Name	Signature	Student Id	Points

Computer Organization II, miniexam 1, 28.3.2018 (13 p)

Write your answer on this exam paper in the space given. Please notice, that the exam paper is 2-sided.

a) [4 p] CPU wants to write one cache line (4 words, i.e., 16 bytes) to memory address 0x00045678.
the data bus has 32 lines (+ Hamming code lines). How do you implement this with synchronic bus?
Draw the timing diagram and explain what happens there.

Possible lines in your diagram are {Status lines, Address lines, Data lines, Read, Write, Acknowledge}. Remember to mention, which component (CPU, memory) will set each new value to each line.

b) [3 p] QPI (QuickPath Interconnect) implementation has four layers: Physical, Link, Routing, Protocol. Explain for each layer, which problem they solve and how.

Why would QPI be better than bus solution? Give at least two reasons with explanations.

c) [6 p] Virtual and main memory addresses have 32 bits. Page size is 4 KB, and byte addresses are used. Set-associative TLB has 128 entries with 16 sets and set size 8. Each TLB-entry has a tag-field, 20-bit frame number, process id PID, and at least flags V (valid entry), D (dirty), R (referenced), and WP (write protect).

How do you split the 20-bit page number to fields *tag* and *set*? Please notice, that there is no field *offset*, because each TLB "line" has only one address translation entry.

Consider a reference to virtual address 0x00045678. What are the values of fields tag and set?

Where (which entry number) in the TLB can the TLB-entry for virtual byte address 0x00045678 be located?

How is the address translation done, when there is a TLB-hit and virtual address 0x00045678 maps to physical address 0x0AACC678?

What happens in address translation, if there is a TLB-miss for virtual address 0x00045678, but no page fault?