
www.cs.helsinki.fi

Programming in C
Week2

9.9.2015
Tiina Niklander

9.9.2015
Faculty of Science
Department of Computer Science 1

www.cs.helsinki.fi

• First week
• Some notes

• Second week
• Focus on pointers

• Slides related to first week topics – covered if time
allows or some questions arise

Meeting structure

9.9.2015
Faculty of Science
Department of Computer Science 2

www.cs.helsinki.fi

• TMC problems
• Some tests did not accept correct answers on the

server
• Difficulties configuring NetBeans properly

• Tasks
• Uninitialized values: test failure information not useful
• Printf: formatting problems, especially \n

First week tasks

9.9.2015
Faculty of Science
Department of Computer Science 3

www.cs.helsinki.fi 9.9.2015
Faculty of Science Department of Computer
Science 4

Briefly about pointers

Main memory

Memory block

pointer p

345
:

678
:

char *p; /* pointer to a character or string */

int *q; /* pointer to one integer (or array) */

/*Memory allocated only for the pointer! */

char *p = ”This string is allocated”;

int numbers[] = {1, 2, 3, 4, 5};

double table[100];

Allocate memory for the array and set the
pointer to the array.

(No memory allocated for array name
”constant pointers”, only allocates the
memory block containing the values!)

Program
code

function
foo1

function
foo2

pointer q
915
:

740
:

830
:

680
:

www.cs.helsinki.fi

• Array is just a sequence of values with a joint name.
int a[15] is sequence of 15 integers.

• Array name is treated as a pointer, whose value is the
address of the first element in the sequence.

pa = &a[0]
pa = a

• pointer arithmetic allows operations on array elements
*(pa +3) is the same as a[3]

pa+3 is the same as &a[3]

Pointers (and arrays)

9.9.2015 5
Faculty of Science
Department of Computer Science

www.cs.helsinki.fi

p = &c address of c
c = *p value of the address pointed by p
c = **r -”- (two ’jumps’)
p = q allowed when p and q of same type

p+i, p-i p is array, i has to be interger with suitable value
p-q, p and q pointers of the same array and q<p
p < q, p == q

*ip++ increments the address by ’one’
(*ip)++ increments the value in the address by one

Pointer arithmetics and
operations Remember:

NULL

9.9.2015 6
Faculty of Science
Department of Computer Science

www.cs.helsinki.fi 9.9.2015
Faculty of Science Department of Computer
Science 7

Pointer arithmetics

int **p;
int *q,r;
int i;

i= **p

q = &i; /* q’s new value is i’s address
i = *q+1; i = ++*q; /* i=6*/
i = *q++; /* ???? */
r = q; *r = 3; /* i=3 */

p
5

3

12

4

95

i

q const int *p;

int const *p;

const int const *p;

char msg [] = ”It is time”;

char *pv =”It is time”;

It is time\0

It is time\0
pv

msg:

void *p; i= *(int*) p;

Example code

int main(int argc, char**
argv)
{
int x=1, y=2, z[10];
int *ip;
int *p, q;
int *r, *s;

ip = &x;
y = *ip; /* y = x =1 */
ip = 0; / x = 0 */
ip = &z[0];
}

double atof(char * string);
Pointers as arguments for functions are

very common. (Always used with arrays and
needed for call by reference)

p is a pointer variable and
q is integer variable

x
y
z

ip
…

1
2

0

1

9.9.2015 8
Faculty of Science Department of Computer
Science

www.cs.helsinki.fi

• Explicit memory allocations!
• malloc – static data structures
• calloc – dynamic array
• realloc – change the size of already allocated object
• free – deallocate the memory

Memory allocation

9.9.2015
Faculty of Science
Department of Computer Science 9

/* ALWAYS CHECK THE RETURN VALUE!!! */
if (k=malloc(sizeof(double)))

error; /* allocation failed, do something else or terminate program */

/* memory allocation succeeded and k is the pointer to the new structure */

www.cs.helsinki.fi 9.9.2015
Faculty of Science Department of Computer
Science 10

Functions:
Call by value, call by reference

C uses always call by value =>
function cannot change the
value it receives as argument.

Call by reference done with
pointers!!!

void swap(int x, int y) {
int apu;
apu=x;
x=y;
y= apu;

}

void swap(int *x, int *y) {
int apu;
apu=*x;
*x=*y;
*y= apu;

}

copies

Call: swap (&x, &y);

x

y

Addresses of x and y

3
4

double product (const double block, int size);

Make sure that function does not
change the variable (ANSI standard!)

Example code: copy a string -
Passing array to a function

#include <stdio.h>

void copy_string(char *s, char *t)
{

int i =0;
while ((s[i] = t[i]) != ’\0’)
i++;

}

int main (void)
{
char here [] =”This string is copied.”,

there[50];
copy_string (here, there); printf(”%s\n”, there);
copy_string (there, here); printf(”%s\n”, there);
return 0;

}

Processing one character of each array

Strings (character arrays) as arguments.
C is always passing only the address of

the first element of any array.

