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In a number of chapters in this book, results from queueing theory are used. 

Chapter 20 provides a detailed discussion of queueing analysis. For purposes 

of understanding the description of the results in the book, however, the 

brief overview in this appendix should suffice. In this appendix we present a 

brief definition of queueing systems and define key terms. 

 

H.1  WHY QUEUEING ANALYSIS? 
 

It is often necessary to make projections of performance on the basis of 

existing load information or on the basis of estimated load for a new 

environment. A number of approaches are possible: 

 

 1. Do an after-the-fact analysis based on actual values. 

 2. Make a simple projection by scaling up from existing experience to the 

expected future environment. 

 3. Develop an analytic model based on queueing theory. 

 4. Program and run a simulation model. 

 

 Option 1 is no option at all: we will wait and see what happens. This 

leads to unhappy users and to unwise purchases. Option 2 sounds more 

promising. The analyst may take the position that it is impossible to project 

future demand with any degree of certainty. Therefore, it is pointless to 

attempt some exact modeling procedure. Rather, a rough-and-ready 

projection will provide ballpark estimates. The problem with this approach is 

that the behavior of most systems under a changing load is not what one 

would intuitively expect. If there is an environment in which there is a 

shared facility (e.g., a network, a transmission line, a time-sharing system), 

then the performance of that system typically responds in an exponential 

way to increases in demand. 
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 Figure H.1 is a representative example. The upper line shows what 

typically happens to user response time on a shared facility as the load on 

that facility increases. The load is expressed as a fraction of capacity. Thus, 

if we are dealing with a router that is capable of processing and forwarding 

1000 packets per second, then a load of 0.5 represents an arrival rate of 

500 packets per second, and the response time is the amount of time it 

takes to retransmit any incoming packet. The lower line is a simple 

projection1 based on knowledge of the behavior of the system up to a load of 

0.5. Note that while things appear rosy when the simple projection is made, 

performance on the system will in fact collapse beyond a load of about 0.8 to 

0.9. 

 Thus, a more exact prediction tool is needed. Option 3 is to make use of 

an analytic model, which is one that can be expressed as a set of equations 

that can be solved to yield the desired parameters (response time, 

throughput, etc.). For computer, operating system, and networking 

problems, and indeed for many practical real-world problems, analytic 

models based on queueing theory provide a reasonably good fit to reality. 

The disadvantage of queueing theory is that a number of simplifying 

assumptions must be made to derive equations for the parameters of 

interest. 

 The final approach is a simulation model. Here, given a sufficiently 

powerful and flexible simulation programming language, the analyst can 

model reality in great detail and avoid making many of the assumptions 

required of queueing theory. However, in most cases, a simulation model is 

not needed or at least is not advisable as a first step in the analysis. For one 

thing, both existing measurements and projections of future load carry with 

them a certain margin of error. Thus, no matter how good the simulation 

                                   

1 The lower line is based on fitting a third-order polynomial to the data 
available up to a load of 0.5. 
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model, the value of the results is limited by the quality of the input. For 

another, despite the many assumptions required of queueing theory, the 

results that are produced often come quite close to those that would be 

produced by a more careful simulation analysis. Furthermore, a queueing 

analysis can literally be accomplished in a matter of minutes for a well-

defined problem, whereas simulation exercises can take days, weeks, or 

longer to program and run. 

 Accordingly, it behooves the analyst to master the basics of queueing 

theory. 

 

H.2  THE SINGLE-SERVER QUEUE 
 

The simplest queueing system is depicted in Figure H.2. The central element 

of the system is a server, which provides some service to items. Items from 

some population of items arrive at the system to be served. If the server is 

idle, an item is served immediately. Otherwise, an arriving item joins a 

waiting line.2 When the server has completed serving an item, the item 

departs. If there are items waiting in the queue, one is immediately 

dispatched to the server. The server in this model can represent anything 

that performs some function or service for a collection of items. Examples: a 

processor provides service to processes; a transmission line provides a 

transmission service to packets or frames of data; an I/O device provides a 

read or write service for I/O requests. 

 Table H.1 summarizes some important parameters associated with a 

queueing model. Items arrive at the facility at some average rate (items  

                                   
2 The waiting line is referred to as a queue in some treatments in the 

literature; it is also common to refer to the entire system as a queue. 
Unless otherwise noted, we use the term queue to mean waiting line. 
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Table H.1   Notation for Queueing Systems 

 

! = arrival rate; mean number of arrivals per second 

Ts = mean service time for each arrival; amount of time being served, not 

counting time waiting in the queue 

" = utilization; fraction of time facility (server or servers) is busy 

w = mean number of items waiting to be served 

Tw = mean waiting time (including items that have to wait and items with 

waiting time = 0) 

r = mean number of items resident in system (waiting and being served) 

Tr = mean residence time; time an item spends in system (waiting and 

being served) 

