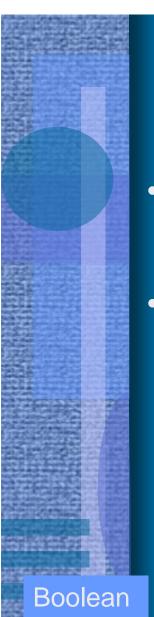
Verifying Concurrent Programs Advanced Critical Section Solutions

Ch 4.1-3, App B [BenA 06] Ch 5 (no proofs) [BenA 06]

Propositional Calculus
Invariants
Temporal Logic
Automatic Verification
Bakery Algorithm & Variants



Propositional Calculus

(App B [BenA 06])

propositiolaskenta, propositiologiikka totuusarvoilla laskeminen

- Atomic propositions
 - A, B, C, ...
 - $\overline{-}$ True (T) or False (F)
- **Operators**
 - not
 - disjunction, or
 - conjunction, and
 - implication
 - equivalence

atominen propositio, tilapropositio

A	$v(A_1)$	$v(A_2)$	v(A)
$\neg A_1$	T		F
$\neg A_1$	F		T
$A_1 \vee A_2$	F	F	F
$A_1 \vee A_2$	othe	T	
$A_1 \wedge A_2$	T	T	T
$A_1 \wedge A_2$	othe	F	
$A_1 \rightarrow A_2$	T	F	F
$A_1 \rightarrow A_2$	othe	T	
$A_1 \leftrightarrow A_2$	$v(A_1) =$	T	
$A_1 \leftrightarrow A_2$	$v(A_1)$ 7	F	

algebra

disjunktio, tai

konjuktio, ja

implikaatio

ekvivalenssi

Propositional Calculus

Implication

$$(A_1 \land A_2 \land \cdots \land A_n) \to B$$

 $A \rightarrow B$

implikaatio

Premise or antecedent

premissit, oletukset

Conclusion or consequent

johtopäätös

Formula

lauseke, argumentti

- Atomic proposition
- Atomic propositions or formulaes combined with operators
- Assignment v(f) of formula f

(totuusarvo-) asetus

- Assigned values (T or F) for each atomic proposition in formula
- Interpretation v(f) of formula f computed with operator rules
- Formula f is *true* if v(f) = T, *false* if v(f)=F

Propositional Calculus propositiolaskenta

Formula

 $(A_1 \wedge A_2 \wedge \cdots \wedge A_n) \rightarrow B$

- Implication
 - Premise or antecedent

premissit, oletukset

• Conclusion or consequent

johtopäätös

 Formula f is true/false if it's interpretation v(f) is true/false

tosi/epätosi

- Given assignment values for each argument
- Formula is *valid* if it is *tautology*

pätevä, validi

- Always true for <u>all interpretations</u> (all atomic propos. values)
- Formula is *satisfiable* if true in some interpretation

toteutuva

- Formula is *falsiable* if sometimes false

ei pätevä

- Formula is *unsatisfiable* if always false

ei toteutuva

Induction proof F(n) for all n=1, 2, 3, ...

induktio

- F(1)
- $F(n) \rightarrow F(n+1)$
- Dual approach: f is valid ↔ ¬f is unsatisfiable
 - Find one interpretation that makes ¬f true
 - Go through (automatically) all interpretations of ¬f

counter example

- If such interpretation found, ¬f is satisfiable, i.e.,
 f is not valid come up with vas
- O/w f is valid

vastaesimerkki

Proof by contradiction

ristiriita

- Assume: f is not valid
- Deduce contradiction with propositional calculus

 $\neg X \land X$

Deductive proof

deduktiivinen todistus

- Deduce formula from axioms and existing valid formulaes
- Start from the "beginning"
- Material implication

"implikaatiotodistus"?

- Formula is in the form " $p \rightarrow q$ "
- Can show that " $\neg(p \rightarrow q)$ " can not be (or can not become): v(p)=T and v(q)=F
 - if v(p) = v(q) = T and then
 if v(q) becomes F, then v(p) will not stay T
 - if v(p) = v(q) = F and then
 if v(p) becomes T, then v(q) will not stay F

Correctness of Programs

- Program P is <u>partially correct</u>
 - If P halts, then it gives the correct answer
- Program P is totally correct
 - P halts and it gives the correct answer
 - Often very difficult to prove ("halting problem" is difficult)
- Program P can have
 - preconditions A(x1, x2, ...) for input values (x1, x2, ...)
 - postconditions B(y1, y2, ...) for output values (y1, y2, ...)
- Partial and total correctness with respect to A(...) and B(...)

