
1.8.2008 / Teemu Kerola

 - 1 -

Learning Goals for course Concurrent Programming

Main theme Prerequisites Approaching Learning Goals Reaches Learning Goals Deepens Learning Goals

Concurrency and
problems caused
by concurrency.

Can explain whe-
re concurrency
appears in pro-
grams and sys-
tems, how the
execution of con-
current programs
is described and
what problems
may result from
concurrency.

Can explain processor
operation when it exe-
cutes machine in-
structions. (Computer
Organization I)

Can explain how two
programs may advan-
ce concurrently at ma-
chine language level.
Can explain how con-
current advancement
is based on device in-
terrupts and operating
systems scheduling
decisions. (Computer
Organization I)

Can explain shared memory use of
multiple threads/processes.

Can explain the need for concurrency in
applications. Can explain what types of
actions result in concurrent actions in HW
and SW level. Can give concurrency
examples at different system levels.

Can explain the meaning of different
execution scenarios when studying the
execution of concurrent programs.

Can give examples of general problems
that may result from erroneous
concurrent solution.

Can explain the indeterminate nature of
concurrent processes and its effects.

Can explain the goals of concurrency
(e.g., advantages, disadvantages, differ-
rent levels of concurrency, and proving
concurrent programs correct or faulty).

Can explain the requirements for
concurrent solutions (e.g., definition of
correctness and correctness in all
scenarios).

Can take into consideration the effect of
systems architecture to concurrency.

Can explain the different
nature of concurrency in
HW, SW and network level
operations.

Can estimate how well an
application may use
concurrency.

Can maximize concurrency
in application.

1.8.2008 / Teemu Kerola

 - 2 -

Main theme Prerequisites Approaching Learning Goals Reaches Learning Goals Deepens Learning Goals

Fundamental
concepts and
models in
concurrency.

Can explain the
problem areas,
the general solu-
tion models and
the commonly
used model
examples for
concurrent
problems.

Can program simple
one-threaded pro-
grams. (Introduction to
Programming)

Can explain how OS
works when schedu-
ling processes and
managing resources.
(Computer
Organization I)

Can describe with examples

• fundamental concepts in
concurrent execution (e.g.,
synchronic, asynchronic, atomic,
critical section, synchronization,
communication, deadlocking, lock
variable, busy wait and
suspended wait),

• fundamental concurrent program-
ming models (e.g., mutual exclu-
sion problem, readers-writers,
producer-consumer, client-server,
boom synchronization, user class
based synchronization, active
server), and

• classical examples in concurrent
programming (e.g., dining philo-
sophers, sleeping barber, bakery
algorithm).

Can explain semaphore and monitor
structures, and use them properly in
applications.

Can explain the meaning of mutual ex-
clusion, synchronization and communi-
cation problems in concurrent program-
ming. Can design a mutual exclusion
problem solution that is best suitable for
current environment and application.

Can explain with examples how
deadlocks are created as well as explain
the necessary and sufficient conditions
for them. Can explain at algorithm level
how deadlocks are found and recovered
from.

Can explain how program behaviour
causes concurrency problems. Can apply
fundamental models to new problems.

Can explain special features of
semaphores and monitors and use them
properly in applications. Can program
concurrency control at application,
programming language and operating
system level. Can select correct methods
for mutual exclusion, synchronization and
communication problem solutions.

Can reason with invariants the correct-
ness of algorithms applying fundamental
models.

Can reason the limited possibilities in
handling deadlocks in real applications.
Can explain how deadlocks can be
prevented.

Can evaluate the usability
of fundamental models in
various HW and SW
platforms.

Can program semaphores
and monitors with lock
variables. Can program
monitors with semaphores.

Can prove correctness of
complex concurrent
programs.

1.8.2008 / Teemu Kerola

 - 3 -

Main theme Prerequisites Approaching Learning Goals Reaches Learning Goals Deepens Learning Goals

Concurrent pro-
gramming in dis-
tributed systems.

Can explain the
special features
of distributed
systems for con-
current program-
ming and how
fundamental mo-
dels can be im-
plemented in dis-
tributed system.

Can explain how
operating system
transmits messages
from one process to
another. (Computer
Organization I)

Can explain how
subroutines are
implemented.
(Computer
Organization I)

Can explain concurrent programming
fundamental concepts in distributed
systems (e.g., message passing,
channels, RPC, guarded commands,
client-servers).

Can explain how message passing
through channels works and apply
message passing into fundamental model
solutions in distributed systems.

Can explain how remote procedure calls,
guarded commands and client-server
systems work.

Can algorithmically implement
fundamental models in distributed
systems based on peer communication.

Can explain the similarities and
differences between monitor and
message based servers.

Can explain how remote procedure call
and guarded commands work. Can
explain how normal and rendezvous
based client server systems work.

Can algorithmically implement guarded
commands both with threads and with
guarded statements.

Can explain how inter-
process message
communication can be
generalized to network
level.

Can explain how CSP
works and what it is used
for.

Concurrent pro-
gramming in
practice.

Can write small
concurrent pro-
grams with Java.

Can write small one-
threaded Java
programs.
(Introduction to
Programming)

Can write multi-threaded Java programs
using shared memory with mutual
exclusion.

Can describe the most common error
types of Java concurrent programming.

Can write small Java programs utilizing
concurrency control.

Can determine whether simple concurrent
programs are correct or not.

Can write distributed
concurrent Java programs.

Can test concurrent
programs and prove them
correct.

