
www.cs.helsinki.fi

Programming in C
week 1 meeting

2.9.2015
Tiina Niklander

3.9.2015
Faculty of Science
Department of Computer Science 1

www.cs.helsinki.fi

• Based on C programming course in Aalto, but with
some exercises created locally
• Course structure is in wiki:
https://wiki.helsinki.fi/display/Cprogramming2015/
• Exercise submission on our own server:
http://tmc.mooc.fi/hy

•use your student ID as your username!

• Grading based on TMC exercises + Exam!!!

Course structure

3.9.2015
Faculty of Science
Department of Computer Science 2

www.cs.helsinki.fi

• Use a course book and some extra on-line material,
• e.g. Aalto on-line material: http://src.aalto.fi/c

• ONE good C course book is a MUST:

• Kernighan & Richie: C programming language

• Müldner : C for Java programmer

• King: C Programming, A Modern Approach

Course material

3.9.2015
Faculty of Science
Department of Computer Science 3

www.cs.helsinki.fi

• Language structures, data structures, modules,
functions+parameters
• Files
• Pointers, structured elements
• Using properly dynamic and static data structures like
tables, lists, queues, stacks, trees (from data
structures and algorithms course!)

NOTE: No C++ features allowed, pure ANSI C only

Learning goal objectives

3.9.2015
Faculty of Science
Department of Computer Science 4

www.cs.helsinki.fi

TMC checks automatically the programming tasks and
maintains the list of accepted tasks.

On-line tool, so can be used from home or at university

Paja times (in B221):
- Thu 3.9. at 12.15-14 is only paja this week.
- Usually on Mon 13-18 & Tue 13-18

TMC Deadline Tuesdays at 19.00

3.9.2015
Faculty of Science
Department of Computer Science 5

www.cs.helsinki.fi

• Programming on paper!!!
• Last Fall’s exam had 4 questions

• Calculate averages (function + main + command line
parameters/arguments)
• Personal contacts (create data structure + handling
functions – write comments, but not all codes)
• File handling and I/O streams – essay
• Errors and mistakes – evaluate an existing program

• 2,5 hours

Exam

3.9.2015
Faculty of Science
Department of Computer Science 6

www.cs.helsinki.fi

• Closely tight with UNIX – same original developers

• ’Low-level’ language
• explicit memory allocation and deallocation!
• allows operations on the memory addresses and bit-level
• allows dynamic type changes of variables
• important concept: POINTER (= memory address)

C language

3.9.2015
Faculty of Science
Department of Computer Science 7

C assumes that programmer is
intelligent enough to use all of its
constructs wisely, and so few
things are forbidden.

C can be a very useful and elegant tool. People often dismiss C,
claiming that it is responsible for a ”bad coding style”. The bad
coding style is not the fault of the language, but is controlled
(and so caused) by the programmer.

• Variable X’s address is 230 (&X)
• Variable X’s value is 12 (X)
• Pointer Xptr’s address is 225 (&Xptr)
• Pointer Xptr’s value is 230 (Xptr)

– Address of some data (now the address of X)

• The value of the integer (*Xptr)
that Xptr points to is 12

Xptr=225:

Xptr DC 0
X DC 12

LOAD R1, =X
STORE R1, Xptr
LOAD R2, X
LOAD R3, @Xptr

230

12345

12556

128765

12222

12

12998

X=230:

; R2 ¬ 12

; R3 ¬ 12

; R1 ¬ 230
memory

In C language as: Y = *Xptr;
/* value of the location Xptr points to */

TI
TO

Addresses and values

3.9.2015 8
Faculty of Science Department of Computer
Science

www.cs.helsinki.fi

#include<stdio.h> /*Header file of a library*/
int main(int argc, char **argv) /* The main function */
{

int x, *y, z; /*Variable Declaration*/
if ((y = malloc (sizeof(int)) ==NULL) return(1);
x = 5;
*y = 10;
z = x + *y;
printf ("The sum is %d", z); free(y);
return (0); /* standard return value for success */

}

Example program

3.9.2015
Faculty of Science
Department of Computer Science 9

www.cs.helsinki.fi

Compiling:
gcc -ansi -pedantic -Wall

• Options –Wall and –pedantic show all possible
warnings (used by TMC)
• Option –ansi makes sure that the compiler follows
standard (some differences in gcc exist)

int main (void)
{
printf(”Hello world \n”);
return 0;

