
Semaphores
Ch 6 [BenA 06]

Semaphores
Producer-Consumer Problem

Semaphores in C--, Java,
Linux, Minix

13.2.2011 Copyright Teemu Kerola 2011

Lesson 6

Synchronization with HW support
• Disable interrupts

– Good for short time wait, not good for long time wait
– Not good for multiprocessors

• Interrupts are disabled only in the processor used

• Test-and-set instruction (etc)
– Good for short time wait, not good for long time wait
– Nor so good in single processor system

• May reserve CPU, which is needed by the process holding the lock
– Waiting is usually “busy wait” in a loop

• Good for mutex, not so good for general synchronization
– E.g., “wait until process P34 has reached point X”
– No support for long time wait (in suspended state)

• Barrier wait in HW in some multicore architectures
– Stop execution until all cores reached barrier_wait instruction
– No busy wait, because execution pipeline just stops
– Not to be confused with barrier_wait thread operation

23.2.2011 Copyright Teemu Kerola 2011

Semaphores

• Dijkstra, 1965, THE operating system
• Protected variable, abstract data type (object)

– Allows for concurrency solutions if used properly
• Atomic operations

– Create (SemaName, InitValue)
– P, down, wait, take, pend,

passeren, proberen, try, prolaad, try to decrease
– V, up, signal, release, post,

vrijgeven, verlagen, verhoog, increase
33.2.2011 Copyright Teemu Kerola 2011

Edsger W. Dijkstra

semafori

http://en.wikipedia.org/wiki/THE_operating_system

(Basic) Semaphore

• P(S)
– If value > 0, deduct 1 and proceed
– o/w, wait suspended in list (queue?) until released

• V(S)
– If someone in queue, release one (first?) of them
– o/w, increase value by one

43.2.2011 Copyright Teemu Kerola 2011

semaphore S

P(S)

V(S)

S.value

S.list

public

public

private

private

createpublic

S.V

S.L

integer value

queue of waiting processes

initial value

WAIT(S), Down(S)

SIGNAL(S), Up(S)

General vs. Binary Semaphores
• General Semaphore

– Value range: 0, 1, 2, 3, ….
• nr processes doing P(S) and advancing without delay
• Value: “Nr of free units”, “nr of advance permissions”

• Binary semaphore (or “mutex”)
– Value range: 0, 1

• Mutex lock (with suspended wait)
• Usually initial value 1
• V(S) can (should!) be called only when value = 0

– By process in critical section (CS)

– Many processes can be in suspended in list
– At most one process can proceed at a time

53.2.2011 Copyright Teemu Kerola 2011

• Someone (and just one!) must create S
– Value initialized to 1 (in this example)

• Possible wait in suspended state
– Long time, hopefully at least 2 process switches

63.2.2011 Copyright Teemu Kerola 2011

Some (operating) systems have “semaphores” with (optional)
busy wait (i.e., busy-wait semaphore).
Beware of busy-wait locks hidden in such semaphores!

N

General Semaphore Implementation
• P(S)

• V(S)

73.2.2011 Copyright Teemu Kerola 2011

if (S.value > 0)
S.value = S.value - 1

else
suspend calling process P
place P (last?) in S.list
call scheduler()

if (S.list == empty)
S.value = S.value + 1

else
take arbitrary (or 1st ?) process Q

from S.list
move Q to ready-to-run list
call scheduler()

Atomic
operations!
How?
Use HW mutex
support!

Tricky part:
section of CS
is in operating
system
scheduler?

go to sleep …
… wake up here

Semaphore Implementation
• Use HW-supported busy-wait locks to solve

mutex-problem for semaphore operations
– Short waiting times, a few machine instructions

• Use OS suspend operation to solve
semaphore synchronization problem
– Possibly very long, unlimited waiting times
– Implementation at process control level in OS
– Process waits in suspended waiting state
– This is the resume point for suspended process

• Deep inside in privileged OS-module

83.2.2011 Copyright Teemu Kerola 2011

Semaphore Implementation Variants
• Take first process in S.list in V(S)?