9.9.2015 11
Faculty of Science Department of Computer
Science

Example code: copy a string –
Now with pointers

void copy_string(char *s, char *t)
{
while ((*s = *t) != ’\0’)
s++; t++;

}

NOTE: The function prototype is
identical with the previous slide

void copy_string(char *s, char *t)
{
while ((*s++ = *t++) != ’\0’)
;

}

void copy_string(char *s, char *t)
{
while (*s++ = *t++) ;

}

Version 1: Version 2:

Version 3:

Minimalistic!
9.9.2015 12

Faculty of Science Department of Computer
Science

www.cs.helsinki.fi

More about pointers and some
good practices
• Generic pointer (void *p) can be used with type cast
to handle a variable of that type.

*(double *)p
• Memory allocation for n integers

int *p;
if ((p=malloc(n*sizeof(int))) == NULL)

error;
• Memory deallocation: remember to free(p); p=NULL;
• i’th element of array

p[i] (preferred over *(p+i))
• Handling an array p

for (pi = p; pi < p+SIZE; pi++)
remember to use pointer pi in the loop

9.9.2015 13
Faculty of Science
Department of Computer Science

www.cs.helsinki.fi

Still more

• Call by reference
1. Prototype’s argument – a pointer

void func(int *pp)

2. In the function use the pointed value.
*pp

3. In the function call: address of the variable
func(&variable);

4. In the function call: pointer
func(pointer_variable);

• Array of struct
for (p = block; p < block + n*elSize; p+= elSize)

• i. element of struct array
p = block + i*elSize

9.9.2015 14
Faculty of Science
Department of Computer Science

www.cs.helsinki.fi

Evaluation order
Preceedence

() [] . ->
! ~ - ++ -- & * (tyyppi) sizeof
* / %
+ -
<< >>
< <= > >=
== !=
&
^
|
&&
||
?:
= *= /= %= += -= <<= >>= &= != ^=
,

Arithmetical ops {
Bitwise moves

Value comparations {
{Bitwise comparations

and
or

Conditional op

Same line - same priority

www.cs.helsinki.fi

Expression
a < b < c

is interpreted as
(a < b) < c

And the meaning is different than expression
a < b && b < c

Assosiativity

www.cs.helsinki.fi

Style: using space

Do not use space with the following :
-> . [] ! ~ ++ -- -(sign)

*(pointer)&

Usually have space around these:
= += ?: + < &&

+ (addition) and others

aa-->b>b a[a[ii]] *c*c
a = a + 2;a = a + 2;
a= b+ 1;a= b+ 1;

a =a = a+ba+b * 2;* 2;

www.cs.helsinki.fi

Constants

Defined as variables, but with addition
const

Usually constant names in capital letters

const float PI = 3.1412;
const int BIG_NUMBER = 0xFF7D;
const int TRUE = 1;
const int FALSE = 0;
const char LETTER_A = ’a’;
const char [] MJONO = ”String has parenthesis around it”;

www.cs.helsinki.fi

Macros

Preprocessor control – textual replacement!
Macro is a text that is replaced with other text before the actual
compilation
NOTE: Whole end of the line is the replacement string as it is!!

Can be used to define ’constants’ but is more powerful

#define MAKSIMI 30
#define NAME “Tiina Niklander”
#define TRUE 1
#define FALSE 0

www.cs.helsinki.fi

String vs character array

char letters[30];
char* char_pointer;

Array letters contains characters =
character array

When the last character is ’\0’ then
considered as string

u i = 8 different than i == 8

u Remember to set initial values to variables!
u Check the limits (avoid ‘off by one’)

u These are not logical operations!!!
e1 & e2
e1 | e2
if(x = 1) …

Avoid mistakes

www.cs.helsinki.fi

NEVER test overflow with

i + j > INT_MAX

BUT do:

i > INT_MAX - j

Overflow

Source:
Müldner

www.cs.helsinki.fi

Slides related to first week

9.9.2015
Faculty of Science
Department of Computer Science 23

www.cs.helsinki.fi

Int 28, 074, 0x2A
char, one character, actually

a numerical value, do not
assume anything
’a’ ’\065’ ’\xA6’

float, double

NOTE: no boolean
- Use integer values
- 0 - FALSE and all other values

TRUE

Size of these not fixed between
systems (see: sizeof or limits.h)

signed, unsigned
unsigned int
signed char

short, long
long char
short int

Combined
signed short int
unsigned long int

Simple types

www.cs.helsinki.fi

Limits.h contains the maximum and minimum values of
different types in this environment