}

gcc -ansi -pedantic -Wall -o helloworld helloworld.c
/home/fs/niklande/C-luennot/esimerkit/helloworld.c: In function `main':
/home/fs/niklande/C-luennot/esimerkit/helloworld.c:3: warning:
implicit declaration of function `printf'

#include <stdio.h>
int main (void)
{
printf(”Hello world \n”);
return 0;

}
3.9.2015 10

Faculty of Science
Department of Computer Science

www.cs.helsinki.fi

Multiple modules
(separate source files with headers)

/* main.c */
#include <stdio.h>
#include ”eka.h”
#include ”toka.h”
int main (void)
{
eka(); toka ();
return 0;

}

/* eka.c */
#include <stdio.h>
#include ”eka.h”
void eka (void)
{
puts(” eka ”);

}

/* toka.c */
#include <stdio.h>
#include ”toka.h”
void toka (void)
{
puts(” toka ”);

}

/* eka.h */

void eka (void);

/* toka.h */

void toka (void);

gcc –c main.c
gcc –c eka.c
gcc –c toka.c
gcc –o ohjelma main.o eka.o toka.o

Could write everytime:

Instead, use
makefile

3.9.2015 11
Faculty of Science
Department of Computer Science

www.cs.helsinki.fi

makefile

Write makefile just once
Use several times with
command make

gcc –c main.c
gcc –c eka.c
gcc –c toka.c
gcc –o ohjelma main.o eka.o toka.o

make

makefile
CC = gcc –ansi –pedantic –Wall
ohjelma: main.o eka.o toka.o

$(CC) –o ohjelma main.o eka.o toka.o
eka.o: eka.c eka.h

$(CC) –c eka.c
toka.o: toka.c toka.h

$(CC) –c toka.c
main.o: main.c eka.h toka.h

$(CC) –c main.c
3.9.2015 12

Faculty of Science
Department of Computer Science

www.cs.helsinki.fi

C does not support objects or modular programming,
but it has features that can be used to mimic them

- Functions and function prototypes
- Header files

Using these features you can separate the interface
and implementation

Modular programming in C

3.9.2015
Faculty of Science Department of Computer
Science 13

’hidden’ implementation public interface

www.cs.helsinki.fi

#include directive to use (standard) libraries

Defining constants ad types
Easy to locate, modify and control

Function prototypes (before the functions in used)

Function main (every program has one)

Function definitions (=code of the function)

Structuring a small C program:
order of elements in the file

3.9.2015
Faculty of Science Department of Computer
Science 14

www.cs.helsinki.fi

What if you have a larger project?

- Split to multiple files and libraries

3.9.2015
Faculty of Science Department of Computer

Science 15

main

sub1 sub2 sub3 sub4

subsub1 subsub2 subsub2

Functions of standard libraries

Modularity at the function level

Programmers
own libraries of
functions

www.cs.helsinki.fi

• Each library contains a set of useful functions
• A header file gives the function signatures and type
definitions for that particular library
• stdio.h is usually always used, since it

contains the functions for reading and
writing

• math.h contains mathematical functions
• assert.h macro assert to help locate mistakes

•29 header files in total (see wikipedia for the list)

Standard libraries

3.9.2015
Faculty of Science
Department of Computer Science 16

www.cs.helsinki.fi

Comparison of C and Java
from Mülder: C for java programmers

uPrimitive data types: character, integer, and real.
In C, they are of different sizes,
there is no Unicode 16-bit character set

uStructured data types: arrays, structures and unions.
In C, arrays are static
there are no classes

uControl structures are similar
uFunctions are similar

www.cs.helsinki.fi

Comparison of C and Java

uJava references are called pointers in C.

uJava constructs missing in C (ANSI):
packages
threads
exception handling
garbage collection
standard Graphical User Interface (GUI)
built-in definition of a string
standard support for networking
support for program safety.

www.cs.helsinki.fi

Programming style

Write clear and easily understandable code
(Java programming course style is good!)
Cryptic and concise code has no value itself,
the clarity is more important

do {
if (scanf(”%d”, &i) !=1 ||

i == SENTINEL)
break;

if (i>maxi)
maxi = i;

} while (1);

void show (char *p) {
char *q;
printf(”[”);
for (q=p; *q != ’\0’; q++)
printf(”%c ”, *q);

printf(”]\n”);
}

www.cs.helsinki.fi

What do the following sentences
do?

while (*q++ = *p++);

if ((c=fgetc(fileHandle)) == EOF)

for (i=a, j=b; i<=j; i += 2, j += 2)

