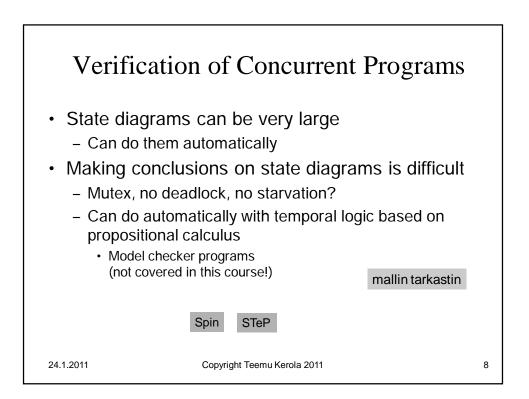
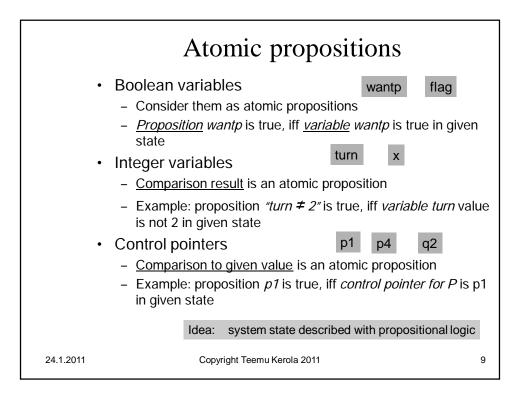
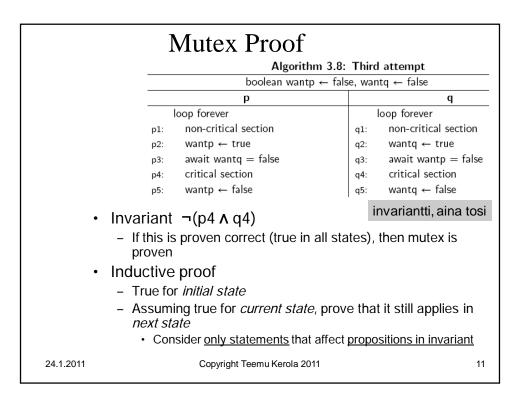
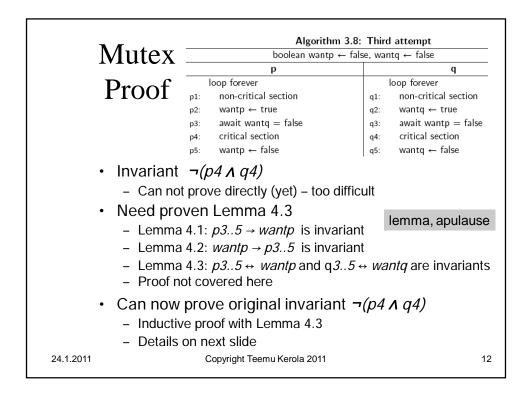
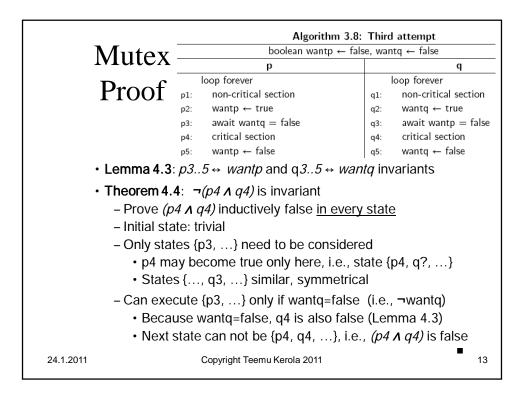

