
UNIVERSITY OF HELSINKI 581332 Rinnakkaisohjelmistot
Faculty of Science
Dept. of Computer Science
 Separate Examination
Auvo Häkkinen 20.01.2004

Please write on each paper the date and the name of the course as well as your name and
signature. Try to keep your answers short.

1 ONE-LANE BRIDGE (15p)

An island is connected to the mainland by a narrow bridge, where cars are allowed to drive
only in one direction in a time. The car processes call procedure enter_bridge(direction)
before using the bridge, and procedure exit_bridge(direction), when thy leave the bridge.
The parameter direction is the driving direction: “to the island” or “from the island”. The code
for the car processes is

 process car[1 to N] {
 ...
 enter_bridge(direction);
 drive on bridge;

exit_bridge(direction);
 }

Give the code for procedures enter_bridge() and exit_bridge(). The solution must be based
on semaphores and must allow several cars on bridge driving to the same direction. The
solution needs not to be fair, which means that the waiting times on the other end may be
very long. When the waiting ends, the cars must be allowed to proceed in FCFS order.

2 ROLLER COASTER (15 p)

There are N customer processes and one car process. The passengers repeatedly wait to
take rides in the car, which can hold C passengers (C < N). However, the car goes around
the track only when it is full. When the car stops, all passengers have to leave the car. If
they want to have another ride, they have to queue again.

Explain the conditions where synchronization and mutual exclusion is needed. Develop the
code for the passenger and car processes. Use monitors. Explain how your solution handles
the synchronization and mutual exclusion.

3 PARKING HALL (15 p)

There are several doors to a parking hall. Each door is controlled by a sensor(machine), that
notifies when a car is coming in or going out. On each door, there is also a screen(machine)
to show information to customers. The whole system is controlled by a central computer,
which contains (among others)

 - one process for each door, and

- one process to control all information screens.

The communication between the sensor and the door process is based on message-
passing: the sensor gives a message if a car is coming in or going out. The door processes
have a common counter indicating the number of free places in the hall. When the hall gets
full, all screens start to show text "FULL". When there is room again, the screens show text
"ROOM". The communication between the control process and the screens is also based on
message passing: the control process sends the new text screens, when appropriate. The
communication between the door processes and the controlling process is based on shared
memory (efficiency!)

Give the essential parts of the code for door processes and the controlling process (i.e.: the
variables needed and the communication code). You need not to explain how the sensor
drivers and the screen drives would be implemented.

4 DEADLOCKS (15 p)

a) Consider a ticket reservation system, and give an example of each of the basic problems
in the concurrent systems area (mutual exclusion, synchronization, deadlock, starving).

b) Which are the necessary conditions that must be present for a deadlock to be possible?
How is each of these conditions fulfilled in the dining philosophers' problem? Would it be
possible to prevent a deadlock in the dining philosophers' problem by changing the basic
rules? How? Rethink each of the conditions.

c) Explain the basic ideas of the Banker's algorithm, and what kinds of data structures are
needed to implement it. What happens to the requesting process, if the algorithm shows that
the request can not be granted? What would happen, if the resource is granted, although
according to the Banker's algorithm the request should be rejected?