– Important semantic change, affects applications
– Fairness
– Strong semaphore

(vs. weak semaphore with no order in S.list)
• Add to/subtract from S.value first in P(S) and in

V(S)?
– Just another way to write code

• Scheduler call every time or sometimes at P or V
end?
– Semantic change, may affect applications
– Execution turn may (likely) change with P or V even

when calling process is not suspended in wait
– Signalled process may start execution immediately

93.2.2011 Copyright Teemu Kerola 2011

Semaphore Implementation Variants
• S.value can be negative

– P(S) always deducts 1 from S.value
– Negative S.value gives the number of waiting

processes?
– Makes it easier to poll number of waiting processes

• New user interface to
semaphore object?

• Busy-wait semaphore
– Wait in busy loop instead of in suspended state
– Really a busy-wait lock that looks like a semaphore
– Important semantic change, affects applications

103.2.2011 Copyright Teemu Kerola 2011

n = value(s);

Blocking Semaphore
• “Blocking”

– Normal (counting) semaphore with initial value = 0
– First P(S) will block, unless V(S) was executed first

• Example: synchronization between two processes

113.2.2011 Copyright Teemu Kerola 2011

….
Wait for Q
….

….
Signal R
….

R
Q

….
Wait for Q
….

….
Signal R
….

(no wait)

(wait)

….
P(S)
….

….
V(S)
….

R Q

Will block if
executed first

Create(S, 0)
tim

e

Producer-Consumer Problem
• Synchronization problem
• Correct execution order
• Producer places data in buffer

– Waits, if finite size buffer full
• Consumer takes data from buffer

– Same order as they were produced
– Waits, if no data available

• Variants
– Cyclic finite buffer – usual case
– Infinite buffer

• Realistic sometimes – producer can not wait
– External conditions rule out buffer overflow?
– Can be implemented with finite buffer!

– Many producers and/or many consumers
123.2.2011 Copyright Teemu Kerola 2011

4 7

Consumer

Producer

Tuottaja-kuluttaja
-ongelma

• Synchronization only one way (producer never waits)
– Synchronization from producer to consumer

• Counting semaphore notEmpty
– Value = nr of data items in buffer

• Append/take might need to be indivisible operations
– Protect with semaphores or busy-wait locks?
– Not needed now? Maybe not? (only one producer/consumer)

133.2.2011 Copyright Teemu Kerola 2011

(no waiting
ever)

Discuss

• Synchronization both ways, both can wait
• New semaphore notFull: value = nr of free slots in buffer
• Split semaphore notEmpty & notFull

– notEmpty.value + notFull.value = N in (p1, q4, …)
• When both at the beginning of loop, outside wait-signal area

– wait(notFull)…signal(notEmpty), wait(notEmpty)…signal(notFull)
143.2.2011 Copyright Teemu Kerola 2011

153.2.2011 Copyright Teemu Kerola 2011

0Size N buffer
One producer
One consumer

rearfront

Does it work with one producer
and one consumer? Yes.
Mutex problem? No. Why not?

Does it work with
many producers or
consumers? No.

163.2.2011 Copyright Teemu Kerola 2011

(Andrews, Fig. 4.5)

0

Semaphore mutexF for mutex problem

Need mutexes!
Semaphores or busy wait?

Prod/Consumers
Size N buffer
Many producers
Many consumers

Semaphore full for synchronization

Why separate mutexD and mutexF?

Barz’s General
Semaphore
Simulation

• Starting point
– Have binary semaphore
– Need counting semaphore
– Realistic situation

• Operating system or
programming language
library may have only
binary semaphores

173.2.2011 Copyright Teemu Kerola 2011

P

V

k = 4
4 in CS, 2 in gate
1 completes CS
What now?

2 complete CS?

mutex

nr of permissions

critical section to
implement V

Udding’s No-Starvation
Critical Section with
Weak Split Binary

Semaphores
• Weak semaphore

– Set, not a queue in wait

• Split binary semaphore
0 gate1+ gate2 1

• Batch arrivals
– Start service only when

no more arrivals
– Close gate1 during service

• No starvation
– gate1 opened again only

after whole batch in gate2
is serviced

183.2.2011 Copyright Teemu Kerola 2011

last in
batch

others
in “batch”

(typo in
book)

someone
in p4?

last in batch
(Alg 6.14) Discuss

Semaphore Features
• Utility provided by operating system or

programming language library
• Can be used solve almost any synchronization

problem
• Need to be used carefully

– Easy to make profound errors
• Forget V
• Suspend process in critical section (with P)

– No one can get CS to resume suspended process
– Someone may be waiting in busy-wait loop