More? Se courses on specification and verification

Verification of Concurrent Programs

- State diagrams can be very large
 - Can do them automatically
- Making conclusions on state diagrams is difficult
 - Mutex, no deadlock, no starvation?
 - Can do automatically with temporal logic based on propositional calculus
 - Model checker programs (not covered in this course!)

mallin tarkastin

STeP

wantp

flag

- Consider them as atomic propositions
- <u>Proposition</u> wantp is true, iff <u>variable</u> wantp is true in given state
- Integer variables
 - Comparison result is an atomic proposition
 - Example: proposition "turn ≠ 2" is true, iff variable turn value is not 2 in given state
- Control pointers

turn

- Comparison to given value is an atomic proposition
- Example: proposition p1 is true, iff control pointer for P is p1 in given state

Idea: system state described with propositional logic

Formulaes

	Algorithm 3.8: Third attempt		
	boolean wantp ← false, wantq ← false		
р			q
	loop forever		loop forever
p1:	non-critical section	q1:	non-critical section
p2:	wantp ← true	q2:	wantq ← true
р3:	await wantq = false	q3:	await wantp = false
p4:	critical section	q4:	critical section
p5:	wantp ← false	q5:	wantq ← false

- Formula: p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq
 - True only in the starting state
- Formula: p4 ∧ q4
 - True only if mutex is broken
 - Mutex condition can be defined: ¬(p4 ∧ q4)
 - Must be true in all possible states in all possible computations
 - Invariant

invariantti

	Algorithm 3.8: Third attempt		
	boolean wantp ← false, wantq ← false		
р			q
	loop forever		loop forever
p1:	non-critical section	q1:	non-critical section
p2:	wantp ← true	q2:	wantq ← true
р3:	await wantq = false	q3:	await wantp = false
p4:	critical section	q4:	critical section
p5:	wantp ← false	q5:	wantq ← false

invariantti, aina tosi

- Invariant ¬(p4 ∧ q4)
 - If this is proven correct (true in all states), then mutex is proven
- Inductive proof
 - True for initial state
 - Assuming true for *current state*, prove that it still applies in next state
 - Consider <u>only statements</u> that affect <u>propositions in invariant</u>

Mutex Proof

	Algorithm 3.8: Third attempt		
	boolean wantp ← false, wantq ← false		
р			q
	loop forever		loop forever
p1:	non-critical section	q1:	non-critical section
p2:	wantp ← true	q2:	wantq ← true
р3:	await wantq = false	q3:	await wantp = false
p4:	critical section	q4:	critical section
p5:	wantp ← false	q5:	wantq ← false

- Invariant ¬(p4 ∧ q4)
 - Can not prove directly (yet) too difficult
- Need proven Lemma 4.3

lemma, apulause

- Lemma 4.1: $p3...5 \rightarrow wantp$ is invariant
- Lemma 4.2: $wantp \rightarrow p3..5$ is invariant
- Lemma 4.3: p3..5 ↔ wantp and q3..5 ↔ wantq are invariants
- Proof not covered here
- Can now prove original invariant ¬(p4 Λ q4)
 - Inductive proof with Lemma 4.3
 - Details on next slide

Mutex Proof

Algorithm 3.8: Third attempt boolean wantp ← false, wantq ← false q loop forever loop forever non-critical section non-critical section q1: wantp ← true wantq ← true p2: q2: await wantq = false await wantp = false p3: q3: critical section critical section p4: q4: $\mathsf{wantp} \leftarrow \mathsf{false}$ wantq ← false p5: q5:

- Lemma 4.3: p3..5 ↔ wantp and q3..5 ↔ wantq invariants
- Theorem 4.4: $\neg (p4 \land q4)$ is invariant
 - Prove (p4 A q4) inductively false in every state
 - Initial state: trivial
 - Only states {p3, ...} need to be considered
 - p4 may become true only here, i.e., state {p4, q?, ...}
 - States {..., q3, ...} similar, symmetrical
 - Can execute {p3, ...} only if wantq=false (i.e., ¬wantq)
 - Because wantq=false, q4 is also false (Lemma 4.3)
 - Next state can not be {p4, q4, ...}, i.e., (p4 \(\ni \) q4) is false

24.1.2011

Temporal Logic

temporaalilogiikka, aikaperustainen logiikka

- Propositional logic with <u>extra temporal</u> operators
- Computation

$$\{s_0, s_1, s_2, \ldots\}$$

- Infinite sequence of states: {s₀, s₁, s₂, ...}
- Temporal operators
 - Value (T or F) of given predicate does <u>not</u> <u>necessarily</u> depend <u>only</u> on current state
 - It may depend on also on (some or all) future states
 - Always or box (□) operator

aina

- □A true in state s_i if A true in <u>all</u> s_j, j≥i
- □¬(p4 ∧ q4)