At department the file is in /usr/include/

Always: INT_MAX >= 32767

Lots of values: eg. SHRT_MAX (singed short)
With ints you can define the type after value (U, L)

Header file: limits.h

sizeof(short) <= sizeof(int) <= sizeof(long)

#include <limits.h>

12U is unsigned int and 7L long int

www.cs.helsinki.fi

Header file: float.h

Contains size and limit values for
- float
- double
- long double

sizeof(float) <= sizeof(double) <= sizeof(long double)

#include <float.h>

www.cs.helsinki.fi

– int ja char
– unsigned
– long
– unsigned long
– float
– double
– long double

Type conversion

Implicit: operands with different types -> automatic type
conversion for the arithmetic operation using the ’better
quality’ type:

Explicit:
(double)int_var;
(int) letter;

www.cs.helsinki.fi

Statements

Conditional

Loops

Interrupting a loop
Break - continue from the statement AFTER the loop
Continue – continue with NEXT ROUND
Not named!!

if (cond)
statement;

else
statement;

If (cond) {
statementS

} else {
statementS

}

for (;;)
statement

while (1) {
statementS
}

do {
statementS

} while (cond);

www.cs.helsinki.fi

Using break

While (1) {
printf(“give two numbers a and b, a < b:”);
if (scanf(“%d%d”, &a, &b) == 2)

break;
if (a < b)

break;
...

}
/* break continues from here */

Several typical C features
- eternal loop while(1)
- error checks !!
- standard functions

www.cs.helsinki.fi

Exiting from a deep loop
structure

Exit over multiple loop levels must be done with
goto (Avoid using for anything else!)

Break would continue the outer loop!

for(i = 0; i < length; i++)
for(j = 0; j < length1; j++)

if(f(i, j) == 0)
goto done;

done:

www.cs.helsinki.fi

switch

.. /* Beginning of main and variable definitions */
Printf(”Please give at most %d chars\n”, LIMIT);
For (i = 1; i <= LIMIT; i++) {

if ((c=getchar()) == EOF)
break; /* end of file with CTRL-D */

switch (c) {
case ’ ’ : space++;

break;
case ’\t’: tabul++;

break;
case ’*’ : asterisk++;

break;
default : if (c>=’a’ && c<=’z’)

lowercaseletters++;
}

}
... /* continues e.g. with printing */

/* Program that reads two integer values, and
* outputs the maximum of these values.
*/

#include <stdio.h>
int main() {

int i, j;
printf("Enter two integers:");
if(scanf("%d%d", &i, &j) != 2) {

fprintf(stderr, "wrong input\n");
return EXIT_FAILURE;

}
printf("Maximum of %d and %d is %d\n",

i, j, i > j ? i : j);
return EXIT_SUCCESS;

}

“Read
two
values
”

Conditional operation

www.cs.helsinki.fi

Control Statements

This loop
while(expr != 0)

statement;

Is identical with this one
while(expr)

statement;

Read characters until sentinel
while(1) {

if((aux = getchar()) == EOF || aux == SENTINEL)
break;

...
}

or:
while(1) {

if((aux = getchar()) == EOF)
break;

if(aux == SENTINEL)
break;

...

while(1) {
if (scanf("%d", &i) != 1 ||

i == SENTINEL)
break;

…
}

Read integers

www.cs.helsinki.fi

Input and output briefly

Character at a time
int getchar()

int putchar(int)

Formatted
int scanf("format", &var)

int printf("format", exp)

/* File: ex1.c
* Program that reads a single character and
* outputs it, followed by end-of-line
*/

#include <stdio.h>
#include <stdlib.h>
int main() {

int c; /* chars must be read as ints */

if ((c = getchar()) == EOF)
return EXIT_FAILURE;

putchar(c);
putchar('\n');

return EXIT_SUCCESS;
}

NOTE: These header files are needed
for the standard functions used

www.cs.helsinki.fi

Printf & scanf: integer values

d signed decimal
ld long decimal
u unsigned decimal
o octal
x, X hexadecimal

printf("%d%o%x", 17, 18, 19);

Printf and scanf: real number,
floating point numbers

default is 6 digits:
f [-] ddd.ddd

e [-] d.ddddde{sign}dd

E [-] d.dddddE{sign}dd

g fe (f, e only if needed (e.g. sign <-4))

G FE
printf("%5.3f\n", 123.3456789);
printf("%5.3e\n", 123.3456789);
123.346
1.233e+02

Printf and scanf: chars and string

c one character
s string

printf("%c", 'a');
printf("%d", 'a');

printf("This %s test", "is");

scanf() – return value

scanf() returns as its value the number of read items and
EOF, if not item was read before the end-of-file occured

For example scanf("%d%d", &i, &j) may return:

2 If both values were read correctly
1 If only i was read
0 If reading failed completely
EOF if file ended.