• Deadlock

– Need strong coding discipline

193.2.2011 Copyright Teemu Kerola 2011

• Possible deadlock – not good
– All 5 grab left fork “at the same time”

203.2.2011 Copyright Teemu Kerola 2011

(Fig. 6.12 [Stal06])

Trivial
Solution

#1

/* mutex, one at a time */

/* left fork */
/* right fork */

(Alg. 6.10 [BenA06])

Trivial
Solution

#2

• No deadlock, no starvation
• Waiting when resources are available – which scenario? – not good

213.2.2011 Copyright Teemu Kerola 2011

(Fig. 6.13 [Stal06])
/* only 4 at a time, 5th waits */ (Alg. 6.11 [BenA06])

• No deadlock, no starvation
• No extra blocking
• Asymmetric solution – not so nice…

– All processes should execute the same code

• Simple primitives, must be used properly
223.2.2011 Copyright Teemu Kerola 2011

Symmetric
solutions?

Even numbered
philosophers?

or
This way with
50% chance?

or
This way with
20% chance?

Etc. etc.

(good solution)AS

Minix
Semaphore

233.2.2011 Copyright Teemu Kerola 2011

http://www.usenix.org/publications/login/2006-04/openpdfs/herder.pdf

Minix Semaphore P

243.2.2011 Copyright Teemu Kerola 2011

Suspend in message queue!

Minix Semaphore V

253.2.2011 Copyright Teemu Kerola 2011

Mutex?

Semaphores in Linux

• semaphore.h
• Low level process/thread control
• In assembly language, in OS kernel
• struct semaphore {

atomic_t count;
int sleepers;
wait_queue_head_t wait;
}

• sema_init(s, val)
• init_MUTEX(s), init_MUTEX_LOCKED(s)
• down(s), int down_interruptible(s), int down_trylock(s)
• up(s)

263.2.2011 Copyright Teemu Kerola 2011

http://fxr.watson.org/fxr/source/include/asm-sh/semaphore.h?v=linux-2.4.22

Semaphores in BACI with C--
• Weak semaphore

– S.list is a set, not a queue
– Awakened process chosen in random

• Counting semaphore: semaphore count;
• Binary semaphore: binarysem mutex;
• Operations

– Initialize (count, 0);
– P() and V()
– Also wait() and signal() in addition to P() and V()
– Value can be used directly: n = count; cout << count;

273.2.2011 Copyright Teemu Kerola 2011

current value of semaphore count

C- -
Semaphore Example

semexample.cm

283.2.2011 Copyright Teemu Kerola 2011

(BACI C- - User’s Guide)

• 3 possible outcomes

– how?

– how?

– how?

– Why no other possible outcome?

293.2.2011 Copyright Teemu Kerola 2011

C- - Semaphore Example

(BACI C- - User’s Guide)

Semaphores in Java
• Class Semaphore in package java.util.concurrent

• S.value is S.permits in Java
– Permit value can be positive and negative

• Permits can be initialized to negative numbers
• Semaphore type

– fair (= strong) & nonfair (busy-wait ??), default)
• Wait(S):

• Signal(S):
• Many other features

303.2.2011 Copyright Teemu Kerola 2011

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Semaphore.html

Java Example
• Simple Java-solution with semaphore

• Still fairly complex
– Not as streamlined as P() and V()

• How does it really work?
– Busy wait or suspended wait?
– Fair queueing?
– Overhead when no competition for CS?

313.2.2011 Copyright Teemu Kerola 2011

vera: javac Plusminus_sem.java
vera: java Plusminus_sem

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus_sem.java

Semaphore Summary
• Most important high level synchr. primitive

– Implementation needs OS assistance
– Wait in suspended state
– Should wait relatively long time

• Costs 2 process switches (wait – resume)

• Can do anything
– Just like assembly language coding…

• Many variants
– Counting, binary, split, blocking, neg. values, mutex

• Programming language interfaces vary
• No need for shared memory areas

– Enough to invoke semaphore operations in
OS or programming language libraries

323.2.2011 Copyright Teemu Kerola 2011

Summary

• Semaphore structure, implementation, and use
– “Busy wait semaphores”

• Producer-Consumer problem and its variants
– Semaphores for synchronization and for mutex

• Emulate advanced semaphores with simpler ones
– Barz, Udding

• Semaphores in Linux (C), C--, Java

333.2.2011 Copyright Teemu Kerola 2011