• E.g., mutex must always be true

- lopulta, joskus tulevaisuudessa
- Eventually or diamond (◊) operator
 - \Diamond A true in state s_i if A true in <u>some</u> s_j , $j \ge i$ $\Box(p2 \to \Diamond p4)$
 - E.g., no starvation means that something eventually will become true

Other Temporal Logic Operators

seuraavassa tilassa

- True in next state (O) operator
 - Op true in state s_i, if p is true in the state s_{i+1}
- Until eventually (U) operator

tosi kunnes, kunnes lopulta

- p U q true in state s_i, if p is true in every state
 in future until eventually q becomes true
- •
- Not used (needed) in this course...

More? See courses on specification and verification.

Some Laws of Temporal Logic

deMorgan

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

$$\neg(A \lor B) \leftrightarrow (\neg A \land \neg B)$$

Distributive Laws

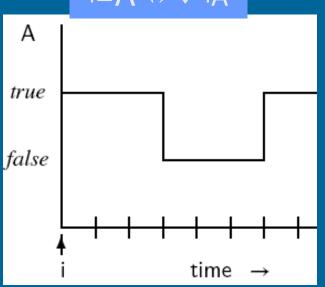
$$\Box(A \land B) \leftrightarrow (\Box A \land \Box B)$$

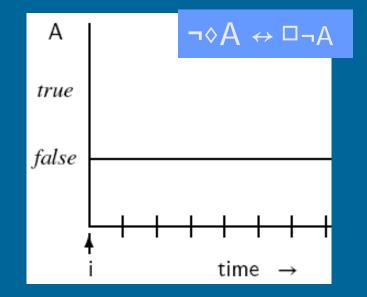
$$\Diamond (A V B) \leftrightarrow (\Diamond A V \Diamond B)$$

- Duality •
 - Not always is equivalent to eventually not

dualiteetti

- Not eventually is equivalent to always not



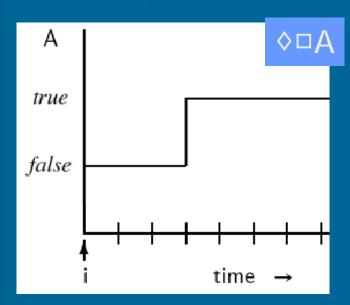


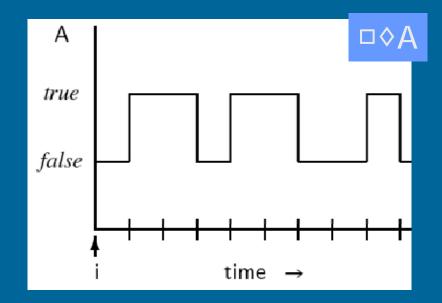
Sequence

- Eventually always ♦□A lopulta aina, joskus tulevaisuudessa pysyvästi totta
 - Will come true and then stays true forever
- Always eventually

aina lopulta, äärettömän usein tulevaisuudessa

- Always will become true some times in future (again)



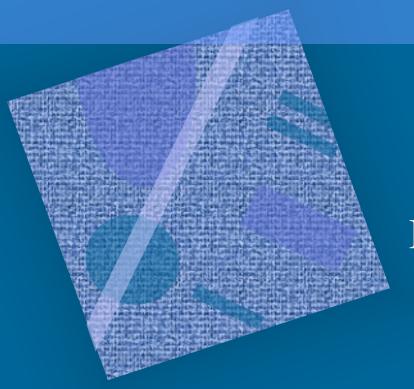


More Complex Proofs

- State diagrams become easily too large for manual analysis
- Use model checkers
 - Spin for Promela programs (algorithms)
 - Java PathFinder for Java programs
- More details?
 - Course
 An Introduction to Specification and Verification

Spesifioinnin ja verifioinnin perusteet

Advanced Critical Section Solutions



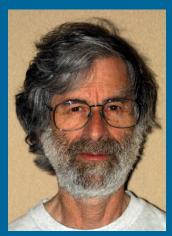
Ch 5 [BenA 06] (no proofs)

Bakery Algorithm
Bakery for N processes
Fast for N processes

- Environment
 - Shared memory, atomic read/write
 - No HW support needed
 - Short exclusive access code segments
 - Wait in busy loop (no process switch)
- Goal
 - Mutex and Customers served in request order
 - Independent (<u>distributed</u>) decision making
- Solution idea
 - Get queue number, service requests in ascending order
- Possible problems
 - Shared, distributed queuing machine, will it work?
 - Get same queue number as someone else? Problem?
 - Some number skipped? Problem or not?
 - Will numbers grow indefinitely (overflow)?

numerolappualgoritmi

Very strong requirement!



