

APPENDIX F
HASH TABLES

William Stallings
Copyright 2011

 Supplement to
 Operating Systems, Seventh Edition
 Prentice Hall 2011
 ISBN: 013230998X
 http://williamstallings.com/OS/OS7e.html

F-2

Consider the following problem. A set of N items is to be stored in a table.

Each item consists of a label plus some additional information, which we can

refer to as the value of the item. We would like to be able to perform a

number of ordinary operations on the table, such as insertion, deletion, and

searching for a given item by label.

 If the labels of the items are numeric, in the range 0 to M – 1, then a

simple solution would be to use a table of length M. An item with label i

would be inserted into the table at location i. As long as items are of fixed

length, table lookup is trivial and involves indexing into the table based on

the numeric label of the item. Furthermore, it is not necessary to store the

label of an item in the table, because this is implied by the position of the

item. Such a table is known as a direct access table.

 If the labels are nonnumeric, then it is still possible to use a direct

access approach. Let us refer to the items as A[1],…A[N]. Each item A[i]

consists of a label, or key, ki, and a value vi. Let us define a mapping

function I(k) such that I(k) takes a value between 1 and M for all keys and

I(ki) ! I(kj) for any i and j. In this case, a direct access table can also be

used, with the length of the table equal to M.

 The one difficulty with these schemes occurs if M is much greater than

N. In this case, the proportion of unused entries in the table is large, and

this is an inefficient use of memory. An alternative would be to use a table of

length N and store the N items (label plus value) in the N table entries. In

this scheme, the amount of memory is minimized but there is now a

processing burden to do table lookup. There are several possibilities:

• Sequential search: This brute-force approach is time consuming for

large tables.

F-3

Table F.1 Average Search Length for One of N items in a Table of

Length M

Technique Search Length

Direct 1

Sequential

M + 1

2

Binary log2M

Linear hashing

2 !N
M

2 ! 2N
M

Hash (overflow with
chaining)

1+ N ! 1
2M

• Associative search: With the proper hardware, all of the elements in a

table can be searched simultaneously. This approach is not general

purpose and cannot be applied to any and all tables of interest.

• Binary search: If the labels or the numeric mapping of the labels are

arranged in ascending order in the table, then a binary search is much

quicker than sequential (Table F.1) and requires no special hardware.

 The binary search looks promising for table lookup. The major drawback

with this method is that adding new items is not usually a simple process

and will require reordering of the entries. Therefore, binary search is usually

used only for reasonably static tables that are seldom changed.

 We would like to avoid the memory penalties of a simple direct access

approach and the processing penalties of the alternatives listed previously.

The most frequently used method to achieve this compromise is hashing.

Hashing, which was developed in the 1950s, is simple to implement and has

F-4

two advantages. First, it can find most items with a single seek, as in direct

accessing, and second, insertions and deletions can be handled without

added complexity.

 The hashing function can be defined as follows. Assume that up to N

items are to be stored in a hash table of length M, with M ! N, but not

much larger than N. To insert an item in the table,

 I1. Convert the label of the item to a near-random number n between 0

and M – 1. For example, if the label is numeric, a popular mapping

function is to divide the label by M and take the remainder as the

value of n.

 I2. Use n as the index into the hash table.

 a. If the corresponding entry in the table is empty, store the item

(label and value) in that entry.

 b. If the entry is already occupied, then store the item in an overflow

area, as discussed subsequently.

To perform table lookup of an item whose label is known,

 L1. Convert the label of the item to a near-random number n between 0

and M – 1, using the same mapping function as for insertion.

 L2. Use n as the index into the hash table.

 a. If the corresponding entry in the table is empty, then the item has

not previously been stored in the table.

 b. If the entry is already occupied and the labels match, then the

value can be retrieved.

 c. If the entry is already occupied and the labels do not match, then

continue the search in the overflow area.

F-5

 Hashing schemes differ in the way in which the overflow is handled. One

common technique is referred to as the linear hashing technique and is

commonly used in compilers. In this approach, rule I2.b becomes

 I2.b. If the entry is already occupied, set n = n + 1 (mod M) and go

back to step I2.a.

Rule L2.c is modified accordingly.

 Figure F.1a is an example. In this case, the labels of the items to be

stored are numeric, and the hash table has eight positions (M = 8). The

mapping function is to take the remainder upon division by 8. The figure

assumes that the items were inserted in ascending numerical order,

although this is not necessary. Thus, items 50 and 51 map into positions 2

and 3, respectively, and as these are empty, they are inserted there. Item

74 also maps into position 2, but as it is not empty, position 3 is tried. This

is also occupied, so the position 4 is ultimately used.

 It is not easy to determine the average length of the search for an item

in an open hash table because of the clustering effect. An approximate

formula was obtained by Schay and Spruth:1

Average search length= 2 - r

2 - 2r

where r = N/M. Note that the result is independent of table size and depends

only on how full the table is. The surprising result is that with the table 80%

full, the average length of the search is still around 3.

1 Schay, G., and Spruth, W. "Analysis of a File Addressing Method."

Communications of the ACM, August 1962.

value (94)94

119 0
1
2
3
4
5
6
7

50
51
74
83
95
119

(a) Linear rehashing

Hash Table

Figure F.1 Hashing

value (119)

value (50)
value (51)
value (74)
value (83)

value (95)

—
50
51
74
83
—
95

50
51
74
83
94
95
119
139

(b) Overflow with chaining

value (50)
value (51)

value (95)

50

—

51

95

value (119)119

Overflow Table
value (74)
value (83)

value (139)

74 —

—
—

83

139

F-6

 Even so, a search length of 3 may be considered long, and the linear

hashing table has the additional problem that it is not easy to delete items.

A more attractive approach, which provides shorter search lengths (Table

8.7) and allows deletions as well as additions, is overflow with chaining.

This technique is illustrated in Figure F.1b. In this case, there is a separate

table into which overflow entries are inserted. This table includes pointers

passing down the chain of entries associated with any position in the hash

table. In this case, the average search length, assuming randomly

distributed data, is

Average search length= 1+ N ! 1

2M

For large values of N and M, this value approaches 1.5 for N = M. Thus, this

technique provides for compact storage with rapid lookup.

