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Synchronization with HW support
• Disable interrupts

– Good for short time wait, not good for long time wait
– Not good for multiprocessors

• Interrupts are disabled only in the processor used

• Test-and-set instruction (etc)
– Good for short time wait, not good for long time wait
– Nor so good in single processor system

• May reserve CPU, which is needed by the process holding the lock
– Waiting is usually “busy wait” in a loop

• Good for mutex, not so good for general synchronization
– E.g., “wait until process P34 has reached point X”
– No support for long time wait (in suspended state)

• Barrier wait in HW in some multicore architectures
– Stop execution until all cores reached barrier_wait instruction
– No busy wait, because execution pipeline just stops
– Not to be confused with barrier_wait thread operation
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Semaphores

• Dijkstra, 1965, THE operating system
• Protected variable, abstract data type (object)

– Allows for concurrency solutions if used properly
• Atomic operations

– Create (SemaName, InitValue)
– P, down, wait, take, pend,

passeren, proberen, try, prolaad, try to decrease
– V, up, signal, release, post,

vrijgeven, verlagen, verhoog, increase
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Edsger W. Dijkstra

semafori

http://en.wikipedia.org/wiki/THE_operating_system



(Basic) Semaphore

• P(S)
– If value > 0, deduct 1 and proceed
– o/w, wait suspended in list (queue?) until released

• V(S)
– If someone in queue, release one (first?) of them
– o/w, increase value by one
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General vs. Binary Semaphores
• General Semaphore

– Value range: 0, 1, 2, 3, ….
• nr processes doing P(S) and advancing without delay
• Value: “Nr of free units”,  “nr of advance permissions”

• Binary semaphore (or “mutex”)
– Value range: 0, 1

• Mutex lock (with suspended wait)
• Usually initial value 1
• V(S) can (should!) be called only when value = 0

– By process in critical section (CS)

– Many processes can be in suspended in list
– At most one process can proceed at a time
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• Someone (and just one!) must create S
– Value initialized to 1 (in this example)

• Possible wait in suspended state
– Long time, hopefully at least 2 process switches
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Some (operating) systems have “semaphores” with (optional)
busy wait (i.e., busy-wait semaphore).
Beware of busy-wait locks hidden in such semaphores!

N



General Semaphore Implementation
• P(S)

• V(S)
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if (S.value > 0)
S.value = S.value - 1

else
suspend calling process P
place P (last?) in S.list
call scheduler()

if (S.list == empty)
S.value = S.value + 1

else
take arbitrary (or 1st ?) process Q

from S.list
move Q to ready-to-run list
call scheduler()

Atomic
operations!
How?
Use HW mutex
support!

Tricky part:
section of CS
is in operating
system
scheduler?

go to sleep …
… wake up here



Semaphore Implementation
• Use HW-supported busy-wait locks to solve

mutex-problem for semaphore operations
– Short waiting times, a few machine instructions

• Use OS suspend operation to solve
semaphore synchronization problem
– Possibly very long, unlimited waiting times
– Implementation at process control level in OS
– Process waits in suspended waiting state
– This is the resume point for suspended process

• Deep inside in privileged OS-module
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Semaphore Implementation Variants
• Take first process in S.list in V(S)?

– Important semantic change, affects applications
– Fairness
– Strong semaphore

(vs. weak semaphore with no order in S.list)
• Add to/subtract from S.value first in P(S) and in

V(S)?
– Just another way to write code

• Scheduler call every time or sometimes at P or V
end?
– Semantic change, may affect applications
– Execution turn may (likely) change with P or V even

when calling process is not suspended in wait
– Signalled process may start execution immediately
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Semaphore Implementation Variants
• S.value can be negative

– P(S) always deducts 1 from S.value
– Negative S.value gives the number of waiting

processes?
– Makes it easier to poll number of waiting processes

• New user interface to
semaphore object?

• Busy-wait semaphore
– Wait in busy loop instead of in suspended state
– Really a busy-wait lock that looks like a semaphore
– Important semantic change, affects applications
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n = value(s);



Blocking Semaphore
• “Blocking”

– Normal (counting) semaphore with initial value = 0
– First P(S) will block, unless V(S) was executed first

• Example: synchronization between two processes
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….
Wait for Q
….

….
Signal R
….

R
Q

….
Wait for Q
….

….
Signal R
….

(no wait)

(wait)

….
P(S)
….

….
V(S)
….

R Q

Will block if
executed first

Create( S, 0)
tim

e



Producer-Consumer Problem
• Synchronization problem
• Correct execution order
• Producer places data in buffer

– Waits, if finite size buffer full
• Consumer takes data from buffer

– Same order as they were produced
– Waits, if no data available

• Variants
– Cyclic finite buffer – usual case
– Infinite buffer

• Realistic sometimes – producer can not wait
– External conditions rule out buffer overflow?
– Can be implemented with finite buffer!

– Many producers and/or many consumers
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4 7

Consumer

Producer

Tuottaja-kuluttaja
-ongelma



• Synchronization only one way (producer never waits)
– Synchronization from producer to consumer

• Counting semaphore notEmpty
– Value = nr of data items in buffer

• Append/take might need to be indivisible operations
– Protect with semaphores or busy-wait locks?
– Not needed now? Maybe not? (only one producer/consumer)
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(no waiting
ever)

Discuss



• Synchronization both ways, both can wait
• New semaphore notFull: value = nr of free slots in buffer
• Split semaphore notEmpty & notFull

– notEmpty.value + notFull.value = N           in (p1, q4, …)
• When both at the beginning of loop, outside wait-signal area

– wait(notFull)…signal(notEmpty), wait(notEmpty)…signal(notFull)
143.2.2011 Copyright Teemu Kerola 2011



153.2.2011 Copyright Teemu Kerola 2011

0Size N buffer
One producer
One consumer

rearfront

Does it work with one producer
and one consumer? Yes.
Mutex problem? No.  Why not?