	Proposition	nal			. ,		enA 06])
	Calculus		• •	iolaskent voilla lasl			ogiikka
•	Atomic propositions		atominen propositio, tilapropositio				
	A, B, C,True (T) or False	(F)		A	$v(A_1)$	$v(A_2)$	v(A)
•	 Operators 		ei	$\neg A_1$	Т		F
	– not			$\neg A_1$	F		Т
		disju	nktio, tai	$A_1 \lor A_2$	F	F	F
	- disjunction, or			$A_1 \lor A_2$	other	rwise	Т
	– conjunction, and	konj	uktio, ja	$A_1 \wedge A_2$	Т	Т	Т
	conjunction, and			$A_1 \wedge A_2$	other	rwise	F
	– implication	im	plikaatio	$A_1 \rightarrow A_2$	Т	F	F
	-			$A_1 \rightarrow A_2$	other	rwise	Т
Boolean	- equivalence	ماد با	valenssi	$A_1 \leftrightarrow A_2$	$v(A_1) =$	$= v(A_2)$	T
algebra		ekvi	valenssi	$A_1 \leftrightarrow A_2$	$v(A_1)$ 7	$\neq v(A_2)$	F
24.1.2011	Copyri	ght Teen	nu Kerola 20	11			2

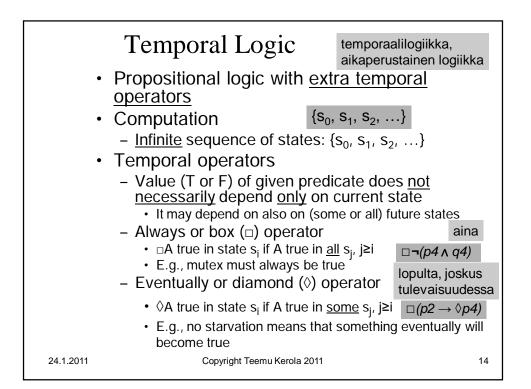


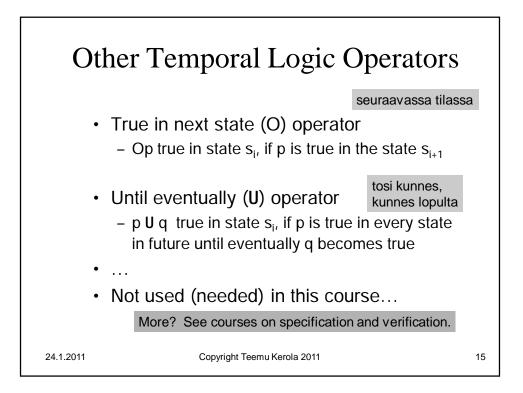

-	Propositional Calcul	lus propositiolaskenta
•	– Implication	$\wedge \cdots \wedge A_n) \to B$
	Premise or antecedent	premissit, oletukset
	 Conclusion or consequent 	johtopäätös
	 Formula f is true/false if it's interpretation v(f) is true/false 	tosi/epätosi
	• Given assignment values for each	argument
	– Formula is <i>valid</i> if it is <i>tautology</i>	pätevä, validi
	• Always true for <u>all interpretations</u>	(all atomic propos. values)
	 Formula is <i>satisfiable</i> if true in <u>some</u> interpretation 	toteutuva
	– Formula is <i>falsiable</i> if sometimes false	ei pätevä
	– Formula is <i>unsatisfiable</i> if always false	e ei toteutuva
24.1.2011	Copyright Teemu Kerola 2011	4