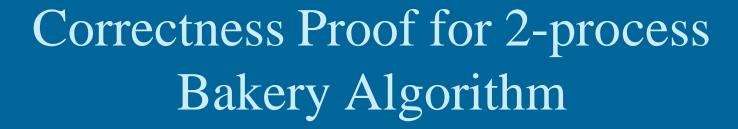
Bakery Algorithm (2 processes)

Algorithm 5.1: Bakery algorithm (two processes)

integer np ← 0, nq ← 0				
р			q	
	loop forever	In real life		loop forever
p1:	non-critical section	usually	q1:	non-critical section
p2:	$np \leftarrow nq + 1 \leftarrow$	not atomic!	q2:	$nq \leftarrow np + 1$
р3:	await $nq = 0$ or $np($	nq	q3:	await $np = 0$ or $nq \bigcirc np$
p4:	critical section		q4:	critical section
p5:	$np \leftarrow 0$		q5:	nq ← 0

q in non-critical section q in q3 or q4

- Can enter CS, if ticket (np or nq) is "smaller" than that of the other process
- Priority: if equal tickets, both compete, but P wins
 - Fixed priority not so good, but acceptable (rare occurrence)



- Mutex?
- No deadlock?
- No starvation?
- No counter overflow?
- What else, if any?
- How?
 - Temporal logic

Spesifioinnin ja verifioinnin perusteet

Alg. 5.1

(Slides Conc.Progr. 2006)

(for those who really like temporal logic...)

Bakery for n Processes

Algorithm 5.2: Bakery algorithm (N processes)

```
integer array[1..n] number \leftarrow [0,...,0]
     loop forever
                                                     when equality,
                                  not atomic!?
        non-critical section
p1:
                                                     give priority to
       number[i] \leftarrow 1 + max(number)
p2:
                                                     smaller number[x]
       for all other processes j
p3:
           await (number[j] = 0) or (number[i] \ll number[j])
p4:
       critical section
p5:
                                                           in q3..q6?
                            in non-critical section?
       number[i] \leftarrow 0
p6:
```

- No <u>write</u> competition to shared variables
 - Load/store assumed atomic
- Ticket numbers increase continuously while critical section is taken danger?
- All other processes polled
 - Not so good!

Bakery for n Processes

• Mutex OK?

Alg. 5.2

- Yes, because of priorities at competition time
- Deadlock OK?
 - Yes, because of priorities at competition time
- Starvation OK?
 - Yes, because
 - Your (i) turn will come eventually
 - Others (j) will progress and leave CS
 - Next time their number[j] will be bigger than yours
- Overflow
 - Not good. Numbers grow unbounded if <u>some</u> process always in CS
 - Must have <u>other information/methods</u> to guarantee that this does not happen.

e.q., max 100 processes, CS less than 0.01% of executed code ??

Algorithm 5.3: Bakery algorithm without atomic assignment (3)

```
boolean array[1..n] choosing \leftarrow [false,...,false] integer array[1..n] number \leftarrow [0,...,0]
```

```
loop forever
```

```
p1: non-critical section
```

p2: $\langle choosing[i] \leftarrow true$

p3: $number[i] \leftarrow 1 + max(number)$

p5: for all *other* processes j

p6: await choosing[j] = false

p7: await (number[j] = 0) or $(number[i] \ll number[j])$

p8: critical section

p9: $number[i] \leftarrow 0$

critical section within entry protocol to critical section...

do not read number[j] when j is changing it

what if j is real fast: p9, p1,.., p3?

- Concurrent read & write may result to bad read
- Lamport, 1974
 - Correct behaviour in p7 even if number[j] value read wrong!
 - Assuming that await is in busy loop

http://research.microsoft.com/users/lamport/pubs/bakery.pdf

Performance Problems with Bakery Algorithm

- Problem
 - Lots of overhead work, if <u>many</u> concurrent processes
 - Check status for all <u>possibly competing</u> other processes
 - Other processes (not in CS) slow down the one process trying to get into CS not good
 - Most of the time wasted work
 - Usually not much competition for CS
- How to do it better?
 - Check competition in <u>fixed</u> time
 - In a way not dependent on the number of <u>possible</u> competitors
 - Suffer overhead only when competition occurs

integer gate1 \leftarrow 0, gate2 \leftarrow 0

	р	q
7	loop forever	loop forever
	non-critical section	non-critical section
	p1: gate1 ← p	q1: gate1 ← q
	p2: if gate $2 \neq 0$ goto p1	q2: if gate $2 \neq 0$ goto q1
	p3: gate2 ← p	q3: gate2 ← q
	p4: if gate1 ≠ p	q4: if gate1 ≠ q
	p5: if gate2 ≠ p goto p1	q5: if gate2 ≠ q goto q1
	critical section	critical section
	p6: gate2 ← 0	q6: gate2 ← 0

