to 
the RAM, and then performing the word-size write onto 
the RAM.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 60

Summary



PIMC2 2007 - Flash Memories 24.9.2007

@ Kimmo Raatikainen 31

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 61

Summary …

Flash memories have been an enabling technology for the 
introduction of computers into numerous hand held 
devices.
A decade ago, flash memories were used mostly in boot 
loaders (BIOS chips) and as disk replacements for 
ruggedized computers.

Today, flash memories are also used in mobile phones and 

PDA’s, portable music players and audio recorders, digital 

cameras, USB memory devices, remote controls, and more.

Flash memories provide these devices with fast and 
reliable storage capabilities thanks to the sophisticated 
data structures and algorithms.

24.9.2007© 2007 Kimmo Raatikainen: PIMC2 – Flash Memories 62

… Summary

In general, the challenges posed by newer flash devices 
are greater than those posed by older devices—the 
devices are becoming harder to use.

This happens because flash hardware technology is driven 

mostly by the desire for increased capacity and performance 

often at the expense of ease of use.

This trend requires development of new software techniques 

and new system architectures for new types of devices.

Unfortunately, many of these techniques are only 
described in patents, not in technical articles.