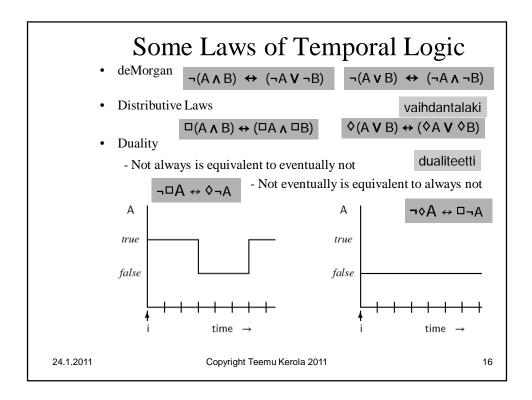


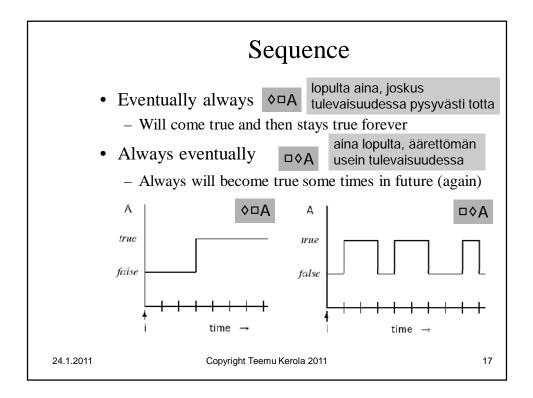


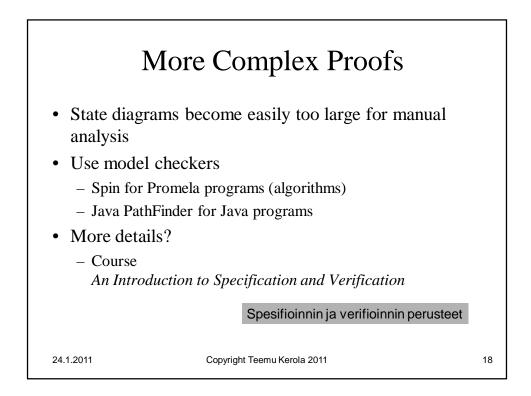


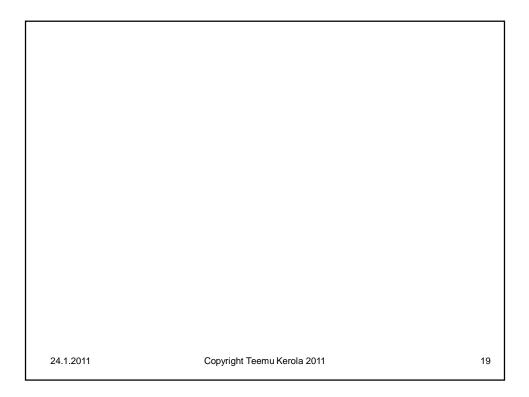


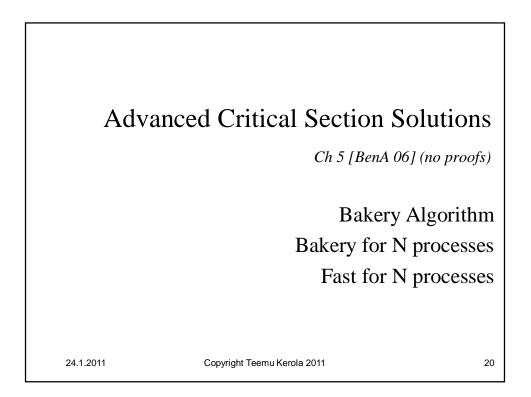

$p_{2:} wantp \leftarrow true \qquad \qquad$	For	mulaes			
p q loop forever loop forever p1: non-critical section p2: wantp ← true p3: await wantq = false q4: critical section p5: wantp ← false q5: wantq ← false • Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq - True only in the starting state • Formula: p4 ∧ q4 - True only if mutex is broken - Mutex condition can be defined: ¬(p4 ∧ q4) • Must be true in all possible states in all possible computations		Algorithm 3.8:	Third attempt		
loop forever loop forever p1: non-critical section p2: wantp ← true p3: await wantq = false q4: critical section p5: wantp ← false q5: wantq ← false p7: wantp ← false q5: wantq ← false p6: ritical section q5: wantq ← false p7: wantp ← false q5: wantq ← false p6: ritical section p7: wantp ← false q6: wantq ← false p7: wantp ← false q6: wantq ← false p7: wantp ← false p6: wantq ← false P7: rue only in the starting state P7: rue only if mutex is broken P7: Mutex condition can be defined: ¬(p4 ∧ q4) Nust be true in all possible states in all possible computations		boolean wantp ← false, wantq ← false			
p1:non-critical sectionq1:non-critical sectionp2:wantp ← trueq2:wantq ← truep3:await wantq = falseq3:await wantp = false $\checkmark p4:$ critical sectionq4:critical sectionp5:wantp ← falseq5:wantq ← false•Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq–-True only in the starting state•Formula: p4 ∧ q4-True only if mutex is broken-Mutex condition can be defined: ¬(p4 ∧ q4)•Must be true in all possible states in all possiblecomputations		р	q		