- Assume atomic read/write
- 2 shared variables, both read/written by P and Q
- Block at gate1, if contention
 - Last one to get there waits
- Access to CS, if success in writing own id to both gates

integer gate1 \leftarrow 0, gate2 \leftarrow 0

р	q
loop forever	loop forever
non-critical section	non-critical section
p1: gate1 ← p	q1: gate1 ← q
p2: if gate2 ≠ 0 goto p1	q2: if gate $2 \neq 0$ goto q1
p3: gate2 ← p	q3: gate2 ← q
p4: if gate1 ≠ p	q4: if gate1 ≠ q
p5: if gate2 ≠ p goto p1	q5: if gate2 ≠ q goto q1
critical section	critical section
p6: gate2 ← 0	q6: gate2 ← 0

- No contention for P, if P alone (i.e., gate2 =0)
 - Little overhead in entry
 - 2 assignments and 2 comparisons

integer gate1 \leftarrow 0, gate2 \leftarrow 0

р	q
loop forever	loop forever
non-critical section	non-critical section
p1: gate1 ← p	q1: gate1 ← q
p2: if gate $2 \neq 0$ goto p1	q2: if gate $2 \neq 0$ goto q1
p3: gate2 ← p	q3: gate2 ← q
p4: if gate1 ≠ p	q4: if gate1 ≠ q
p5: if gate2 ≠ p goto p1	q5 if gate $2 \neq q$ goto q1
critical section	critical section
p6: gate2 ← 0	q6: gate2 ← 0

- Q pass gate2 (q3), when P tries to get in
 - P blocks at p2, until Q releases gate2
 - Q will advance even if P gets to p1 before q4 executed

integer gate1 \leftarrow 0, gate2 \leftarrow 0 loop forever loop forever gate 1 gate 2 non-critical section non-critical section gate1 ← p $gate1 \leftarrow q$ p1: q1: if gate2 ≠ 0 goto p1 if gate $2 \neq 0$ goto q1 p2: q2: gate2 ← p gate2 ← q p3: q3: (if gate1 ≠ p if gate1 ≠ q p4: q4: if gate $2 \neq q$ goto q1if gate $2 \neq p$ goto p1 p5: critical section critical section ok ok gate2 \leftarrow 0 gate2 \leftarrow 0 p6: q6:

- Q arrives at the same time with P
 - Competition on who wrote to gate1 and gate2 <u>last</u>
 - P & P: P advances, Q blocks at q5
 - P & Q; P advances, Q advances, i.e., no mutex (ouch!)

Algorithm 5.6: Fast algorithm for two processes (2) integer gate $1 \leftarrow 0$, gate $2 \leftarrow 0$ boolean wantp ← false, wantq ← false q gate1 ← p p1: q1: gate1 ← q wantp ← true wantq ← true Plast at gate1 Q last at gate 2 if gate $2 \neq 0$ q2: if gate $2 \neq 0$ p2: wantp ← false wantq ← false goto p1 goto q1 gate2 ← q gate2 ← p p3: q3: if gate1 ≠ p if gate $1 \neq q$ p4: q4: wantp ← false wantq ← false (await wantq = false) Q blocks here \longrightarrow await wantp = false if gate $2 \neq q$ goto q1if gate $2 \neq p$ goto p1 p5: q5: else wantp ← true else wantq ← true critical section critical section gate2 \leftarrow 0 gate2 \leftarrow 0 p6: **q**6: wantp ← false wantq ← false

Fast N Process Baker

- Expand Alg. 5.6
 - Still with just 2 gates

Alg. 5.6

await want[j]=false

- Still fast, even with "for all other"
 - Fast when no contention (gate 2 = 0)
 - Entry: 3 assignments, 2 if's
 - Awaits done only when contention
 - p4: if gate $1 \neq i$

Summary

- How to verify concurrent programs with Propositional Calculus and Temporal Logic
- Use of invariants in correctness proofs
 - E.g., mutual exclusion (mutex) proofs with invariants
 - Can often use in practice, when no formal proofs used
- Bakery algorithm
 - Shared memory
 - No HW support for concurrency control
 - 2 or N processes
 - Overflow problem, performance problem