 
 
arriving per second) !. At any given time, a certain number of items will be 

waiting in the queue (zero or more); the average number waiting is w, and 

the mean time that an item must wait is Tw. Tw is averaged over all 

incoming items, including those that do not wait at all. The server handles 

incoming items with an average service time Ts; this is the time interval 

between the dispatching of an item to the server and the departure of that 

item from the server. Utilization, ", is the fraction of time that the server is 

busy, measured over some interval of time. Finally, two parameters apply to 

the system as a whole. The average number of items resident in the system, 

including the item being served (if any) and the items waiting (if any), is r; 
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and the average time that an item spends in the system, waiting and being 

served, is Tr; we refer to this as the mean residence time.3 

 If we assume that the capacity of the queue is infinite, then no items 

are ever lost from the system; they are just delayed until they can be 

served. Under these circumstances, the departure rate equals the arrival 

rate. As the arrival rate increases, the utilization increases and with it, 

congestion. The queue becomes longer, increasing waiting time. At " = 1, 

the server becomes saturated, working 100% of the time. Thus, the 

theoretical maximum input rate that can be handled by the system is 

 

 
    
!max =

1
Ts

 

 

 However, queues become very large near system saturation, growing 

without bound when " = 1. Practical considerations, such as response time 

requirements or buffer sizes, usually limit the input rate for a single server 

to between 70 and 90% of the theoretical maximum. 

 The following assumptions are typically made: 

 

• Item population: Typically, we assume an infinite population. This 

means that the arrival rate is not altered by the loss of population. If 

the population is finite, then the population available for arrival is 

reduced by the number of items currently in the system; this would 

typically reduce the arrival rate proportionally. 

                                   
3  Again, in some of the literature, this is referred to as the mean queueing 

time, while other treatments use mean queueing time to mean the 
average time spent waiting in the queue (before being served). 
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• Queue size: Typically, we assume an infinite queue size. Thus, the 

waiting line can grow without bound. With a finite queue, it is possible 

for items to be lost from the system. In practice, any queue is finite. In 

many cases, this will make no substantive difference to the analysis. 

• Dispatching discipline: When the server becomes free, and if there is 

more than one item waiting, a decision must be made as to which item 

to dispatch next. The simplest approach is first-in-first-out; this 

discipline is what is normally implied when the term queue is used. 

Another possibility is last-in-first-out. One that you might encounter in 

practice is a dispatching discipline based on service time. For example, a 

packet-switching node may choose to dispatch packets on the basis of 

shortest first (to generate the most outgoing packets) or longest first 

(to minimize processing time relative to transmission time). 

Unfortunately, a discipline based on service time is very difficult to 

model analytically. 

 

H.3  THE MULTISERVER QUEUE 
 

Figure H.3 shows a generalization of the simple model we have been 

discussing for multiple servers, all sharing a common queue. If an item 

arrives and at least one server is available, then the item is immediately 

dispatched to that server. It is assumed that all servers are identical; thus, if 

more than one server is available, it makes no difference which server is 

chosen for the item. If all servers are busy, a queue begins to form. As soon 
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as one server becomes free, an item is dispatched from the queue using the 

dispatching discipline in force.  

 With the exception of utilization, all of the parameters illustrated in 

Figure H.2 carry over to the multiserver case with the same interpretation. If 

we have N identical servers, then " is the utilization of each server, and we 

can consider N" to be the utilization of the entire system; this latter term is 

often referred to as the traffic intensity, u. Thus, the theoretical maximum 

utilization is N # 100%, and the theoretical maximum input rate is: 

 

    
!max =

N
Ts

 

 

 The key characteristics typically chosen for the multiserver queue 

correspond to those for the single-server queue. That is, we assume an 

infinite population and an infinite queue size, with a single infinite queue 

shared among all servers. Unless otherwise stated, the dispatching discipline 

is FIFO. For the multiserver case, if all servers are assumed identical, the 

selection of a particular server for a waiting item has no effect on service 

time. 

 By way of contrast, Figure H.3b shows the structure of multiple single-

server queues. 

 

H.4  POISSON ARRIVAL RATE 
 

Typically, analytic queueing models assume that the arrival rate obeys a 

Poisson distribution. This is what is assumed in the results of Table 9.6. We 

define this distribution as follows. If items arrive at a queue according to a 

Poisson distribution, this may be expressed as 

 



H-9 

 
  
Pr k items arrive in time interval T[ ] =

!T( )k

k!
e"!T  

 E[number of items to arrive in time interval T] = !T   

 Mean arrival rate, in items per second = !  

 

 Arrivals occurring according to a Poisson process are often referred to as 

random arrivals. This is because the probability of arrival of an item in a 

small interval is proportional to the length of the interval and is independent 

of the amount of elapsed time since the arrival of the last item. That is, 

when items are arriving according to a Poisson process, an item is as likely 

to arrive at one instant as any other, regardless of the instants at which the 

other customers arrive. 

 Another interesting property of the Poisson process is its relationship to 

the exponential distribution. If we look at the times between arrivals of 

items Ta (called the interarrival times), then we find that this quantity obeys 

the exponential distribution: 

 

    

Pr Ta < t[ ] = 1 ! e!"t

E Ta[ ] = 1
"

 

 

Thus, the mean interarrival time is the reciprocal of the arrival rate, as we 

would expect. 

 

  
 