p2: wantp ← true q2: wantq ← true p3: await wantq = false q3: await wantp = false $\checkmark p4:$ critical section q4: critical section p5: wantp ← false q5: wantq ← false • Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq – - True only in the starting state • • Formula: p4 ∧ q4 – - True only if mutex is broken – - Mutex condition can be defined: ¬(p4 ∧ q4) • • Must be true in all possible states in all possible computations		loop forever loop forever			
p3: await wantq = false q3: await wantp = false		p1: non-critical section	q1: non-critical section		
 <u>q4</u>: critical section <u>p5</u>: wantp ← false Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq <u>q5</u>: wantq ← false Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq True only in the starting state Formula: p4 ∧ q4 <u>q4</u>: critical section Formula: p4 ∧ q4 <u>q5</u>: True only if mutex is broken Mutex condition can be <u>defined</u>: ¬(p4 ∧ q4) Must be true in all possible states in all possible computations 		p2: wantp ← true	q2: wantq ← true		
 p5: wantp ← false Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq True only in the starting state Formula: p4 ∧ q4 True only if mutex is broken Mutex condition can be <u>defined</u>: ¬(p4 ∧ q4) Must be true in all possible states in all possible computations 		p3: await wantq = false	q3: await wantp = false		
 Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq True only in the starting state Formula: p4 ∧ q4 True only if mutex is broken Mutex condition can be <u>defined</u>: ¬(p4 ∧ q4) Must be true in all possible states in all possible computations 	<	p4: critical section	q4: critical section		
 True only in the starting state Formula: p4 ∧ q4 True only if mutex is broken Mutex condition can be <u>defined</u>: ¬(p4 ∧ q4) Must be true in all possible states in all possible computations 		p5: wantp ← false	q5: wantq ← false		
invariant	– True • Formu – True – Mut • I	e only in the starting state IIa: p4 ∧ q4 e only if mutex is broken ex condition can be <u>defined</u> : ¬(p4 A Must be true in all possible states in computations	∙ q4) n all possible		
24.1.2011 Copyright Teemu Kerola 2011 10					