Does it work with
many producers or
consumers? No.
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(Andrews, Fig. 4.5)

0

Semaphore mutexF for mutex problem

Need mutexes!
Semaphores or busy wait?

Prod/Consumers
Size N buffer
Many producers
Many consumers

Semaphore full for synchronization

Why separate mutexD and mutexF?



Barz’s General
Semaphore
Simulation

• Starting point
– Have binary semaphore
– Need counting semaphore
– Realistic situation

• Operating system or
programming language
library may have only
binary semaphores
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P

V

k = 4
4 in CS, 2 in gate
1 completes CS
What now?

2 complete CS?

mutex

nr of permissions

critical section to
implement V



Udding’s No-Starvation
Critical Section with
Weak Split Binary

Semaphores
• Weak semaphore

– Set, not a queue in wait

• Split binary semaphore
0   gate1+ gate2   1

• Batch arrivals
– Start service only when

no more arrivals
– Close gate1 during service

• No starvation
– gate1 opened again only

after whole batch in gate2
is serviced
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last in
batch

others
in “batch”

(typo in
book)

someone
in p4?

last in batch
(Alg 6.14) Discuss



Semaphore Features
• Utility provided by operating system or

programming language library
• Can be used solve almost any synchronization

problem
• Need to be used carefully

– Easy to make profound errors
• Forget V
• Suspend process in critical section (with P)

– No one can get CS to resume suspended process
– Someone may be waiting in busy-wait loop

• Deadlock

– Need strong coding discipline
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• Possible deadlock – not good
– All 5 grab left fork “at the same time”
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(Fig. 6.12 [Stal06])

Trivial
Solution

#1

/* mutex, one at a time */

/* left fork */
/* right fork */

(Alg. 6.10 [BenA06])



Trivial
Solution

#2

• No deadlock, no starvation
• Waiting when resources are available – which scenario? – not good
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(Fig. 6.13 [Stal06])
/* only 4 at a time, 5th waits */ (Alg. 6.11 [BenA06])



• No deadlock, no starvation
• No extra blocking
• Asymmetric solution – not so nice…

– All processes should execute the same code

• Simple primitives, must be used properly
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Symmetric
solutions?

Even numbered
philosophers?

or
This way with
50% chance?

or
This way with
20% chance?

Etc. etc.

(good solution)AS



Minix
Semaphore
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http://www.usenix.org/publications/login/2006-04/openpdfs/herder.pdf



Minix Semaphore P
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Suspend in message queue!



Minix Semaphore V
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Mutex?



Semaphores in Linux

• semaphore.h
• Low level process/thread control
• In assembly language, in OS kernel
• struct semaphore {

atomic_t count;
int sleepers;
wait_queue_head_t wait;
}

• sema_init(s, val)
• init_MUTEX(s), init_MUTEX_LOCKED(s)
• down(s), int down_interruptible(s), int down_trylock(s)
• up(s)
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http://fxr.watson.org/fxr/source/include/asm-sh/semaphore.h?v=linux-2.4.22



Semaphores in BACI with C--
• Weak semaphore

– S.list is a set, not a queue
– Awakened process chosen in random

• Counting semaphore: semaphore count;
• Binary semaphore: binarysem mutex;
• Operations

– Initialize (count, 0);
– P() and V()
– Also wait() and signal() in addition to P() and V()
– Value can be used directly:  n = count;  cout << count;
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current value of semaphore count



C- -
Semaphore Example

semexample.cm
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(BACI C- - User’s Guide)



• 3 possible outcomes

– how?

– how?

– how?

– Why no other possible outcome?
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C- - Semaphore Example

(BACI C- - User’s Guide)



Semaphores in Java
• Class Semaphore in package java.util.concurrent

• S.value is S.permits in Java
– Permit value can be positive and negative

• Permits can be initialized to negative numbers
• Semaphore type

– fair (= strong) & nonfair ( busy-wait ??), default)
• Wait(S):

• Signal(S):
• Many other features
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http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Semaphore.html



Java Example
• Simple Java-solution with semaphore

• Still fairly complex
– Not as streamlined as P() and V()

• How does it really work?
– Busy wait or suspended wait?
– Fair queueing?
– Overhead when no competition for CS?
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vera: javac Plusminus_sem.java
vera: java Plusminus_sem

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus_sem.java



Semaphore Summary
• Most important high level synchr. primitive

– Implementation needs OS assistance
– Wait in suspended state
– Should wait relatively long time

• Costs 2 process switches (wait – resume)

• Can do anything
– Just like assembly language coding…

• Many variants
– Counting, binary, split, blocking, neg. values, mutex

• Programming language interfaces vary
• No need for shared memory areas

– Enough to invoke semaphore operations in
OS or programming language libraries
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Summary

• Semaphore structure, implementation, and use
– “Busy wait semaphores”

• Producer-Consumer problem and its variants
– Semaphores for synchronization and for mutex

• Emulate advanced semaphores with simpler ones
– Barz, Udding

• Semaphores in Linux  (C), C--, Java
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