3.9.2015 21
Faculty of Science
Department of Computer Science

#include<stdio.h>
#include<string.h>
#define SUCCESS 0
#define FAILURE -1
int main(void)
{

char pass_buff[50] = {0};
printf("\n Enter the password...");
//Get the password from user
fgets(pass_buff,sizeof(pass_buff)-1,stdin);
//Make sure that the extra(last) character
//picked up from stdin is washed off
//from buffer. pass_buff[strlen(pass_buff)-1] = '\0';
if(! (strcmp(pass_buff,"Linux"))) {

// Passwords match
printf("\n Passwords Match..SUCCESS\n");
return SUCCESS;

} else {
// Passwords do not macth
printf("\n Passwords do not match...FAILURE\n");
return FAILURE;

} }

Another example
Emply lines would
make it more readable

From: mylinuxbook.com

www.cs.helsinki.fi

• Command-line interface
• needs only shell, no graphical interface
• the ’old fashioned’ way
• most UNIX experts still do it this way
• explicit compilation and linking

• Integrated Development Environments (IDEs)
• TMC is integrated with NetBeans
• Eclipse is another very popular one
• Program still needs to be compiled and linked before
execution – IDE might hide these phases

Programming in C

3.9.2015
Faculty of Science Department of Computer
Science 22

www.cs.helsinki.fi

Development process with
command-line interface

Write program
Using suitable editor (vim, nano, emacs, ...)
Must produce plain text file

Compile
Select the correct compiler and arguments (gcc -c)

Link
Link the compiled modules to form a program (gcc)

Execute
Executing or running the program

www.cs.helsinki.fi

Usage: gcc [options] file...

Option
-- help lists all possible options and features of the

compiler, there are plenty
-c compile and assemble, but do not link
-o <file> place the output into <file>

gcc --help

www.cs.helsinki.fi

Compiling (short program, all in one file)

Compile
gcc helloworld.c
or
gcc –o helloworld \
helloworld.c

Compiler does
preprocessing,
actual compilation and
linking

... and produces the
executable file

a.out
or
helloworld

int main (void)
{
printf(”Hello world \n”);
return 0;

}

www.cs.helsinki.fi

Program has multiple files and
modules

Every program file is compiled separately to create
object module (or library)

gcc –c main.c

The modules are then linked together to form the
complete program

gcc –o program main.o eka.o toka.o

Usually compiled with make (executes a sequence of
commands)

www.cs.helsinki.fi

makefile

Create makefile once,
use it multiple times

gcc –c main.c
gcc –c eka.c
gcc –c toka.c
gcc –o ohjelma main.o eka.o toka.o

make

makefile
CC = gcc –ansi –pedantic –Wall
ohjelma: main.o eka.o toka.o

$(CC) –o ohjelma main.o eka.o toka.o
eka.o: eka.c eka.h

$(CC) –c eka.c
toka.o: toka.c toka.h

$(CC) –c toka.c
main.o: main.c eka.h toka.h

$(CC) –c main.c

NOTE: tab, not spaces

www.cs.helsinki.fi

We have executable program, but does it work?
• Try to execute it and test the program
• Look for errors, locate mistakes

- Extra print statements
- Read the code, simulate execution, THINK!
- Use debugger

• Write automated tests, evaluate test coverage (->
course: Software testing)

On this course we are satisfied with smoke testing or
sanity check. (Program seems to satisfy the desciption.)

After compiling and linking?

www.cs.helsinki.fi

Testing

Target: find mistakes
Covers wide spectrum of possible input values
Can be automated (using scripts or special test
tools/packages)

Not part of the learning goals of this course

On this course (smoke test, sanity check) usually
enough to check

- Correct and incorrect input values
- Boundary values(-1,0,1)

www.cs.helsinki.fi

#ifdef EXTRAPRINT
printf (”Fname: Variable name %d \n”, variable);
#endif

Target: try to understand the functionality of the code.
Placed: around the most probably mistake location
Usually more handy than debugger, if you have an
idea of the error location in advance.

Extra print statements

www.cs.helsinki.fi

Debugger gdb

(gdb) help

List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

www.cs.helsinki.fi

Crashed program usually produces a file (code dump)
that contains state of the memory and registers at the
time of crash.
This file can be accessed by debugger to find out
values of variable and the location of the instruction
that crashed the program.

This is not covered on the course, but could be very
useful to study at some point.

core dump