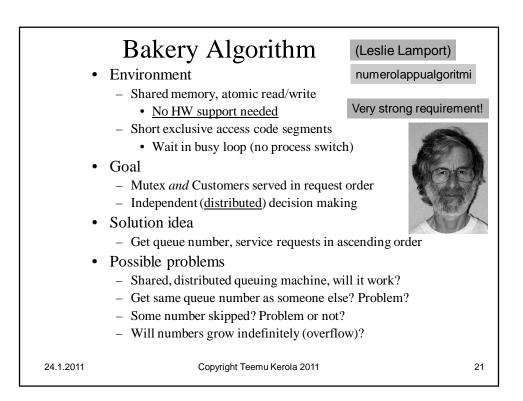


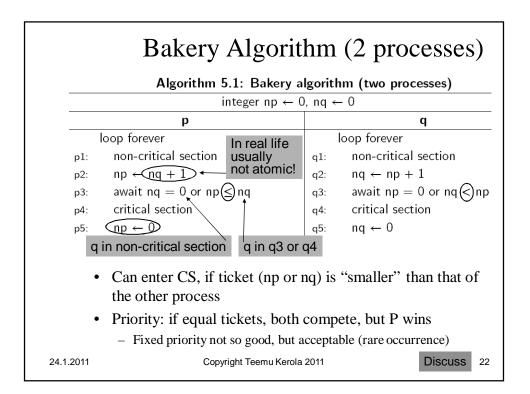


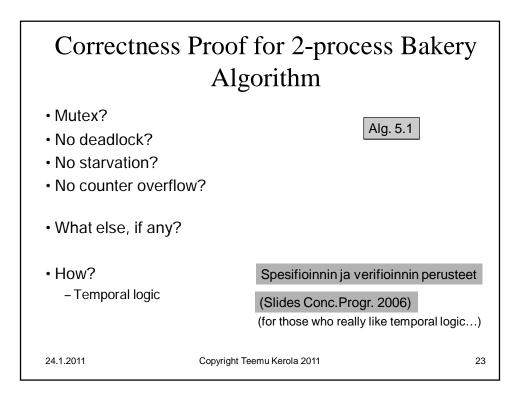


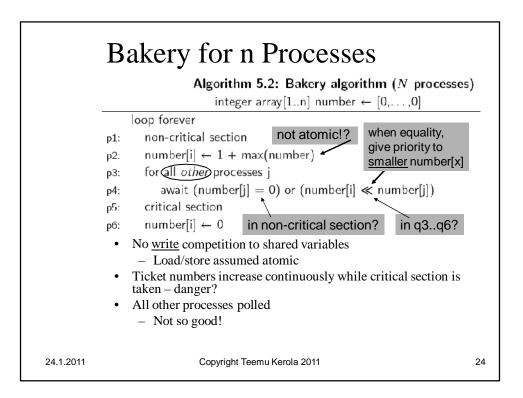


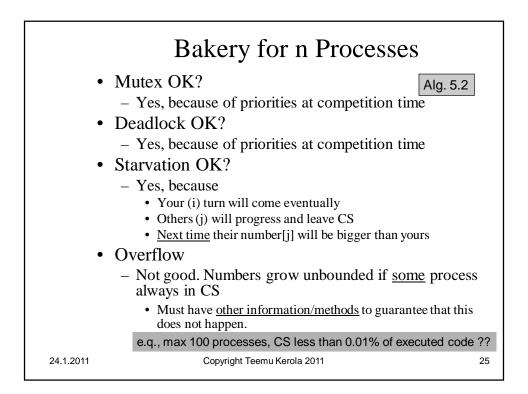


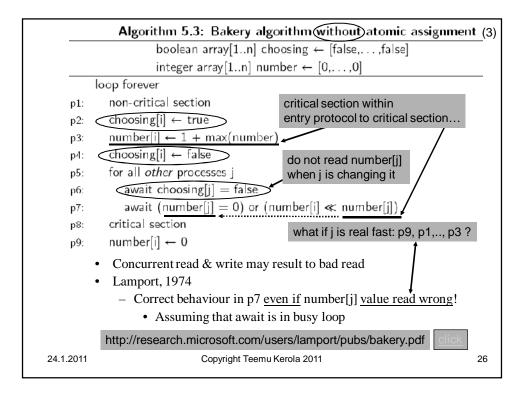


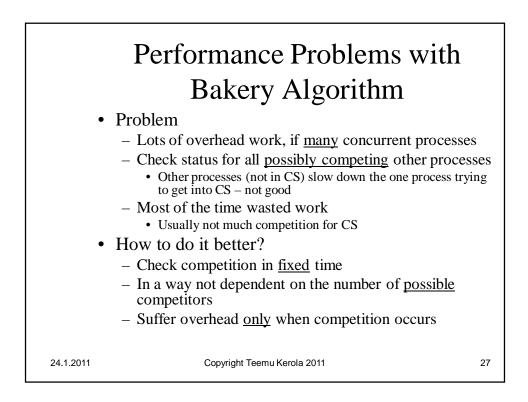


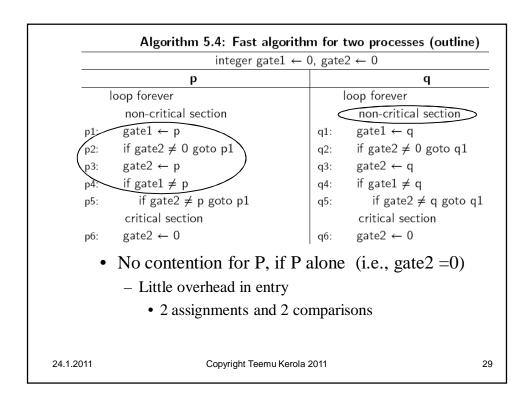


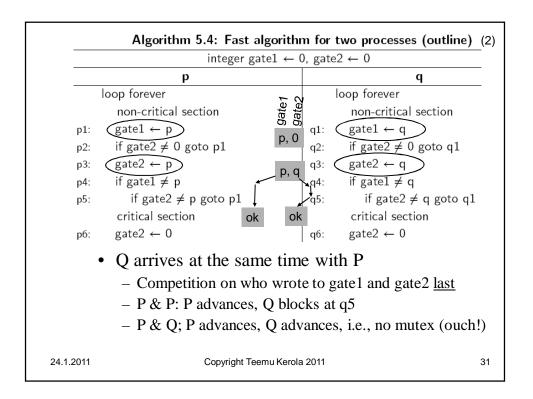


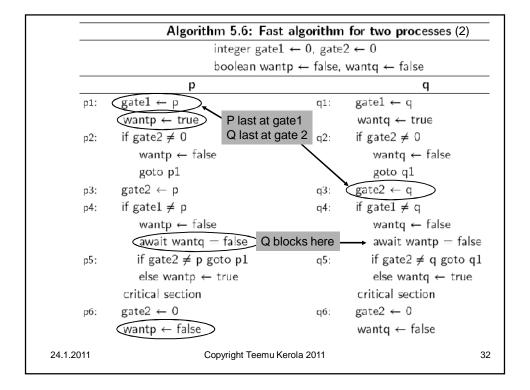


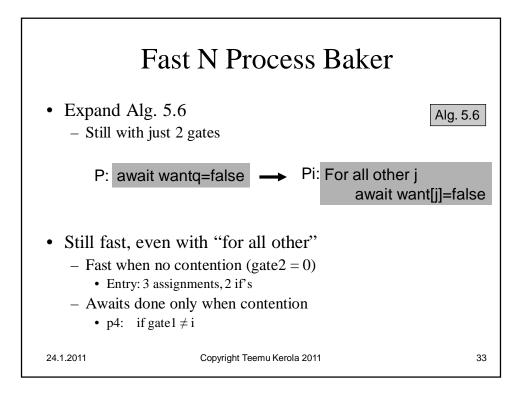


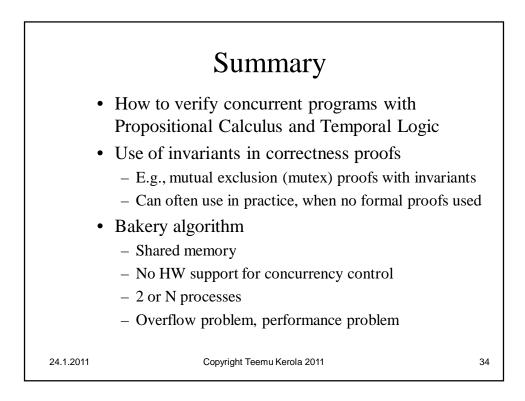









	integer gate1	\leftarrow 0, gate	$e^2 \leftarrow 0$		
	р		q		
loop forever			loop forever		
	non-critical section		non-critical section		
p1:	gate1 ← p	q1:	gate1 \leftarrow q		
p2:	if gate2 \neq 0 goto p1	q2:	if gate2 \neq 0 goto q1		
р3:	gate2 ← p	q3:	gate2 \leftarrow q		
p4:	if gate1 \neq p	q4:	if gate1 \neq q		
p5:	if gate2 \neq p goto p1	q5:	if gate2 ≠ q goto q1		
	critical section		critical section		
p6:	gate2 \leftarrow 0	q6:	gate2 \leftarrow 0		
•	Assume atomic read/write				
•	2 shared variables, both rea	ad/writte	n by P and Q		
•	Block at gate1, if contention	n			
	– Last one to get there waits				
•	Access to CS, if success in	writing	own id to <u>both</u> gates		
2011	Copyright Teemu Kerola 2011 28				



р	
r	q
loop forever	loop forever
non-critical section	non-critical section
p1: gate1 \leftarrow p	q1: gate1 ← q
p2: (if gate $2 \neq 0$ goto p1)	q2: if gate $2 \neq 0$ goto q1
p3: gate2 \leftarrow p	q3: gate2 \leftarrow q
p4: if gate $1 \neq p$	q4: if gate1 \neq q
p5: if gate $2 \neq p$ goto p1	q5 (if gate $2 \neq q$ goto
critical section	critical section
p6: gate2 ← 0	q6: gate2 $\leftarrow 0$
 Q pass gate2 (q3), who P blocks at p2, until Q Q will advance even if 	e

